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ML for RT at the glance
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Safety Critical Systems against Soft Errors

Relative Deadline D;

Period T;

Probability with erroneous execution p,
* (m,Kk) robustness constraint

* Minimize the overall system utilization (avg)

e Formulaf
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* Optimize : i —>
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J. Shi, N. Ueter, J. -J. Chen and K. -H. Chen, Average Task Execution Time Minimization under (m, k) Soft Error Constraint, RTAS 2023




Reinforcement Learning Based Approach
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State space: environment = state s, : environment at time t

Action space: A = {0: unreliable, 1: detected, 2: reliable}

Reward function: reward r, during transition, longer time lower reward

Probability of state transitions: P(s,, | S;, a;)
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Learning Formulation, Reward, and Barrier Function

« Maximized the cumulative reward (i.e., execution time)

 Example when (m = 3, k = 5):

Jl J2 J'% J4 JS J2 J3 J4 JS Jﬁ
Correctness 1 0 1 o0 1 0o 1 0 1 1
Execution mode 1 0 1 1 2 0o 1 1 2 1
Expected execution time ct cw ¢t ¢t Cr ce ctct cr o
Real execution time ct cw ot ¢t Cr cv ¢t ct crject+cr
St 0 =1 > St+1

Barrier function to nudge the action of critical state

1. Reliable mode: no action
2. Detected mode: follow up reliable mode if error is detected

3. Unreliable mode: forbidden, extreme large negative reward UNIVERSITY

J. Shi, N. Ueter, J. -J. Chen and K. -H. Chen, Average Task Execution Time Minimization under (m, k) Soft Error Constraint, RTAS 2023 OF TWENTE.



Evaluation Setup

* Optimized mapping strategy (OPT)
 DQN with 10-layer neural network (RL)
« Static approach (STA) with R-Pattern [Chen, LCTES'106]
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« Adaptive approach (ADP) with R-pattern [Chen, LCTES'16]
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Evaluation Results: k = 10 (the lower the better)
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Take-home Message

RL is attractive for handling dynamic cases

Limited states can make RL efficient

Barrier function is the key for safety

BIF\I%EIIESNITTg Thank you! Questions?
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