
PROCEEDINGS OF

OSPERT 2024
The 18th Annual Workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 9th, 2024 in Lille, France

in conjunction with

The 36th Euromicro Conference on Real-Time Systems
July 9–12, 2024, Lille, France

Editors:
Alexander Zuepke
Kuan-Hsun Chen

https://www.ecrts.org/workshops/ospert23/
https://www.ecrts.org/2024/

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 5

Session: OSPERT and RT-AutoSec Technical Session 7
A Preliminary Assessment of the real-time capabilities of Real-Time Linux on Raspberry Pi 5

W. Dewit, A. Paolillo, J. Goossens . 7
Towards Enabling Synchronous Releases for Periodic Tasks in RTEMS

T. Seidl, M. Guenzel, J.-J. Chen, and K.-H. Chen . 13

Program 19

© Copyright 2024 Technische Universität München & Universiteit Twente.
All rights reserved. The copyright of this collection is with Technische Universität München & Universiteit
Twente. The copyright of the individual articles remains with their authors.

Message from the Chairs

Welcome to OSPERT’24, the 18th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. This year, OSPERT will provide a combined program with the RT-AutoSec and RT-Cloud
workshops. We invite you to join us in participating in a workshop of lively discussions, exchanging ideas about
systems issues related to real-time and embedded systems.

The workshop will open with a keynote by Dr.-Ing. Martin Ring. He will discuss the challenges the
interdependence of safety and security pose in a product’s lifecycle, their impact on Bosch and its products,
potential solutions, and open research questions After the technical presentations, we will have a second keynote,
shared between RTAutoSec and OSPERT, from Dr.-Ing. Zain Hammadeh, discussing safety and security in
software development at the German Aerospace Center (DLR). In the afternoon, we will have technical sessions
from the RT-Cloud workshop and a keynote given by Dr. George Violettas from SYSGO GmbH, Germany,
discussing safety-critical cloud applications. At the end, we conclude with an overarching panel.

OSPERT’24 received two submissions from which all were selected by the program commitee to be presented
at the workshop. Each paper received four individual reviews. Our special thanks go to the program committee,
a team of eight experts for volunteering their time and effort to provide useful feedback to the authors, and of
course to all the authors for their contributions and hard work.

OSPERT’24 would not have been possible without the support of many people. The first thanks are due
to Rodolfo Pellizzoni, Julien Forget, and the whole ECRTS organizing team for entrusting us with organizing
OSPERT, and for their continued support of the workshop. We would also like to thank the chairs of prior
editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Alexander Zuepke Kuan-Hsun Chen
Technische Universität München Universiteit Twente
Germany The Netherlands

Program Committee

Catherine Nemitz Davidson College
Christian Dietrich Technische Universität Braunschweig
Daniel Casini Scuola Superiore Sant’Anna
Gedare Bloom University of Colorado at Colorado Springs
Junjie Shi Technische Universität Dortmund
Marine Sauze-Kadar CEA-Leti
Mohamed Hassan McMaster University
Takuya Azumi Saitama University

3

Keynote Talk

Safety and Security on a Journey to Outer Space: Navigating the Complex Relationship

Zain Hammadeh
Research Scientist, German Aerospace Center (DLR)

As humanity ventures further into the cosmos, the complexities of space exploration extend beyond engineering
marvels and scientific discoveries. Central to these challenges is the development of robust, real-time yet secure
software applications essential for the success and safety of space missions. This keynote addresses the unique
obstacles faced by software developers in this high-stakes environment, particularly focusing on the effects of
space radiation and other extraterrestrial hazards on software reliability, security and performance.

Zain Hammadeh is a research scientist at the German Aerospace Center (DLR) since 2019. He earned his Ph.D.
(Dr.-Ing.) in 2019 from TU Braunschweig, Germany, under the supervision of Prof. Rolf Ernst. His research
group, Real-Time Software and Security (RTS), focuses on developing safe and secure flight software for space
systems.

5

A Preliminary Assessment of the real-time
capabilities of Real-Time Linux on Raspberry Pi 5

Wannes Dewit
SOFT Languages Lab

Vrije Universiteit Brussel
Brussels, Belgium

wannes.guido.v.dewit@vub.be

Antonio Paolillo
SOFT Languages Lab

Vrije Universiteit Brussel
Brussels, Belgium

antonio.paolillo@vub.be

Joël Goossens
Département d’Informatique
Université libre de Bruxelles

Brussels, Belgium
joel.goossens@ulb.be

Abstract—This preliminary study evaluates the practical real-
time capabilities of Real-Time Linux with the PREEMPT_RT
patch on the Raspberry Pi 5, using Cyclictest and various stres-
sors to simulate extreme operational conditions. By comparing
the performance and predictability of Linux kernels with and
without the PREEMPT_RT patch, we establish quantifiable met-
rics that demonstrate significant improvements in determinism
and reduced latency: notably, we observed on Real-Time Linux
a 294× shorter maximum latency than on regular Linux. Our
findings contribute to a deeper understanding of Real-Time
Linux’s potential in industrial applications. Our work aims, in
the longer term, to establish a measurement-based assessment
methodology of the real-time performance and capabilities of
real-time operating systems.

Index Terms—Real-Time Linux, PREEMPT RT, scheduling
latency, benchmarking, determinism

I. INTRODUCTION

The explosion of the number of connected devices, au-
tomation, and the increasing need for real-time operations in
various sectors have prompted the search for operating systems
that can meet strict timing requirements. Along proprietary
solutions, Linux, the open-source operating system kernel, has
seen adaptations like Real-Time Linux to address these real-
time demands [1]. Such adaptations are crucial for sectors such
as industrial control [2], automotive [3], and even in video
games [4], where milliseconds can make a difference.

Recently, the PREEMPT_RT patch series, aimed at making
the kernel fully preemptive and real-time but currently not yet
fully merged into mainline, has gained traction in the Linux
community [5], [6].

Research question. How does the implementation of Real-
Time Linux with the PREEMPT_RT patch affect the schedul-
ing latency and predictability on the Raspberry Pi 5 compared
to previous models and other platforms? The Raspberry Pi
5 introduces significant hardware improvements over its pre-
decessors, potentially offering better performance and more
deterministic behavior under real-time conditions. Evaluating
Real-Time Linux on this updated platform can provide insights
into how these hardware advancements contribute to real-
time capabilities and whether they justify (or not) the use
of the Raspberry Pi 5 in real-time applications. Our goal
is to scrutinize and understand the real-time capabilities of
Real-Time Linux and evaluate whether it qualifies as a Real-

Time Operating System (RTOS). By doing so, we aim to
establish a methodology for RTOS assessment enabling us to
compare, for example, the behaviour of Linux when applying
(or not) the PREEMPT_RT patch. This requires the definition
of metrics adapted to real-time workloads (as “fast” does not
mean “predictable”) and associated benchmarks simulating
real-time applications.

Overall project. We plan to use existing benchmarking
tools and suites, like Cyclictest [7], benchkit [8]
RTEval [9], and rtbench [10], to evaluate the impact of
the PREEMPT_RT patch on both performance and real-time
metrics. The eventual goals of this project are (1) to produce a
comprehensive analysis detailing the real-time capabilities of
Real-Time Linux on the chosen platforms, and (2) to provide
a benchmarking-based methodology that can be reused for
different hardware platforms, other versions of the kernel or
even for different RTOS.

This paper. In this experience report, we present preliminary
evaluation results of latencies measured with Cyclictest
when running on Linux, with and without PREEMPT_RT,
when the system is under heavy stressing conditions, using the
stress-ng and iperf3 stressing tools. Using that setting,
applying PREEMPT_RT results in reducing the maximum
observed latency by a 294× factor. While being currently
restricted to a single platform and a single benchmark, these
results enable us to show key differences between Linux and
its real-time equivalent.

II. BACKGROUND

A. Linux and real-time

The main goal of the PREEMPT_RT patch is to make Linux
real-time compliant by making the kernel fully preemptible.
In the long term, the patch aims to be upstreamed, merging
these real-time capabilities as build options available within
mainline Linux. As such, a lot of work from the real-time
Linux community has already been merged [11] and has even
improved Linux performance in non-real-time scenarios [12].
However, notice that it was never the ambition of the real-
time Linux community to make the Linux kernel completely
hard real-time. This would lead to the loss of a lot of
features expected from a modern general-purpose operating
system and nowadays considered standard for Linux users.

7

For example, in the overloaded case – when the task set
utilization is greater than the number of CPUs, i.e. there is
more work demand than the available processing capacity of
the multi-core platform – users expect higher latencies and
generally some performance loss. In a real-time environment,
such scenario must be avoided to meet the tasks’ deadlines.
Upstreaming the real-time patch would encourage more users
to try it by simply enabling the build option, therefore making
the switch as smooth as possible [11], [13].

B. Assessing real-time capabilities

Formally verifying Linux real-time capability is a challeng-
ing endeavor [14], [15], and we contend that these initiatives
must be complemented with practical testing, i.e., benchmark-
ing, as pursued in prior work [16].

In the first iteration of this project, we propose to use
Cyclictest to measure the scheduling latency of tasks
while the system is under heavy load. Cyclictest, devel-
oped by Thomas Gleixner, is the de facto benchmarking tool
for real-time Linux. It was used in many prior work [17]–[23].
Cyclictest measures the so called scheduling latency of
a real-time system — i.e., the difference between a thread’s
intended wake-up time and the time at which it actually wakes
up. The tool gets periodically invoked in order to calculate the
max, min and average scheduling latency [7]. Since the main
feature of the PREEMPT_RT patch is to make the Linux kernel
more deterministic, important metrics to benchmark system
performance are its response-time latency and jitter [16],
[21], and Cyclictest often gets used to provide these
metrics. Cyclictest “provides an easy-to-interpret metric
that reflects various sources of unpredictability as a single,
opaque measure.” [23], making it a very useful tool to quickly
compare, for example, different kernel versions. Since it is the
most widely accepted benchmarking tool for real-time Linux,
it is also very easy to compare new benchmarking results with
results of prior work.
Cyclictest often gets used together with certain stress-

ing tools [17], [18], [20]. The decision for which parts of
the system need to be stressed is usually application-specific,
but in general, studies pick stressers which put a load on
the CPU (e.g., stress-ng, phoronix-test-suite’s openssl), I/Os
(e.g., stress-ng, fio, build-linux-kernel), and networking (e.g.,
iperf) [17], [19], [20].

Since we selected the recently-released Raspberry Pi 5 to
conduct our experiments, notice that existing performance-
related studies exist [24]. To the best of our knowledge,
although many prior work used prior Raspberry Pi models
to conduct Real-Time Linux studies [22], there are no other
reported studies assessing real-time metrics on this device.

III. PROPOSED METHODOLOGY

A. Selected hardware and OS

We ran the below stressors and benchmark on a Raspberry
Pi 5 (Model B Rev 1.0) running Debian 12. The platform
has a 2.4 GHz quad-core 64-bit Arm Cortex-A76 CPU and a
VideoCore VII GPU.

We ran our experiments in the following scenarios: (1) with
a stock kernel, version 6.6.21, and (2) with a PREEMPT_RT
patched kernel, with the same version and the compati-
ble patch. We analyzed and compared the real-time perfor-
mance of both kernels in order to determine the benefits of
PREEMPT_RT in terms of real-time capabilities. Notice that
for the stock kernel, we used the vanilla configuration provided
by the instructions on Raspberry Pi website [25]. Further
configuration tuning could lead to better results – we will
explore this as future work. To avoid extra interrupt noise due
to graphic processing, we disabled the desktop environment
and ran the experiments on the Raspberry Pi through an ssh
terminal.

B. Selected software benchmark and stressors

Stressors are used in benchmarking practices in order to
generate a computing load to push specific parts of the
system to their limit. Since we aim to assess the real-time
capabilities of Linux, we use different stressors concurrently
with Cyclictest. We expect that the combination of these
stressors will generate a system wide load to approach the
worst-case scenario – this to determine whether the RTOS still
performs deterministically under pressured circumstances.

To this end, we used stress-ng for generating CPU
and I/O load. stress-ng is a library of stressors, ranging
from tests stressing the CPU, virtual memory, file system or
memory/CPU cache [26], allowing us to generate a diverse
set of resource-intensive tasks. We also used iperf3 [27]
for generating networking load, which comes with its own set
of interrupts and service routines and thus possible sources of
latency.

Cyclictest was configured according to best practices in
the field [17], [20]–[22], using: sudo cyclictest -vmn

-i100 -p99 -t --duration=1h. Firstly, memory alloca-
tions were disabled (-m), clock_nanosleep is used in-
stead of POSIX interval timers (-n) and the output was set to
verbose in order to correctly gather the needed results (-v).
The real-time tasks that are measured by Cyclictest are
created every 100 microseconds (-i100) with a priority of
99 (-p99). The amount of tasks that is created every interval
is equal to the amount of processors of the system (-t). The
tests were run for a duration of 1 hour (--duration=1h).
As suggested by Adam [22], [28], processor affinity was
intentionally not set with --smp since this would mitigate
task migration. This is an important source of possible latency
due to potential acquisition of locks, so it should be included
in our tests. Notice that this flag was set in another study by
Oliveira [19].

stress-ng ran through docker using the following com-
mand: sudo docker run --rm colinianking/stress-

ng --all 1 -t1h 1. We decided to run all 320+ stressers
in parallel (--all 1) for a duration of 1 hour (-t1h) [17],
[20], [29]. Using all stressors in the library in order to generate
system wide CPU and I/O load was an idea lent from Delgado,
et al [20], with the only difference being that they execute
all stressors sequentially, whereas we run all of them in

8

(a) Latencies for the stock kernel v6.6.21, without the
PREEMPT_RT patch.

(b) Latencies for the real-time kernel v6.6.21, with the corresponding
PREEMPT_RT patch applied.

Fig. 1: Histograms of Cyclictest measured scheduling latencies for both non-real-time/real-time versions of the kernel.
The real-time kernel shows better observed latencies and better predictability.

parallel to trigger a highly demanding workload to maximize
the stressing. We expect the system to be able to handle a
multitude of different stressors at the same time, and sustain
its determinism even under heavy load. We acknowledge that
running all stressors in parallel on a Raspberry Pi 5, an em-
bedded system, introduces an unrealistic degree of parallelism.
However, our goal was to push the system to its absolute
limits to understand the worst-case scenario performance and
to stress test the capabilities of the PREEMPT_RT patch under
extreme conditions. Future work will involve more realistic
stress scenarios that reflect typical workloads encountered in
embedded systems.

iperf3 was run from a remote computer using: iperf3

-c <IP> -w 64K -P 100 -t 3800. In order to generate
networking load for our tests, the remote computer sends out
64KB packets (-w 64K) from 100 different virtual clients (-P
100) at the same time during more than an hour (-t 3800).
Notice iperf3 is a client/server application. We configured
the Raspberry Pi 5 to act as a server (by running iperf3 with
the -s flag on the Raspberry Pi 5) to receive the networking
load from the remote computer acting as the client (by running
iperf3 with the -c flag on the remote computer) [17], [20].

C. Reproducibility

We documented our system settings and reproducible
methodology on a publicly available repository1. To reproduce
our results, the provided kernel configuration must be used. To
ease the process, we streamlined the process of patching and
building Linux with/without PREEMPT_RT in a Dockerfile
and provided a README with the commands to run the
benchmarks on the target system – here the Raspberry Pi
5. In the future, we aim to create a reusable process for

1https://github.com/apaolillo/rtlinux

TABLE I: Observed scheduling latencies with Cyclictest

Average Max Std.
Stock kernel 14.69 µs 36802.00 µs 122.08 µs
RT kernel 5.91 µs 124.00 µs 3.25 µs

running stressors and benchmarks on real-time Linux (or other
RTOSes) across different hardware platforms. This will enable
us to build a large database of experiments that assess the
real-time performance and capabilities of various Platform/OS
combinations.

IV. RESULTS

Cyclictest measures the scheduling latency of four real-
time tasks on the system. These tasks are periodically woken
up every 100 microseconds for a period of one hour. During
our tests, where Cyclictest and the stressors were running
concurrently, we observed the system reached 100% CPU
load and about 70% RAM load. Figures 1a and 1b show
the measured scheduling latencies during our experiment. The
benefits of PREEMPT_RT in terms of predictability are clear.
The results for the stock kernel are very scattered, with a maxi-
mum observed latency of 36802 microseconds. In contrast, the
negative slope on the graph for the real-time kernel indicates
greater stability, with a maximum observed scheduling latency
of 125 microseconds – achieving a ×294 improvement of the
maximum observed latency. These observations, together with
the general lack of outliers on Figure 1b indicates that the
PREEMPT_RT patch succeeds in its goal of making the kernel
more deterministic.

The same results are aggregated in Table I for convenience.
Notice that the average scheduling latency also improved in the
patched system, from 14.69 to 5.91 microseconds, with a less
impressive improvement of ×2.49. This points to the fact that

9

Our EMLID
Durr

Benway
Molloy

Adam
Balci

Autostatic

Riva Luscher
FrankLee

Author

0

25

50

75

100

125

150

175

200

La
te

nc
y

(
s)

Avg Max

Fig. 2: Average and maximum observed scheduling latencies
with Cyclictest in our study and various prior studies.
Our own measured average and maximum scheduling latencies
are drawn as horizontal lines across the graph to ease the
comparison.

the goal of the PREEMPT_RT patch is not necessarily to make
the kernel faster but mainly to make it more deterministic for
real-time tasks. The reduction of the standard deviation further
supports this claim and indicates how much the determinism
of the kernel was improved by the patch.

In Figure 2, we compare our results obtained with the
patched kernel to a series of benchmarks gathered by Adam,
et al. [22], supplemented with some more recent studies [30],
[31]. These benchmarks were gathered from other stud-
ies which benchmarked other Raspberry Pi models with
Cyclictest [22], [30]–[38]. Notice that the objective of
this comparison is primarily to corroborate the validity of our
findings, noting that precise quantitative comparisons are not
expected. Instead, an affirmation of the order of magnitude is
sought, as the referenced benchmarks employed no stressors or
utilized different ones, yielding varying testing conditions for
the experiments. It is clear that the average scheduling latency
that we obtained is substantially better than the other results.
This was to be expected however, since these benchmarks were
run on previous iterations of the Raspberry Pi, namely the
Raspberry Pi 1, 2, 3 and 4. The Raspberry Pi 5 that we used for
our benchmarks has a CPU with a clock frequency of 2.4 GHz,
which is double the clock frequency of the CPU on for exam-
ple the Raspberry Pi 3. The leap in average scheduling latency
could thus be ascribed to the improvement in hardware, but
also to improvements in the Linux kernel or the PREEMPT_RT
patch (since other studies used different versions of those).
Results of the maximum observed scheduling latency is quite
comparable to the other results, which is a bit disappointing.
We ascribe these subpar results to the fact that we decided to
run the benchmarks on an untuned kernel for this first iteration
of our project.

V. FUTURE WORK

The next step of our project will be to further experiment
with configuring and tuning the kernel in order to get bet-
ter real-time performance results. We are confident that the
Raspberry Pi 5 can still be pushed further in order to obtain
better results. For example, kernel configuration options that
could be explored are: disabling RT-throttling, disabling CPU
frequency scaling, and raising software interrupt priority [29].
We are also interested in experimenting with the best practices
in configuring the Linux kernel for real-time as described in
the Red Hat manual [39].

As the goal of the research project is to establish a method-
ology for assessing the real-time capabilities of RTOSes, a
natural next step for comparison would also be to assess
the capabilities of other, non-Linux RTOSes, such as Zephyr,
FreeRTOS, LITMUSRT, or proprietary products. We also plan
to explore other benchmarking tools such as rt-bench [10]
or RTEval [9]. RTEval also uses Cyclictest as a mea-
suring tool but has another approach to stressing the system.
In future work, besides scheduling latency, other metrics will
be considered to complete our assessment methodology, such
as end-to-end response latency and RTOS jitter.

We will also consider running our experiments on other
hardware platforms such as other embedded systems (e.g.,
Orange Pi, Raspberry Pi 4, Rock Pi 4) or many-core processors
(e.g., AMD EPYC, Huawei Kunpeng, Ampere Altra).

Finally, we will streamline the process of getting real-time
KPIs through the benchkit [8], aiming for a fully open-source
and reproducible benchmarking pipeline.

REFERENCES

[1] Canonical, “Real-time Ubuntu is now generally available,” February
2023, [Online] Accessed: 2024-05-06. [Online]. Available: https:
//canonical.com/blog/real-time-ubuntu-is-now-generally-available

[2] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Towards a distributed and real-time framework for robots: Evaluation
of ROS 2.0 communications for real-time robotic applications,” CoRR,
vol. abs/1809.02595, 2018. [Online]. Available: http://arxiv.org/abs/
1809.02595

[3] I. Wind River Systems, “Wind River Acquires Hard Real-Time
Linux Technology from FSMLabs,” February 2007, [Online] Accessed:
2024-05-06. [Online]. Available: https://www.windriver.com/news/press/
news-4261

[4] M. Larabel, “SteamOS Compositor Details, Kernel Patches,
Screenshots,” December 2013, [Online] Accessed: 2024-05-06. [Online].
Available: https://www.phoronix.com/news/MTU0MzY

[5] ——, “PREEMPT RT Might Be Ready To Finally Land In Linux 5.20,”
July 2022, [Online] Accessed: 2024-05-06. [Online]. Available: https:
//www.phoronix.com/news/520-Maybe-Real-Time-PREEMPT RT

[6] ——, “Real-time ”rt” patches updated against linux 6.6 git,”
September 2023, [Online] Accessed: 2024-05-06. [Online]. Available:
https://www.phoronix.com/news/Linux-RT-Patches-Linux-6.6

[7] T. L. Foundation, “Linux Foundation Realtime Wiki - HowTo -
Cyclictest,” [Accessed 2024-05-06]. [Online]. Available: https://wiki.
linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

[8] open s4c, “benchkit: Benchmarking Toolkit for Performance Analysis,”
2024, [Accessed 2024-05-07]. [Online]. Available: https://github.com/
open-s4c/benchkit

[9] “Rteval,” [Online] Accessed: 2024-05-06. [Online]. Available: https:
//wiki.linuxfoundation.org/realtime/documentation/howto/tools/rteval

10

[10] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and
R. Mancuso, “Rt-bench: an extensible benchmark framework for
the analysis and management of real-time applications,” in Proceedings
of the 30th International Conference on Real-Time Networks and
Systems, ser. RTNS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 184–195. [Online]. Available:
https://doi.org/10.1145/3534879.3534888

[11] J. Perlow. (2021) In the trenches with thomas
gleixner: Real-time linux kernel patch set. [Accessed
2024-05-06]. [Online]. Available: https://www.linux.com/news/
in-the-trenches-with-thomas-gleixner-real-time-linux-kernel-patch-set/

[12] T. Gleixner. (2022) A guided tour through the preempt rt castle.
[Accessed 2024-05-09]. [Online]. Available: https://www.youtube.com/
watch?v=o58ff38eD64&t=440s

[13] I. Stoica and H. Abdel-Waheb, “Earliest eligible virtual deadline
first: A flexible and accurate mechanism for proportional share
resource allocation,” Old Dominion University, USA, Tech. Rep., 1996.
[Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

[14] S. Rostedt, “Kernel Recipes 2016 - Who needs
a Real-Time Operating System (Not You!),”
https://youtu.be/4UY7hQjEW34?si=EL8w75sHzS9WjqwK, 2016,
[Accessed 2024-05-06].

[15] Bielmeier, Benno and Mauerer, Wolfgang, “Formal Verification
of Embedded Linux Systems Using Trace-Based Models,”
https://www.youtube.com/watch?v=w42ab8-CH1o, 2022, [Accessed
2024-05-09].

[16] F. Reghenzani, G. Massari, and W. Fornaciari, “The Real-Time Linux
Kernel: A Survey on PREEMPT RT,” ACM Comput. Surv., vol. 52,
no. 1, 02 2019. [Online]. Available: https://doi.org/10.1145/3297714

[17] Y. H. Jo and B. W. Choi, “Performance Evaluation of Real-time
Linux for an Industrial Real-time Platform,” International Journal
of Advanced Smart Convergence, vol. 11, no. 1, pp. 28–35, 2022.
[Online]. Available: https://doi.org/10.7236/IJASC.2022.11.1.28

[18] K. Koolwal, “Investigating latency effects of the Linux real-
time Preemption Patches (PREEMPT RT) on AMD ’ s
GEODE LX Platform Kushal Koolwal,” in Proceedings of the
11th OSADL Real-Time Linux Workshop, 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:11519524

[19] D. B. de Oliveira, D. Casini, R. S. de Oliveira, and T. Cucinotta,
“Demystifying the Real-Time Linux Scheduling Latency,” in 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), ser.
Leibniz International Proceedings in Informatics (LIPIcs), M. Völp,
Ed., vol. 165. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020, pp. 9:1–9:23. [Online]. Available: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.9

[20] R. Delgado and B. W. Choi, “New Insights Into the Real-Time Perfor-
mance of a Multicore Processor,” IEEE Access, vol. 8, pp. 186 199–
186 211, 2020.

[21] N. Litayem and S. Ben Saoud, “Impact of the Linux real-time enhance-
ments on the system performances for multi-core Intel architectures,”
International Journal of Computer Applications, vol. 17, no. 3, pp. 17–
23, Mar. 2011.

[22] G. K. Adam, N. Petrellis, and L. T. Doulos, “Performance
assessment of linux kernels with preempt rt on arm-based embedded
devices,” Electronics, vol. 10, no. 11, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/11/1331

[23] F. Cerqueira and B. B. Brandenburg, “A comparison of scheduling
latency in linux, preempt-rt, and litmus rt,” in Proceedings of the

9th Annual Workshop on Operating Systems Platforms for Embedded
Real-Time applications (OSPERT 2013), 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14096981

[24] M. Larabel, “Raspberry Pi 5 Benchmarks: Significantly
Better Performance, Improved I/O,” September 2023, Accessed:
2024-05-08. [Online]. Available: https://www.phoronix.com/review/
raspberry-pi-5-benchmarks/4

[25] Raspberry Pi Foundation. Building the Linux Kernel. [Accessed
2024-05-09]. [Online]. Available: https://www.raspberrypi.com/
documentation/computers/linux kernel.html#building

[26] C. I. King, “stress-ng (stress next generation),” [Accessed 2024-05-06].
[Online]. Available: https://github.com/ColinIanKing/stress-ng

[27] ESnet, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
[Accessed 2024-05-06]. [Online]. Available: https://iperf.fr/

[28] G. K. Adam, “Real-time performance and response latency
measurements of linux kernels on single-board computers,”
Computers, vol. 10, no. 5, 2021. [Online]. Available:
https://www.mdpi.com/2073-431X/10/5/64

[29] P. Karachatzis, J. Ruh, and S. S. Craciunas, “An evaluation of
time-triggered scheduling in the linux kernel,” in Proceedings of
the 31st International Conference on Real-Time Networks and
Systems, ser. RTNS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 119–131. [Online]. Available:
https://doi.org/10.1145/3575757.3593660

[30] M. Lüscher, “Real-Time Linux on the Raspberry Pi,” 2018,
[Accessed 2024-05-09]. [Online]. Available: https://www.get-edi.io/
Real-Time-Linux-on-the-Raspberry-Pi/

[31] F. Lee, “How to optimize real-time performance,” 2023, [Accessed 2024-
05-09]. [Online]. Available: https://forums.raspberrypi.com/viewtopic.
php?t=363635

[32] D. Molloy, Exploring Raspberry Pi Interfacing to the Real World with
Embedded Linux. Indianapolis, IN, USA: John Wiley & Sons, Inc.,
2016.

[33] EMLID, “EMLID Raspberry Pi Real-Time Kernel,” [Ac-
cessed 03-05-2024]. [Online]. Available: https://emlid.com/
raspberry-pi-real-time-kernel/

[34] Durr, Frank, “Raspberry Pi Going Realtime with RT Preempt,”
[Accessed 03-05-2024]. [Online]. Available: http://www.frank-durr.de/
?p=203

[35] Benway, Joel, “Real-Time on Raspberry Pi,” [Accessed
03-05-2024]. [Online]. Available: https://www.distek.com/blog/
part-2-real-time-on-raspberry-pi/

[36] Metehan Balci, “Latency of Raspberry Pi3 on Stan-
dard and Real-Time Linux 4.9 Kernel,” [Accessed
03-05-2024]. [Online]. Available: https://metebalci.com/blog/
latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/

[37] AUTOSTATIC, “RPi3 and the Real Time Kernel,” [Accessed
03-05-2024]. [Online]. Available: https://autostatic.com/2017/06/27/
rpi-3-and-the-real-time-kernel/

[38] Lema Riva, “Raspberry Pi: Preempt-RT vs. Standard Kernel 4.14.y,”
[Accessed 03-05-2024]. [Online]. Available: https://lemariva.com/blog/
2018/02/raspberry-pi-rt-preempt-vs-standard-kernel-4-14-y

[39] Red Hat, “Real-Time Kernel Tuning in RHEL
8,” [Accessed 03-05-2024]. [Online]. Available:
https://access.redhat.com/documentation/en-us/red hat enterprise
linux for real time/8/html/optimizing rhel 8 for real time
for low latency operation/real-time-kernel-tuning-in-rhel-8
optimizing-rhel8-for-real-time-for-low-latency-operation#doc-wrapper

11

Towards Enabling Synchronous Releases for
Periodic Tasks in RTEMS

Tristan Seidl∗, Mario Günzel∗, Jian-Jia Chen∗, Kuan-Hsun Chen†
∗Department of Computer Science, TU Dortmund University, Germany

†Department of Computer Science, University of Twente, the Netherlands
E-mail: {tristan.seidl, mario.guenzel, jian-jia.chen}@tu-dortmund.de, k.h.chen@utwente.nl

Abstract—In addition to functional correctness, real-time sys-
tems offer temporal correctness which is important for safety-
critical domains like avionics. Inherently, these systems deal with
reoccurring functionality that can be modeled as periodic tasks.
These task-sets are managed by specialized real-time operating
systems (RTOS) because they feature predictability and advanced
scheduling mechanisms. Within research, RTOSs are commonly
used to evaluate analytical results.

When periodic task-sets are analyzed in the literature, their
fixed release pattern can be exploited analytically. Furthermore,
if all tasks have constrained deadlines and release their first
job synchronously, the schedulability can be determined by
only analyzing the first job of each task. The well-established
RTOS Real-Time Executive for Multiprocessor Systems (RTEMS)
provides the specification of periodic tasks without task phases.
Usually, without specification of phases, periodic tasks are consid-
ered synchronous. However, in this work, we demonstrate that
RTEMS invokes task phases dependent on the task execution
behavior. Hence, in RTEMS tasks are not released synchronously.
Furthermore, since periodic tasks do not even have a fixed
release pattern, many analytical results for periodic tasks from
the literature are not applicable. Our objective in this work is
to shift RTEMS’ release strategy towards a fixed synchronous
release of periodic task-sets with implicit deadlines. We propose
two treatments that are implemented on kernel- and user-level
respectively.

Index Terms—Real-Time Operating Systems, RTEMS, Peri-
odic Task-Sets, Synchronization

I. INTRODUCTION

Safety-critical systems often have to comply to specific tim-
ing constraints, i.e., the response of jobs has to be delivered in-
time. Such systems do not only require functional correctness,
but also temporal correctness has to be guaranteed, so-called
real-time systems. Prime examples are navigation and path
planning systems in the automotive or avionic domain, where
violation of temporal correctness may lead to catastrophic
failures. Recently, a survey-based industry study has shown
that for critical domains like avionics, timing constraints are
one of the most important development factors [2].

In the real-world practice, the operating system has to
coordinate such real-time behaviors. Such real-time operating
systems (RTOS) feature timing predictability and advanced
scheduling mechanisms. An important factor for real-time op-
erating systems is the ability to analyze and provide guarantees
on the system behavior. One popular RTOS is called Real-
Time Executive for Multiprocessor Systems (RTEMS) [9],
which is an open source RTOS that is used in space flight,

medical, networking and many more embedded devices. Due
to its outreach, it is also a common choice in the research
community for evaluation and case studies [3], [8], [10].

Inherently, real-time applications handle reoccurring func-
tionality that can be modeled as periodic tasks. RTEMS
provides the ability to implement periodic task-sets by utilizing
its Rate-Monotonic Manager. A periodic task releases jobs
recurrently, and two subsequent job releases are exactly one
task period apart. Periodic tasks are known for their fixed
release pattern that repeats every hyperperiod, i.e. the least
common multiple of task periods, which can be exploited
analytically [4]–[6]. Moreover, when all tasks release simul-
taneously at time 0, i.e. it is a synchronous periodic task-set,
and it is a task-set with constrained or implicit deadlines, i.e.
the tasks’ relative deadlines are less or equal to their periods,
its schedulability can be determined by solely analyzing all
first jobs. [7].

Our Contributions: In this work, we show that RTEMS in-
vokes phases on periodic task-sets dependent on the execution
behavior of the tasks. Therefore, many analytical results, such
as [4]–[6], are not applicable to RTEMS. Even for the classical
result in [7], the schedulability analysis is only sufficient but
not exact anymore. More specifically, our contributions of this
work are summarized as follows:

• In Section III, we demonstrate that in the current version
of RTEMS, tasks are released with phases dependent on
the execution behavior.

• In Section III, we briefly give insight on the content of
our previous work [6] where we first discovered RTEMS
current release strategy.

• In Section IV, we analyze RTEMS’ support of periodic
tasks to identify the cause of phase invocation.

• In Section V, we propose two treatments that shift the
release strategy towards synchronous releases. While the
first solution achieves the ultimate goal of synchronous
and predictable release patterns, it requires a patch of
the RTEMS kernel and therefore might not be compliant
with future versions of RTEMS. The second solution is
a user-level solution. This solution achieves synchronous
release pattern up to a neglectable overhead, independent
of the task execution time, and allows high portability.

13

II. BACKGROUND

In this section, we introduce the system model and the
notation considered in this work. Furthermore, we explain in
detail what RTEMS does to housekeep the management of
periodic tasks to ensure their temporal correctness.

A. Task Model

We consider that an application designed to be executed
on a real-time operating system (RTOS) is organized in
tasks. Each of the tasks τi, with i ∈ N0, encapsulates a
single functionality, and a priority Pi is assigned to each of
them. Considering preemptive scheduling schemes, the priority
assignment enables higher priority tasks to preempt lower
priority tasks during the application’s execution. In this work,
we assume that Pi > Pi+1, i.e. a lower task index indicates a
higher priority.

A task τi that repeatedly executes its functionality regulated
by a fixed period Ti is classified as a periodic task. Each
periodic execution of τi is defined to be its j-th job Ji,j , with
j ∈ N0. The execution time it actually takes for such a job to
be executed is denoted as ci,j , which is assumed to be upper
bounded by a task’s worst-case execution time (WCET) Ci.
The point in time when Ji,j becomes ready for execution to
the RTOS is defined by its release time ri,j , where

Ti = ri,j+1 − ri,j . (1)

Ji,j is required to finish its execution until its absolute deadline
di,j , where Di,j = di − ri,j is that job’s relative deadline. In
this work, we only consider tasks with implicit deadlines, i.e.,
Di,j = Ti for all Ji,j . The consequences of a job missing its
deadline is dependent on the type of the real-time system, i.e.,
hard, soft or firm real-time system, and can range from system
failure to normal operation. The release time of a task’s first
job ri,0 is determined by that task’s phase ϕi. If there is no
phase specified for a task, it is assumed to be 0, releasing Ji,0
at the start of the application’s execution, i.e. ri,0 = 0. In case
ϕi of all τi in a task-set Γ is 0 or unspecified, their initial
jobs are all released simultaneously. Such a task-set is called
a synchronous periodic task-set.

Overall, we specify τi ∈ Γ with a tuple τi = (Pi, ϕi, Ci, Ti),
as shown in Fig. 1. For all schedules that we present in the
remaining work, we assume that ci,j = Ci.

B. Management of Periodic Tasks in RTEMS

In the following, we give an overview on RTEMS’ man-
agement of real-time applications and its take on periodic
tasks. RTEMS allows structuring the application by defining
Γ. Each τi ∈ Γ is represented by a task object that RTEMS
manages [1]. RTEMS provides an initialization task through
that these task objects can be created ahead of time to setup
the application and prepare its actual execution.

Throughout the application’s lifetime, a task’s function-
ality is only executed once. A periodic task is therefore
required to execute its functionality in a loop where each
loop iteration corresponds to the execution of one of its jobs
Ji,j . To ensure a periodic task’s temporal correctness, i.e.

τ0

ϕ0

J0,0 J0,1 J0,2

r0,0 r0,1 r0,2
d0,0 d0,1

c0,0 c0,1 = C0 c0,2

T0 T0
D0 D0

0 2 4 6 8 10 12 14

Fig. 1. The notations of the task model visualized by a possible schedule
of Γ = {(1, 2, 3, 5)}.

Task Function Is Called

Create Timer: create()

Initialize Timer: period(T)

Execute Function Loop

Refresh Timer: period(T)

Timer Is Inspected

Task Is Blocked Till Expiry

Timer Is Refreshed

Ti
m

er
Is

R
un

ni
ng

Ti
m

er
Is

E
xp

ir
ed

Fig. 2. The execution of a periodic RTEMS task.

maintain its periodicity specified by Ti, the looping needs
to be spaced properly. For this, RTEMS provides a Rate-
Monotonic-Manager that offers the required tools. It comes
with a rate monotonic period that can be used to manage
a task’s periodicity. Abstracting from all data structures and
implementation details, in essence, the rate monotonic period
behaves as a timer. To avoid confusing a task’s period Ti with
the Rate-Monotonic-Manager’s rate monotonic period, we just
refer to the latter as a task’s timer throughout this work.

Fig. 2 shows the control flow of a periodic task’s execution.
For preparations, the task’s timer needs to be created by calling
rtems_rate_monotonic_create(), abbr. create().
This is done at the beginning of a task’s function, ahead
of its actual looped functionality. Once created, this timer
needs to be initialized and refreshed regularly by calling
rtems_rate_monotonic_period(), abbr. period().

14

τ0

τ1

0 2 4 6 8 10 12 14

Fig. 3. The expected schedule of Γ = {(2, 0, 1, 5), (1, 0, 1, 6)}.

Ti is passed as an argument to ensure subsequent loop
iterations are delayed accordingly. The initialization takes
place directly after calling create() to ensure that the
timer is initialized before the function loop is entered. Since
neither create() nor period() allow to specify Di, the
Rate-Monotonic-Manager only supports tasks with an implicit
deadline. Whenever a job has been fully executed, i.e. a loop
iteration has passed, the timer is inspected as part of its
refreshment. If the timer is still running, the task will be
blocked until the timer expires. As a blocked task cannot be
assigned to the CPU for execution, this effectively prevents
the execution of the next loop iteration and thus the execution
of the subsequent job. On the contrary, if the timer is already
expired, no block will be issued and the task moves to its next
loop iteration, i.e. instantly releasing its upcoming job. The
timer will be restarted as soon as the new job is released. If all
periods passed to period() throughout the task’s execution
are identical, it will be executed in a periodic manner.

III. PROBLEM DESCRIPTION

RTEMS’ Rate-Monotonic-Manager enables the implemen-
tation of periodic task-sets with implicit deadlines in RTEMS.
In the classical literature on real-time systems, periodic tasks
entail a fixed release pattern. Hence, if no task phases are
specified, usually synchronous release (i.e., all phases are
equal to 0) is assumed. However, in RTEMS, the release
pattern of periodic tasks is not fixed. Specifically, tasks are
released with phases that depend on their execution behavior.

To identify RTEMS’ release strategy, we execute the fol-
lowing task-set Γ:

Γ = {τ0, τ1} = {(2, 0, 1, 5), (1, 0, 1, 6)} (2)

It is a synchronous periodic task-set with implicit deadlines.
Its expected schedule when released as intended, i.e., syn-
chronously, is shown in Fig. 3. However, when Γ is executed
as an RTEMS application, the schedule that is shown in Fig. 4
can be observed instead. The observed schedule differs from
the expected schedule by an offset δ, marked by the hatched
areas in Fig. 4. For this example, the offset δ is the size of
the execution time of the first job of τ0. Hence, the offset (or
phase) of task τ1 is not fixed but depends on the execution
behavior of τ0.

We first discovered this issue when implementing the
methodology of our previous work Scheduling Periodic Seg-
mented Self-Suspending Tasks without Timing Anomalies (Lin
et al.) [6]. There, we focus on the problem of timing anoma-
lies. These are counter-intuitive phenomena where a feasible

τ0

τ1

0 2 4 6 8 10 12 14

Fig. 4. The observed schedule of Γ = {(2, 0, 1, 5), (1, 0, 1, 6)} implemented
as an RTEMS application. The hatched area indicates the offset of ri,j from
its intended value when the task-set would have been released synchronously.

segmented task-set schedule can become infeasible when one
of the job’s segments finishes early or a job suspends itself
for less than its maximum suspension time. Common analyses
account for these phenomena by over-approximating a task’s
τi worst case response time Ri (WCRT), i.e. the worst case
duration from a job’s release ri,j to its finishing time. This
can result in a schedulable task-set to be considered the
opposite. We implement two treatments in our previous work,
namely segment release time enforcement and segment priority
modification, to eliminate such timing anomalies. When we
applied the latter to a segment-level fixed priority scheduling
algorithm that we had added to RTEMS and executed a
synchronous periodic task-set, the resulting schedule did not
match the task-sets expected schedule. Since the observed
behavior did not match the scope of our previous work, we
focus on it in detail in this work.

Our objective in this work is twofold. First, we analyze the
cause for the unpredictable task phases in RTEMS by looking
into RTEMS’ periodicity management. Second, we present
two treatments, that allow to shift RTEMS release strategy for
such a task-sets towards fixed synchronous releases. They take
place at the level of RTEMS’ kernel and the user’s application,
respectively.

IV. ANALYSIS

In this Section, we analyze RTEMS’ support of periodic
tasks in detail to identify the cause for unpredictable task
phases. When implemented in RTEMS, a periodic task’s func-
tionality needs to be looped in order to be executed repeatedly.
This allows the task to release its functionality periodically
as jobs. RTEMS’ Rate-Monotonic-Manager enables to ensure
their periodic releases by providing a timer that can be used
to space the looping correctly. Fig. 2 visualizes that since the
task’s function loop is only ever executed after initializing
or refreshing the task’s timer, a job’s release is equal to one
of these two timer updates. Thus, ri,j equals the point in
time when period() is called. Note that this equality is not
entirely correct due to implementation details. ri,j is actually
equal to the inspection or expiry of the task’s timer, depending
on the timer’s state when it is inspected. However, we simplify
by using the presented equality as a sufficient abstraction from
the implementation details in the scope of this work.

We reason from the above, that the earliest point in time
a task’s first job Ji,0 can be released is when it is possible
to initialize the timer of τi. As the period management in

15

τ0

τ1

0 2 4 6 8 10 12 14

Fig. 5. The schedule of Γ = {(2, 0, 1, 5), (1, 0, 1, 6)} implemented as an
RTEMS application. Φi is indicated by the hatched areas. θi = 0.4.

RTEMS is fully done from within the task itself, the earliest
that can happen is when τi is executed by RTEMS for the
first time. Thus, it is implied that ri,0 ̸= 0, which effectively
precludes the implementation of synchronous periodic task-
sets in RTEMS. This implication does indeed hold true for
τ0, even though it is the first task to be executed, because it
requires some time to create the timer prior to initializing it.

Let θi be the duration from calling a task’s function to
the initialization of the task’s timer. This duration covers
the timer’s creation as well as other things like e.g., the
validation of the arguments that are passed to the task’s
function. Accounting for θi, any task-set Γ given to RTEMS
will have an unintended phase Φi added to each of its tasks
that is lower bounded by

Φ0 = θ0 (3)

∀i ̸= 0 Φi ≥ θi +
∑

τk∈γi

(ck,0 +Φk), (4)

where γi = {τk | Pk > Pi}. Since ck,0, unlike Ck, is not
a fixed duration and does contribute to Φi, the latter cannot
be predicted a priori and varies for multiple executions of the
same task-set configuration. The resulting release pattern of Γ
is therefore unpredictable.

Fig. 5 shows the resulting schedule of Γ from Section III
when it is executed as an RTEMS application and, exemplary,
θi = 0.4. It accounts for the adjusted ri,j , with the hatched
areas indicating Φi. Note that the release pattern in Fig. 4
differs from the release pattern in Fig. 5 because θi is chosen
to be 0.4 for demonstration purpose. In practice, it usually
only takes up to a few system ticks.

Strictly speaking, ri,j is offset even more from the intended
releases than it is shown in Fig. 5 due to overhead that is
introduced by RTEMS itself. It consists of influences like
handling the scheduling, context switches and interrupts. It is
unavoidable in order to ensure the system’s integrity. However,
since it is a legitimate part of any RTOS and not just RTEMS,
examining it in detail exceeds the scope of this work.

Avoiding the introduction of Φi by initializing a task’s
timer prior to the execution of the task’s function is not
a feasible solution. It requires another task, e.g., RTEMS’
initialization task, to call create(), which in turn leads
to the respective task automatically becoming the owner of
the period controlling timer. Due to the Rate-Monotonic-
Manager’s design, only the timer’s owner may call related

functions like period() [1]. However, the task whose pe-
riodicity is to be maintained by the timer likewise needs to
be the owner, as it needs to refresh its timer regularly. Thus,
initializing the timer ahead of the maintained task’s execution
is impossible.

Overall, RTEMS’ design to support periodic tasks invokes
phases Φi dependent on the execution behavior of the task-set,
and thus precludes the implementation of synchronous peri-
odic task-sets. To shift RTEMS’ towards releasing a periodic
task-set synchronously as intended, modifications to RTEMS
itself are required. Alternatively, the application needs to be
adapted accordingly without changing its semantics.

V. TREATMENTS

In the following subsections, we propose two treatments
on different implementation levels to shift RTEMS’ release
strategy towards releasing tasks synchronously and thus sup-
porting the implementation of synchronous periodic task-sets
with implicit deadlines. First, we present a modification to
RTEMS’ kernel that adapts the initialization of the tasks’ timer
such that they reference the application’s start instead of the
point in time when the initialization is triggered. Second, we
show an approach on user-level that targets to release the
given task-set’s first jobs almost simultaneously using only
tools provided by RTEMS’ Rate-Monotonic-Manager.

A. Kernel-Level Solution

Since period() initializes a task’s timer by setting it to
the passed argument, the point in time when the function is
called is referenced. Thus, we deduce in Section IV that the
release of a task’s first job equals to the initialization of the
timer. As period() needs to be called from within the task,
the introduction of Φi is inevitable.

To shift towards a synchronous release strategy we propose
to modify RTEMS’ kernel such that period() references
the start of the application when it initializes any timer. For
this, we record the respective system tick ts at that RTEMS
schedules any task of the given synchronous periodic task-set
with implicit deadlines Γ for the first time. We consider ts to
be the start of the application. Then, whenever a task’s timer
is initialized, the period Ti that gets passed to period() is
modified before setting the timer to it such that

Ti = Ti − (tp − ts), (5)

where tp is the system tick at that period() is called. By
applying this modification, the task’s second job Ji,1 will be
released at ts+Ti, i.e., as if Ji,0 is released at the application’s
start. The new reference point leads to the expected schedule
that is displayed in Fig. 3 when executing Γ as an RTEMS
application, satisfying ri,0 = ts for ∀τi ∈ Γ and thus shifting
RTEMS’ strategy towards synchronous releases.

The proposed treatment is simple to implement. The only
modifications required are the addition of a new variable to
store ts, setting it just before calling the function of the task
that is scheduled first and modifying Ti according to Eq. 5.
It introduces a constant temporal overhead O(1) to record the

16

system tick at the application’s start as well as a constant
temporal overhead O(1) when reading ts, reading tp and
calculating Ti whenever a timer is initialized, i.e. a temporal
overhead of O(|Γ|) in total. Note that Eq. 5 does not account
for this overhead. Additionally, this treatment causes a small
constant spatial overhead O(1) for storing ts.

This approach is generically applicable for any application.
Once RTEMS is modified, the user does not need to adapt
their application at all but can instead solely rely on the tools
that the Rate-Monotonic-Manager provides them with. While
this solution achieves the ultimate goal of this paper, that is
synchronous releases and fixed release patterns, it requires a
patch of the kernel of RTEMS.

B. User-Level Solution

In addition to the presented kernel modification, we propose
an alternative treatment to shift RTEMS’ release strategy
towards supporting synchronous periodic task-sets. Relying
only on tools provided by RTEMS’ Rate-Monotonic-Manager,
it is fully implemented on user-level which allows to maximize
portability. In case a kernel modification is unfavourable, this
treatment can be chosen instead.

For this treatment, we introduce the concept of setup jobs.
A periodic task’s setup job Ji,setup does not execute its task’s
usual functionality but instead, it initializes the task’s timer
such that a targeted ri,0 can be achieved. If all Ji,setup ∈ Γ
coordinate the timing correctly, the task-set will behave syn-
chronously from ri,0 on forward.

In more detail, our treatment adds a preparation stage that
precedes the application’s actual execution. This stage extends
every τi ∈ Γ with a Ji,setup. Since a setup job’s sole objective
is to time ri,0 such that all Ji,0 release simultaneously, it only
needs to perform two operations. First, it is required to create
the task’s timer by calling create(). Second, it needs to
initialize the created timer, referencing the current point in
time, which period() does by default. Exploiting that the
timer is set to the argument that period() is called with,
we pass a value Si for the timer’s initialization during the
preparation stage. It differs from the argument Ti, which is
otherwise used for the timer’s periodic refreshment.
Si needs to be chosen in such a way that Ji,setup can ensure

the simultaneously release of all Ji,0. It is dependent on |Γ|
and ci,setup, resulting in

Si =
∑

τk∈ζi

ck,setup, (6)

where ζi = {τk|Pk < Pi}.
However, Eq. 6 has two weaknesses. First, Si needs to

be known a priori but ck,setup cannot be predetermined. To
overcome this issue, the setup job’s WCET Csetup is used in
place of ck,setup. Since the functionality of Ji,setup is identical
for every τi, besides the value of Si, so is Csetup. It can be
calculated using static WCET analysis. Second, Si does not
account for the temporal context switch overhead in between
setup jobs that we comment on in Section IV. Assuming

τ0

τ1

0 2 4 6 8 10 12 14

Fig. 6. A possible schedule of Γ = {(2, 0, 1, 5), (1, 0, 1, 6)} with the
approach presented in Section V-B applied. The hatched areas indicate
Ji,setup.

that the context switch executes for cCS , the release of two
consecutive setup jobs is spaced by

ri+1,setup − ri,setup = ci,setup + cCS . (7)

This effect cascades throughout all setup jobs such that

rm,0 − ri,0 = cCS ∗ (m− i). (8)

Thus, Si needs to be increased by cCS ∗ (|Γ|− i−1) to ensure
that all Ji,0 release simultaneously. Since cCS is unpredictable,
the WCET CCS of the context switch needs to be used instead.
In total, Eq. 6 is updated such that

Si = CCS ∗ (|Γ| − i− 1) +
∑

τk∈ζi

Ck,setup. (9)

Alternatively, Si could also be determined by an educated
guess. Note that choosing a value too small can lead to
the preemption of Ji,setup by some Ji,0, causing unintended
behavior.

Applying this treatment to the task-set that we introduce in
Section III, its execution results in a schedule similar to Fig. 6,
depending on the chosen Si.

While maximizing portability and avoiding kernel modifica-
tions, this treatment does introduce some temporal overhead.
The computation time needed for the preparation stage scales
with the number of tasks in Γ, i.e., O(|Γ|). Furthermore, while
this approach does not achieve perfectly synchronized release
of tasks, the proposed solution only invokes small task phases,
only dependent on the execution behavior of setup jobs, which
are neglectable in most cases.

Since we needed to implement a synchronous periodic task-
set in our previous work that we briefly describe in Section III,
we applied this treatment to shift RTEMS’ release strategy
towards synchronous task releases. After applying it, we were
able to produce the expected schedule and to successfully
validate the functionality of our segment priority modification
treatment.

VI. CONCLUSION

Real-time operating systems (RTOS) are essential to man-
age safety-critical real-time systems. Such real-time systems
inherently handle reoccurring functionality and can therefore
be modeled as a set of periodic tasks which offers a fixed
release pattern that can be exploited analytically.

In this work, we examine the release behavior of periodic
tasks by the RTOS Real-Time Executive for Multiprocessor

17

Systems (RTEMS). Specifically, RTEMS invokes task phases
dependent on the execution behavior of jobs. Consequently,
this results in an unpredictable release pattern and analytical
approaches, making classical results on periodic task-sets, such
as [4]–[6], invalid under RTEMS.

To shift towards releasing the tasks of a given task-set
synchronously, we propose two treatments on different imple-
mentation levels. The first option modifies RTEMS’ kernel,
altering the implementation of period() to reference the
application’s start when initializing a task’s timer instead of
the point in time when the initialization is triggered. This
avoids the introduction of phases and achieves synchronous
fixed release patterns. The second option offers an alternative,
more portable solution on user-level. It introduces a prepa-
ration stage of setup jobs that precede the task-set’s actual
execution. These setup jobs exploit the timer’s implementation
to time the release of all first jobs of the given task-set such
that they release simultaneously. This option achieves almost
synchronous release patterns. Specifically, only small phases
are introduced that dependent on artificial setup jobs and are
neglectable in most cases.

While this paper focuses on obtaining fixed release patterns
by synchronous releases, this is mainly due to the limitation of
the RTEMS specification of periodic tasks. That is, if future
versions of RTEMS enable the specification of task phases,
our proposed treatments can be easily extended to account for
these as well.

ACKNOWLEDGMENT

This work has been supported by European Research
Council (ERC) Consolidator Award 2019, as part of PropRT
(Number 865170), and by Deutsche Forschungsgemeinschaft
(DFG), as part of ”Suspension-Aware Designs and Analyses
for Real-Time Embedded Systems” (Project no. 398602212)
and the priority program ”SPP 2377: Disruptive Memory
Technologies” under project: ”Reconfigurable Architectures
and Real-Time Systems Co-Design for Non-Volatile Main
Memory (ARTS-NVM)” (Project no. 502308721).

REFERENCES

[1] RTEMS Classic API Guide. https://ftp.rtems.org/pub/rtems/people/joel/
docs-eng/c-user/index.html.

[2] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An
empirical survey-based study into industry practice in real-time systems.
In 2020 IEEE Real-Time Systems Symposium (RTSS), pages 3–11, 2020.

[3] G. Bloom, G. Parmer, B. Narahari, and R. Simha. Shared hardware data
structures for hard real-time systems. In ACM International Conference
on Embedded Software (EMSOFT), page 133–142, 2012.

[4] M. Günzel, K. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and
J. Chen. Compositional timing analysis of asynchronized distributed
cause-effect chains. ACM Trans. Embed. Comput. Syst., 22(4):63:1–
63:34, 2023.

[5] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis for data chains of
real-time periodic tasks. In ETFA, pages 360–367. IEEE, 2018.

[6] C.-C. Lin, M. Günzel, J. Shi, T. T. Seidl, K.-H. Chen, and J.-J.
Chen. Scheduling periodic segmented self-suspending tasks without
timing anomalies. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 161–173, 2023.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[8] J. Shi, C.-C. von Egidy, K.-H. Chen, and J.-J. Chen. Formal verification
of resource synchronization protocol implementations: A case study in
rtems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(11):4157–4168, 2022.

[9] The RTEMS Project. Real-Time Executive for Multiprocessor Systems
(RTEMS). http://www.rtems.org/, Last accessed on 2024-05-13.

[10] G. von der Brüggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen. Systems
with dynamic real-time guarantees in uncertain and faulty execution
environments. In IEEE Real-Time Systems Symposium (RTSS), pages
303–314, 2016.

18

OSPERT, RT-AutoSec and RT-Cloud 2024 Program

Tuesday, July 9 2024
8:00 – 8:45 Registration

9:00 – 10:00 OSPERT and RT-AutoSec Opening Remarks
Session 1: RT-AutoSec Industry Keynote
Safety & Security in Perfect Harmony through Life(cycles)

Martin Ring

10:00 – 10:30 Coffee Break

10:30 – 11:35 Session 2: OSPERT and RT-AutoSec Technical Session

[RT-AutoSec] Assured Micropatching of Race Conditions in Legacy Real-time
Embedded Systems

R. Chatterjee, H. Simpa, B. Karel, R. Baratto, M. Gordon and J. Daily

[OSPERT] A Preliminary Assessment of the real-time capabilities of Real-Time Linux on
Raspberry Pi 5

W. Dewit, A. Paolillo, J. Goossens

[OSPERT] Towards Enabling Synchronous Releases for Periodic Tasks in RTEMS
T. Seidl, M. Guenzel, J.-J. Chen, and K.-H. Chen

11:35 – 12:15 Session 3: OSPERT and RT-AutoSec Keynote
Safety and Security on a Journey to Outer Space: Navigating the Complex Relationship

Zain Hammadeh

12:15 – 13:30 Lunch

13:30 – 15:00 RT-Cloud Opening Remarks
Session 3: RT-Cloud Technical Session
[RT-Cloud] Dynamic Offloading of Control Algorithms to the Edge using 5G and
WebAssembly

A. A. Bayati, K.-E. Årzén

[RT-Cloud] Safety-Critical Edge Robotics Architecture with Bounded End-to-End
Latency

G. Gala, T. Unte, L. Maia, J. Kühbacher, I. Kadusale, M. I. Alkoudsi, G. Fohler, and S. Altmeyer

[RT-Cloud] Integrating Containers and Partitioning Hypervisors for Dependable
Real-time Industrial Clouds

M. Barletta, F. Boccola, M. Cinque, L. D. Simone, R. D. Corte and D. Ottaviano

[RT-Cloud] Orchestration Done Upside Down: Self-aware Applications for Substation
Automation

C. Göttel, D. Kozhaya, E. Fregnan, P. Sommer, S. Schönborn

15:00 – 15:30 Coffee Break

15:30 – 16:20 Session 4: RT-Cloud Keynote
Safety-critical cloud applications

George Violettas

16:20 – 17:00 Session 5: Joint Panel

OSPERT + RT-AutoSec + RT-Cloud Panel
17:00 – 18:00 ECRTS First-timer Reception

Wednesday, July 10th – Friday, July 12th 2024
ECRTS main conference.

© 2024 Technische Universität München & Universiteit Twente. All rights reserved.

	Message from the Chairs
	Program Committee
	Keynote Talk
	Session: OSPERT and RT-AutoSec Technical Session
	A Preliminary Assessment of the real-time capabilities of Real-Time Linux on Raspberry Pi 5
	Towards Enabling Synchronous Releases for Periodic Tasks in RTEMS

	Program

