
Orchestration Done Upside Down: Self-aware
Applications for Substation Automation

Christian Göttel, David Kozhaya, Enrico Fregnan, Philipp Sommer, Sandro Schönborn,
ABB Schweiz AG, Corporate Research Center, Baden-Dättwil, Switzerland, first.last@ch.abb.com

Abstract—Electrical substations run real-time Protection and
Control (P&C) applications to ensure the safety of the power
grid. To guarantee that the operational constraints of these
applications are met, P&C platforms are generally provisioned
with spare hardware resources. In this paper, we propose an
orchestration solution to deploy non-safety-critical P&C applica-
tions taking advantage of all those spare hardware resources.
Each application instance is made self-aware by including a
monitoring and governance service that periodically checks the
global execution constraints (e.g., execution time limits) from an
application rather than a system perspective and takes actions if
these are not met: i.e., by voluntarily terminating the application
instance. Contrary to traditional microservice architectures, an
orchestrator component is only used for deploying application
instances from a list of to be executed applications onto available
spare resources.

Index Terms—Real-time systems, Protection & Control, Self-
aware applications, Microservices, Autonomous systems

I. INTRODUCTION

Systems utilizing real-time software are ubiquitous nowa-
days. Examples include aviation and aerospace [1], [2], health-
care [3], and even communication and messaging systems [4].
The main characteristic of real-time software is its ability to
respond within a known fixed time frame to stimuli from
the environment [5]. Electrical substations as in Figure 1 are
one domain where the use of real-time software is crucial.
Substations are responsible for routing power from generators
to loads through a network of transmission lines as well as
protecting the power grid from incidents [6]. For this rea-
son, substations run specialized real-time applications, called
Protection and Control (P&C) functions, to swiftly react to
anomalies in the grid and take appropriate mitigation actions.

To guarantee that P&C functions always adhere to their
real-time performances, providers generally overprovision the
hardware resources on which P&C applications are hosted.
Furthermore, the execution of these applications is more often
than not bound to vendor-specific hardware as well as prede-
fined compute units and configuration options. These factors
altogether make the addition of any new P&C application
costly in terms of both hardware resources and engineering
effort, while simultaneously leading to a vast amount of
computational resources being left unused.

In this paper, we propose a new paradigm that leverages
spare hardware resources of substations by simultaneously
deploying new non-safety-critical (e.g., data analytics applica-
tions) alongside safety-critical applications without disrupting
the performance of the safety-critical applications or overpro-
visioning the substation automation system.

Relay 1 Relay 2 Relay n

...

CPC

Time server

Switch

Gateway
GPS

Fig. 1. Substation automation system with relays for digitizing readings of
the grid streamed to CPC device. Time servers are receiving the clock signal
from GPS satellites and use it for synchronizing all devices in the substation.

Deploying applications on multiple hardware resources re-
quires a central service that keeps track of the execution status
of each application (or even application instance). However,
acquiring such system-wide knowledge, particularly in real-
time, is challenging and may introduce inaccuracies that
negatively impact the execution of real-time applications [7].
To this end, we propose a solution that shifts the burden
of monitoring and controlling application execution from a
centralized global service to the local individual application
instances: New non-safety-critical applications are made self-
aware through the addition of a monitoring and governance
service, which oversees the global operational status of an
application instance to ensure that its constraints (defined at
deployment time) are met. If these constraints are not met, an
application can independently change its operational status:
e.g., requesting an orchestrator to deploy additional instances
or terminating unnecessary instances.

In addition, an orchestrator keeps track of all pending
applications to execute and deploys the next application based
on defined metrics, such as the available hardware resources.

II. BACKGROUND & RELATED WORK

Background. With the advent of the cloud, microservices
have become the most popular solution for deploying ap-
plications on the Internet. Microservices are deployed and
managed through an (open-source) orchestrator, e.g., Apache
Mesos, Docker Swarm, or Kubernetes. The orchestrator has
complete insight into the system and deploys microservices
based on the available and required resources as well as pre-
defined policies: e.g., affinity, access to shared resources, and
scalability. Throughout the life cycle of a microservice, the
orchestrator remains in full control over the microservice for
resource accounting and scheduling purposes. Microservices



Orchestrator

Network

...
Host 1

Existing P&C

applications

App A (Instance 1)
Operational state

Monitoring &
Governance

Host 2

Existing P&C

applications

App A (Instance 2)
Operational state

Monitoring &
Governance

Host n

Existing P&C

applications

App A (Instance n)
Operational state

Monitoring &
Governance

Launch and deploy on all hosts

Selection policySet of non-critical
P&C applications

Requirements list

per application

Fig. 2. General overview of our proposed solution design. The orchestration service selects a candidate application to deploy from the set of non-critical P&C
applications based on available resources on the hosts within the network. The monitoring & governance service within each instance provides information
about the operational state.

are implemented following a stateless design and leverage
virtualization technologies (e.g., containers, virtual machines),
which abstract away the surrounding system state and make
them dependent on orchestration actions.

In the move towards Industry 4.0, Operational Technology
(OT) systems have been interconnected with Information Tech-
nology (IT) systems to provide automation, cloud connectivity,
and remote control capabilities. Substation’s Centralized Pro-
tection & Control (CPC) systems [8], as in Figure 1, play a key
role in today’s substation automation. These systems aggregate
streams of digitized readings from the grid on a single device.
The readings from these streams originate from relays and
are then processed by the P&C applications executed on the
CPC devices. P&C applications require specific resources and
real-time guarantees to respect the strict deadlines for sending
signals to trigger actuators in the event of an incident (e.g., a
lightning hitting a transmission line).

Related work. Similar to the solution presented in this paper,
other initiatives like ACTORS [9] and DREAMS [10] projects
propose to automatize the distribution of resources on multi-
core systems at run-time (e.g., for streaming and avionics
applications). In ACTORS, similar to our orchestrator, a cen-
tralized resource manager assigns the necessary resources (i.e.,
service levels) to each application to be deployed. Each appli-
cation can also adjust its resource consumption dynamically
by means of a bandwidth controller. Such controller shares
similarities with our monitoring service, but its functionalities
are limited to bandwidth adjustments and do not allow, e.g.,
the application to terminate itself autonomously.

In a different approach, the DREAMS project introduces a
hierarchical resource management platform, where a Global
Resource Manager acts in combination with multiple Local
Resource Managers. Each Local Resource Manager possesses
(1) a Resource Monitor, which monitors resource availabilities
and timing constraints of an application, and (2) a Local
Resource Scheduler, which performs the run-time scheduling
of resources based on the configuration set by the Local
Manager. This platform allows the scheduling of mixed-
criticality applications, while our solution only focuses on the
deployment of non-critical applications using the “leftover”
resources. This minimizes the responsibilities assigned to the
centralized resource manager (i.e., orchestrator) – no need

to implement complex scheduling strategies to guarantee the
timing deadlines of critical applications.

In the context of cyber-physical systems that lack sufficient
resources for having cybersecurity mechanisms, Maurio et
al. [11] explored a similar approach to ours. Agile ser-
vices were evaluated under two different use cases: (1) as
microservices retrofitting Industrial Control Systems (ICSs)
with autonomic properties and (2) as intelligent agents for
a simulation framework of autonomous Unmanned Aerial
Systems (UASs). Mikkelsen et al. [12] explored architectures
and design principles for autonomous microservices. They
identified several enabling properties such as asynchronous
non-blocking point-to-point communication, message broker-
ing done by a dedicated service, no traffic controlling service,
and low resource consumption for scalability.

In the field of Internet of Things (IoT) and digital twin
systems, Ferrera et al. [13] proposed an autonomic computing
approach (BRAIN-IoT) where systems were able to take
timely actions and learn from the past through the support of
cognitive capabilities. Their design enables automation for the
management of large-scale IoT-based systems. However, an-
other challenge is represented by the continuously fluctuating
conditions under which IoT systems are deployed. To meet the
design goals and requirements for such applications, Lalanda
et al. [14] explored design and run-time models to improve
autonomy and reduce the need for human interaction.

Different organizations are currently standardizing CPC
system architectures, such as E4S [15] and SEAPATH [16],
which provide real-time capabilities to traditional cloud stacks
for substation automation.

III. SYSTEM DESIGN

This section illustrates how new non-critical P&C applica-
tions can be autonomously (i) deployed on existing substation
resources (ii) scaled onto those resources and (iii) monitored
for correct behavior. We detail the different components for
enabling self-awareness within P&C applications by leverag-
ing a minimal set of services without reinventing the wheel.

A. Solution Approach Overview

The proposed solution entails two services: an orchestration
service – a “centralized” system wide service – and a decen-
tralized dependability monitoring and governance service.



Orchestration Service. Our orchestrator has a system-wide
view of all available substation resources, as shown in Fig-
ure 2. It can obtain this information since we assume that
the critical systems, the hardware they run on, as well
as their worst case performances are known and fixed. In
addition, since the orchestrator is the sole entity that can
deploy additional applications, it can calculate the expected
remaining resource availability in a dynamic fashion based on
the predefined resource needs of applications that have been
deployed and are still running. The orchestrator holds a list
of all new non-critical P&C applications that are supposed
to run. For each new non-critical P&C application, its needs
and requirements have to be specified from a predefined set
of attributes: e.g., CPU, memory, I/O, architecture, timing
deadlines, resilience to process faults (no resilience, crash
resilience, Byzantine resilience, etc.), and number of instances.
These new non-critical P&C applications are then deployed
onto available resources, as illustrated in Figure 2. However,
unlike traditional microservice orchestrators, our orchestrator
is limited to the above functionality.

The orchestrator uses a novel selection policy for deploying
P&C applications from the list. This policy is driven by the
type of the already deployed applications as well as the rate
at which those applications fail to be deployed. Once the
selection is done, the instance(s) of the chosen application are
dispatched to be deployed on all available substation resources.

Dependability Monitoring and Governance Service. This
service is defined within every deployed instance of a P&C
application on some substation resource. The dependability
monitoring and governance service provides:
1) Information to individual application instance(s) as well as
the application as a whole to determine at run-time normal
and correct operation. Correct operation is measured by the
instances’ ability to satisfy all the application needs and
requirements according to the application’s set of defined
attributes. Hence, every application instance is aware of its
environment and its ability to meet – individually or jointly
with other running instances – the desired application needs.
2) The ability to change the operating mode of an application
instance. For example, application instances that cannot meet
predefined application requirements or that are not essential
for the correct operation of the entire application can use this
service. Applications can gradually scale down to use fewer
resources by shutting down unnecessary or non-functional
instances while maintaining correct application operation.
If an application has no successfully running instances on any
of the available resources, then the application has failed to
deploy and the orchestrator will attempt re-deploying later.

B. Detailed Solution Description

As mentioned earlier, P&C systems within a given asset,
e.g., a substation, are commissioned and run on their respective
infrastructure, which is typically vendor-specific hardware.
In the proposed solution, all additional non-critical P&C
applications that a substation operator would like to run – be

them real-time or not – e.g., redundant applications for better
resilience or data analytics applications, are added to a pool
of applications. Every application in the pool should define its
requirements by specifying its needs from a list of predefined
attributes including:

• The different independent components forming the entire
application (these components can run in parallel).

• The desired level of redundancy of each components.
• The required type of resilience against faults: e.g., crash

resilience for being able to tolerate honest crashes of
the devices hosting applications, or byzantine resilience
for being able to tolerate arbitrary malicious behavior of
devices hosting applications, etc.

• Application execution requirements: e.g., required execu-
tion/response time. This metric can be defined at the level
of the application components.

• An approximate of the application’s resource needs,
memory, CPU, and I/O.

• The need to execute on a given hardware architecture,
e.g., ARM, x86, etc. or using a specific hypervisor.

An orchestrator is aware of all hardware used for P&C in
a given asset, which includes hardware necessary to run the
P&C applications as well as any underlying platform such as
operating system (e.g., Linux) or hypervisor (e.g., VMware),
and has access to the pool of available applications. The or-
chestrator decides which application to run next from the pool
and when to deploy that application. This selection process
is smartly adapted to the feedback the orchestrator receives
from failed deployments. More specifically, an orchestrator
monitors the rate at which applications fail to deploy and their
predefined needs. Based on those two metrics the orchestrator
adapts its selection strategy and the rate at which it dispatches
applications from the pool for deployment.

After selecting an application from the pool, the orchestrator
deploys virtual instances of the application components to
all available substation resources with an inferior priority
compared to the critical systems running on that hardware.
After this step, the application’s execution is no longer con-
trolled by the orchestrator. Unlike traditional microservices
architectures, the orchestrator’s job in our solution is minimal
and is limited to selecting which application to run next
and performing its deployment. The management decisions,
from scaling to assessing conformance to expected behavior,
are taken autonomously by each application (or application
instance).

Every application instance is equipped with a dependability
monitoring and governance service that judges if that appli-
cation instance is operating as expected (according to the
predefined application requirement attributes). For example,
the monitoring service within each virtual instance verifies if
the instance’s approximate resources are met, if the instance’s
performance meets the expected timing deadlines, and if the
threshold for the required fault resilience is met. If any of the
predefined requirements is not met, then the monitoring service
of that virtual instance notifies the orchestrator and instantiates



a mechanism to allow the instance to change its mode of oper-
ation: e.g., by terminating itself and decommissioning from the
host. In the event where termination receipts from all instances
of an application are detected, the orchestrator assumes a failed
application deployment and returns the application back to the
pool for later deployment.

The dependability monitoring and governance service of an
application instance can be viewed as a built-in service to
extract information both local (from the host it runs on) and
remote (other hosts running instances of the same application),
essential for that local instance to decide on which operation
mode to assume. To obtain information on the host (e.g.,
currently available CPU) the monitoring service relies on
Linux or the hypervisor. This service may be devised as
a standalone library that applications (application instances)
must be developed with. On the one hand, the extraction of
local information, i.e., information extracted from the host on
which this application instance runs, can be built on top of
(1) existing tools, for example those used in monitoring CPU
and memory usage of the host machine, and/or (2) built-in
loggers that provide performance statistics. On the other hand,
regarding the extraction of remote knowledge and exchanging
information with other instances, the dependability monitoring
and governance service can execute periodical heartbeat ex-
changes with the rest of the nodes in the system. The frequency
of sending heartbeats is determined by the response time
needed by that application. The heartbeat messages themselves
are used as a vessel to carry all information that should be
communicated by the application instance with the outside
world. Such a technique allows the application instance to
track its visibility to all other instances and the reachability of
its messages in real-time [7]. These heartbeats can also help
determine if the needed resilience level of an application is
satisfied by monitoring the number of alive instances of that
application in the entire system.

The dependability monitoring and governance service can
also suggest to an application instance to change its mode of
operation: e.g., terminate itself. This can happen, for instance,
when the service determines that an application instance is
not needed to ensure that the application’s operational re-
quirements are met. Hence an application is rendered elastic
as it can scale down or up itself to a smaller or larger
set of resources judged necessary for the correct operation
of the application. For an application to scale, consensus is
necessary amongst all running instances of that application,
which collectively decide which instances can be released.

The change in operation mode is not limited to the appli-
cation instance being on or off. The application behavior can
consider the number and state of other available instances.
Such an application can adjust its functionality to the state
of the system. For example, a non-critical protection function
may enforce tighter protection limits if it is running alone,
whereas it can be more permissive when knowing that another
high-level protection application will act on the now missed
faults with more processing insights. The system as a whole
can thus achieve a well-defined degradation behavior.

IV. CONCLUSION & OPEN RESEARCH CHALLENGES

This paper presented a system to deploy non-safety-critical
P&C functions leveraging the spare hardware resources in
a substation, where each application instance monitors and
evaluates its own operational status. In case of operational
violations (e.g., not meeting the required timing deadlines),
an application is terminated and returned to a central pool.
An orchestrator gathers all applications to be executed and
deploys them when system resources become available.

Such a design can pave the road towards more intelligent
and flexible substations, executing not only fundamental P&C
functions but also a plethora of other non-safety-critical ap-
plications – real-time or non-real-time (e.g., for data collec-
tion and analytics) – to improve substation functionalities.
Nonetheless, further studies should be conducted to better un-
derstand the limits of this architecture: e.g., how network faults
can affect the coordination among applications’ instances.

REFERENCES

[1] J. H. Lala and R. E. Harper, “Architectural principles for safety-critical
real-time applications,” Proceedings of the IEEE, vol. 82, no. 1, pp.
25–40, 1994.

[2] T. Abdelzaher, E. M. Atkins, and K. G. Shin, “Qos negotiation in real-
time systems and its application to automated flight control,” IEEE
Trans. on Comput., vol. 49, no. 11, pp. 1170–1183, 2000.

[3] A. I. Siam, M. A. El-Affendi, A. Abou Elazm, G. M. El-Banby, N. A.
El-Bahnasawy, F. E. Abd El-Samie, and A. A. Abd El-Latif, “Portable
and real-time iot-based healthcare monitoring system for daily medical
applications,” IEEE Trans. on Computational Social Syst., 2022.

[4] C. Nicolaou, “An architecture for real-time multimedia communication
systems,” IEEE Journal on selected areas in communications, vol. 8,
no. 3, pp. 391–400, 1990.

[5] T. E. Bihari and K. Schwan, “Dynamic adaptation of real-time software,”
ACM Trans. on Computer Syst., vol. 9, no. 2, pp. 143–174, 1991.

[6] M. Kezunovic, “Substation automation research frontiers,” in IEEE
Power Systems Conference and Exposition, 2009, pp. 1–2.

[7] D. Kozhaya, J. Decouchant, V. Rahli, and P. E. Veríssimo, “PISTIS: an
event-triggered real-time byzantine-resilient protocol suite,” IEEE Trans.
Parallel Distributed Syst., vol. 32, no. 9, pp. 2277–2290, 2021.

[8] IEC 61850: Communication networks and systems for power utility
automation, International Eletrotechnical Commission, Geneva, Switzer-
land, 2003.

[9] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-
E. Arzen, V. Romero, and C. Scordino, “Resource management on
multicore systems: The actors approach,” IEEE Micro, vol. 31, no. 3,
pp. 72–81, 2011.

[10] G. Durrieu, G. Fohler, G. Gala, S. Girbal, D. G. Pérez, E. Noulard,
C. Pagetti, and S. Pérez, “Dreams about reconfiguration and adaptation
in avionics,” in ERTS 2016, 2016.

[11] J. Maurio, P. Wood, S. Zanlongo, J. Silbermann, T. Sookoor, A. Lorenzo,
R. Sleight, J. Rogers, D. Muller, N. Armiger, C. Rouff, and L. Watkins,
“Agile services and analysis framework for autonomous and autonomic
critical infrastructure,” Innovations Syst Softw Eng, vol. 9, pp. 145–156,
2023.

[12] A. Mikkelsen, T.-M. Grønli, D. Tamburri, and R. Kazman, “Architectural
Principles for Autonomous Microservices,” in Hawaii International
Conference on System Sciences, 2020, pp. 6569 – 6578.

[13] E. Ferrera, X. Tao, D. Conzon, V. S. Pombo, M. Cantero, and T. Ward,
“BRAIN-IoT: Paving the Way for Next-Generation Internet of Things,”
in International Conference on Internet of Things, Big Data and Secu-
rity, 2020, pp. 470––477.

[14] P. Lalanda, S. Chollet, and C. Hamon, Leveraging Design and Runtime
Architecture Models to Support Self-awareness, 2017, pp. 669–686.

[15] E. Alliance, “Edge for Smart Secondary Substation (E4S) Alliance,”
https://e4salliance.org/, May 2024, Accessed on: 2024-05-16.

[16] L. F. Energy, “Software Enabled Automation Platform and Artifacts
(THerein),” https://lfenergy.org/projects/seapath/, May 2024, Accessed
on: 2024-05-16.

https://e4salliance.org/
https://lfenergy.org/projects/seapath/

	Introduction
	Background & Related Work
	System Design
	Solution Approach Overview
	Detailed Solution Description

	Conclusion & Open Research Challenges
	References

