
Giorgio Buttazzo
giorgio.buttazzo@santannapisa.it

Sant’Anna School of Advanced Studies

Workshop on Learning-Enabled Real-Time Systems, Lille, June 9, 2024

Increasing complexity

2

Unicore

Multicore

Multicore
+ FPGA

Multicore
+ GPU

Multicore +
GPU, FPGA

Multicore +
GPU, TPU,

+ FPGA

1970 1980 1990 2000 2010 2020

PID
MPC

RL

Several DNNs
+ RL + MPC

Several
DNNs

Features & Requirements

3

Typical features

 Perceive complex scenes

 Real-time performance

 Mixed criticality and req.

 Large code size

 Safety-critical

 Distributed

Requirements

AI & deep learning components

RTOS, efficient resource manag.

Hypervisors, component isolation

Security, Intrusion detection

Fault/anomaly detection

RT Cloud, RT middleware (DDS)

several challenges

Predictability

SecuritySafety

4

Major challenge

Middleware support

Real-Time software support

AI algorithms

Heterogeneous hardware

Note that each layer has to guarantees these properties and
it relies on the properties ensured by the layers below it.

5

This talk
This talk focuses on several issues common to AI-powered CPS,
illustrating problems and potential solutions:

Mixed requirements
Analysis & optimization
Middleware issues
HW acceleration
Model compression
Safety
Security
Architecture

AI-powered CPS

Issues in AI-based CPS

6

1. Complex CPS require different types of computations

2. AI models are computationally intensive: HW acceleration

3. HP-HW not always available in embedded systems to run in RT:
model compression (quantization, pruning, distillation, optimization)

4. Even if available, GPUs are unpredictable:
FPGAs are more predictable and consume less energy

5. AI models are not trustworthy: prediction score ≠ confidence:
methods to detect anomalous inputs and derive confidence.

6. AI models are prone to adversarial attacks, also in the real world:
detection and defense mechanisms

7

Types of computations
– High-Performance (HPC):
– Real-Time (RTC):
– Non Critical (NCC):

Examples

Objective

SW support

HW support

HPC RTC NCC

Rich OS
(Linux, QNX, VxWorks)

guarantee WCRT
& bounded delays

correct
functionality

run fast, increase
throughput

parallel arch, GPUs,
specialized HW

single core or
multi core CPUs

single core or
multi core CPUs

Computationally intensive, a lot of memory
Reactive, periodic, timing guarantees
neither HP nor RT (functionally correct)

RTOS
(FreeRTOS, Erika)

Rich OS
(Linux, QNX, VxWorks)

visual tracking,
ABS, robot control

comfort functions,
user interface

train DNNs, simulate
virtual worlds

8

HPC RTC

NCC

AI for
CPS

Complex
system

Mixed computational requirements
Mixed criticality

Complex systems normally require all types of software components:

Mixed requirements

9

Mixed requirements
Consider for example a self-driving car.

Steering, throttle modulation,
braking, and engine control are
highly critical and must be
managed by a certified RTOS.

RTOS

Perception, tracking, localization
need to be managed by a rich OS
to exploit device drivers, libraries,
and AI development frameworks.

Rich OS

Not certifiable SW
Large attack surface

Safety-critical,
Secure, certified

High-performance
component

High-criticality
component

Linux RTOS

AI-powered
software

Safety-critical
software

10

Multi-domain systems
Interference: low-critical tasks can delay highly-critical ones due to

interference among share resources (memory, bus)

attack Non-critical
component

Linux

Non-critical
software

GPU core
1

core
2

core
4

core
3

Hardware platform

Security: an attack to a component can propagate to others

11

Security is a serious issue
In 2015, a Jeep Cherokee was remotely attacked by exploiting a
vulnerability of the infotainment system. The hackers gained control
of the car, including steering, braking, turning on the wipers, blasting
the radio, and stopping the engine.

Hypervisor

Hardware
platform

high performance high-criticality

Linux RTOS

AI-powered
software

Safety-critical
software

12

Multi-domain isolation
A safe solution is to isolate the different software components by a
Type 1 bare-metal hypervisor with security and real-time features:

Accelerator Ttrusted EE

IDS

attack
non-critical

Linux

Non-critical
software

Hypervisor features

13
https://accelerat.eu/clare/

3. I/O virtualization to efficiently share resources among domains

4. Deterministic inter-domain communication: zero-copy & wait-free
shared-memory paradigms, cyclic async buffers, bounded latency …

5. Security mechanisms against denial-of-service and side-channel attacks,
run-time security monitoring, address space layout randomization,
control flow Integrity, ISO 21434 qualification, …

6. Safety: totally static, MISRA compliance, ISO 26262 qualification, VM-
level health-monitoring, …

1. Strong temporal & spatial isolation among execution domains by
secure cache partitioning, CPU/memory reservations & virtualization

2. Hard real-time scheduling of execution domains

Optimizing RT software

14

With the growing complexity of computing platforms, optimizing
software became quite challenging!

Such an optimization process requires a precise timing analysis
to predict the response times of various interacting SW tasks.

multicore

GPGPU

FPGA

Heterogeneous

single
core

How to group functions to tasks
How to schedule tasks
What to accelerate

How to assign priorities to tasks
How to allocate tasks to computing elements

How to synchronize the access to shared resources

Timing analysis

15

System to be controlled
I/O

devices RTOS

System model

Application
model

Application
constraints

Platform model

Task
allocation

Periods, deadlines,
jitter, throughput Feasibility

check
Y/N
Prob.

Timing
Analysis

WCRT, actual jitter,
actual throughput

Optimization

16

System to be controlled
I/O

devices RTOS

Timing
Analysis

System model

Application
model

Application
constraints

Task
allocation

Platform model

Feasibility
check

Y/N
Prob.

Periods, deadlines,
jitter, throughput

WCRT, actual jitter,
actual throughputOptimizer

Application model

17

time

C1 C2CPU C3

A

C4

B

v1 v2 v3 v4

C1 C2 C3 C4

(B1, B2)

(A1, A2) (0,0) (0,0)

HW
accelerator

Application model

A ∈ [A1, A2] B ∈ [B1, B2]

(0,0)

(0,0)(1,3)
3

5 6

786

4

Model and Analysis

18

Thus, the application is modeled as a directed acyclic graph (DAG)
where each node has a WCET and each edge has a (min, max) delay
range:

Reference paper
F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-Induced Tasks:
Model, Analysis, and Applications”, Proc. of the IEEE RTAS 2021.

In addition, each node can be manually allocated to a different core
or the best allocation is automatically found by optimization.

Core 1

Core 2

From code to analysis

19

Program code Code structure DAG model Timing analysis

DAG and analysis can directly be derived from the application code
(e.g., OpenMP parallel code):

Reference paper
R. Vargas, E.Quinones, A. Marongiu, “OpenMP and Timing Predictability:
A Possible Union?”, Proc, of DATE 2015.

C

Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Higher-level framework and application

Sensor acq.
publisher

Set rate
subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz 100
MHz FPGAGPU

Multicore Heterogeneous Platform

100
MHz

Topics

Often, applications needs to deal
with multiple levels of scheduling:

DDS-enabled RT systems

1 GHz

1 GHz 1 GHz

 Deep learning frameworks
(TensorFlow, Pythorch)
 Communication middleware

(ROS 2, DDS)
 Operating System
 Hypervisor

Such scheduling levels have
substantial effects on the timing
behavior of the final application.

20

RETIS Lab developed
 a compositional model for DDS-enabled RT systems
 a specific instance for FastDDS
 a fine-grained response-time analysis for FastDDS messages

Main benefit:
validate the timing

requirements of
complex DDS-based

systems

Reference paper
G. Sciangula, D. Casini, A. Biondi, C. Scordino, M. Di Natale, "Bounding the Data-Delivery
Latency of DDS Messages in Real-Time Applications", Proc. of the Euromicro Conference on
Real-time Systems (ECRTS 2023), Vienna, Austria, July 11-14, 2023.

End-to-end latency analysis

21

RETIS Lab developed
 Analysis-driven optimization for automatic design-space

exploration of FastDDS-based RT systems.
 Case study evaluation based on Autoware Reference System.

Main benefit:
helping designers

in configuring
DDS-enabled

real-time systems

Reference paper
G. Sciangula, D. Casini, A. Biondi, C. Scordino, "End-to-End Latency Optimization of Thread
Chains Under the DDS Publish/Subscribe Middleware", Proc. of the Design, Automation, and
Test in Europe Conference (DATE 2024), Valencia, Spain, March 25-27, 2024.

Analysis-based
optimization algorithm

OUTPUT
System configuration found

Optimized Solution

INPUT
System model

Analysis-Driven Optimization

22

Optimization of DDS RT systems

DNN acceleration

24

To be used in real time, the inference of deep neural networks (DNN)
requires hardware acceleration. This is usually done by

Programmable logic (FPGA)

General purpose GPUs (GPGPUs)

Both solutions have pro & cons
both requires DNN optimization

GPU acceleration

25

GPGPUs are the most used to
accelerated DNNs, because
of two main advantages:

Response time can be reduced
by two orders of magnitude;

Development is supported by standard frameworks.

On the other hand, there are serious disadvantages:

Concurrent tasks are executed in non-preemptive fashion;

Significant power consumption, weight, and encumbrance.

This prevents their usage in
small embedded systems:

GPU + TensorRT

26

τ1

τ2

τ3

GPU

priority

Since the execution of GPU requests is non‐preemptive,
high‐priority requests cannot preempt lower‐priority ones:

deadline missAcceleration request

Note that GPU requests may not be served by FCFS due to internal
memory constraints.

GPU + TensorRT

27

To solve this problem, an external Resource Manager must be
implemented to properly schedule the acceleration requests coming
from the application tasks:

GPU
τ1 τ2

τ3

Resource Manager

Acceleration
requests

28

FPGA acceleration
On the other end, FPGAs have the
following advantages:

They exhibit a highly predictable
behavior in terms of execution times.

They consume much less power
with respect to GPUs.

Commercial boards have lower weight, encumbrance, & cost.

Hence, they are ideal for battery-operated systems, as space robots,
satellites, and UAVs. But…

No FPU is available, unless explicitly programmed by the user
(but consuming a fraction of the available fabric).

Difficult programming (efficient coding requires a deep
knowledge of low-level architecture details).

29

There exist solutions to address the
weakness of both approaches.

Deploy the
full DNN on
the FPGA

Accelerate DNN
operations by a
coprocessor (DPU)

Faster,
Less flexible,
DDN may not fit

Slower,
More flexible

FPGA acceleration

30

The FRED framework
Dynamic partial reconfiguration (DPR) allows reprogramming a
portion of the FPGA while the rest is still running:

A1

A2

A3

A1

A2 A3

A4 A1

FPGA

A4

A4 A1

A1

31

A1
A2

A4
A5
A6

A3

Virtual FPGA

Physical FPGA

Timesharing is possible if HW accelerators do not run continuously,
but execute periodically with Ti > Ci (which is normally the case).

The virtual FPGA are is much
larger than the physical one.

FPGA virtualization
RETIS Lab developed a programming framework (FRED) that exploits
dynamic partial reconfiguration (DPR) to virtualize the FPGA area:

Task model

A1

SW task

HW task

Bitstream for
the FPGA

Area required
on the FPGA

request for HW acceleration
<request>

shared
memory

<put data>

Input data

<get data>

results

Processor System (PS)

Core4

Core2

Core3

Core1
DRAM

Slot 1 Slot 2

Slot 3

32Programmable Logic (PL)

FRED applications consist of SW-tasks (running on the PS) and HW-tasks
(running on the PL):

Task model

After issuing a request for acceleration, a SW task is suspended
until the results are produced.

SW task

A1HW task R

suspension

Reconfiguration time
33

A1

SW task

HW task

Bitstream for
the FPGA

Area required
on the FPGA

request for HW acceleration
<request>

shared
memory

<put data>

Input data

<get data>

results

Dynamic FPGA allocation

RP

FPGA area

SW tasks

A1
A2 A3

A5

A6

A4

A7

τ1 τ2 τ3 τ4

For example

Slot 1 Slot 2

Slot 3configuration
request of
A4 in slot1

34

Reconfiguration
Port

t = t2 τ4 triggers the execution of A4 on slot 1 (busy);
t = t3 A1 finishes, so A4 can be programmed on slot 1;
t = t4 A4 can now run on slot 1;

A1 A2

A3

t = t1 A1, A2, A3 are executing on the FPGA;

A4

τ1

τ2

τ3

τ4

Example of schedule

FPGA

A2
A1

slot3
slot2
slot1

A3

A4

35

A5

waiting for HW task completion
waiting for busy recon. port
waiting for busy slot

SW-task execution
HW-task execution
reconfig. time

Increased schedulability

36

FRED can make a system feasible, when it is not under
a fully static approach or a full SW implementation.

A B

E

C

F

D1. Execute all the
tasks on the CPUs
(leave FPGA empty)

FPGA Processors

2. Statically allocate
some task on FPGA
and execute the
others on the CPUs

C

F

DSlot 1 Slot 2

Slot 3

Slot 1 Slot 2

Slot 3

3. Use FRED to
share the FPGA
with all the tasks

Slot 1 Slot 2

Slot 3

A,B C,D

E,F

A B

E

The FRED framework
FRED includes a set of tools:

Virtual FGPA Bus Synthethizer:
a tool that optimizes the
Interconnect hierarchy to
match timing constraints

Bus Manager:
achieves predictable arbitration,

protection from timing attacks, and
bandwidth isolation

Linux runtime:
it manages HW acceleration

requests with predictable
response times

FRED Analyzer:
a tool to verify timing

constraints, accounting
different sources of delays

Floorplanner:
a tool that optimizes the

allocation of HW accelerators on
the FPGA fabric

URL: fred.santannapisa.it

37

FRED Paper
A. Biondi et al., "A Framework for Supporting Real-Time Applications on Dynamic
Reconfigurable FPGAs", Proc. of the IEEE Real-Time Systems Symposium, 2016.

38

Xilinx DPU
A more flexible way to accelerate AI models is by a proper softcore
coprocessor, as the Xilinx deep learning processing unit (DPU):

DPU1

Xilinx Runtime (XRT)

DPU2 DPU3 DPU4

FPGA

CPU1 CPU2

CPU3 CPU4

PS PL

Hardware

Drivers

Vitis AI AI Quantized & AI Compiler

TensorFlow / PyTorchAI Framework

AI application

Pruning

Quantization

Distillation

Model compression

39

Model
compression

These methods can be combined together.

Better
Architecture

It acts in the architecture
to reduce the number of
operations & parameters.

It consists of training a
smaller model to perform
as the original one.

It reduces the number of
bits used for representing
the parameters.

It reduces the number of
parameters by setting
some weights to zero.

Model distillation

40

Paper
C. Bucila, R. Caruana, and A. Niculescu-Mizil, "Model compression", Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining (KDD’06), New York, NY, USA, 2006.

Idea: use a pre-trained big model (teacher) to label a large set of
unlabeled data and train a small DNN (student) on these data.

L

Labeling

Complex
DNN

(Teacher)

label

U

Small
DNN

(Student)

L

Loss

Distilling

Distillation

41

Geoffrey Hinton further elaborated this idea, noting that a human teacher
can transfer a specific theory to students, each having a different brain
structure and different synaptic weights.

Paper
G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network",
Proc. of NIPS 2014.

knowledge:input-output mapping

He also noted that the probabilities of incorrect answers tell us a lot about
how the big model tends to generalize.

8 is the second highest score

0 is the second highest score

0 1 2 3 4 5 6 7 8 9
7 is the second highest score

Soft labels

42

T = 1

class index

1
yi

class index

T > 1
1

yi

Increasing T, the distribution tends to reduce the score differences and thus
better emphasizes the lowest scores:

In other words, a soft distribution is more informative than a
perfect ground-truth target, and both are needed in learning.

yi =
exp(zi / T)

exp(zj / T)∑j=1
n

Hence, he modified the softmax function by introducing a new
parameter T (called temperature) that reduces the differences
between class scores:

Training

43

Distillation can be performed as follows:

Complex
DNN

(Teacher)
Small
DNN

(Student)

x

SoftmaxT > 1

Distillation
Loss

Soft
label

Softmax

y

Softmax

Soft
prediction

T > 1 T = 1

Student
Loss

Hard label

Hard
prediction

Total Loss

PS PSPT

Fixed
weights

44

DNN splitting
In complex CPS using multiple DNNs, a network can be split into
several blocks to enable preemption and improve response times of
higher-priority DNNs:

Choosing the best split points is an optimization process.

Block 1 Block 2 Block 3 Block 4

45

Optimized real-time tracking
Real-time object tracking, requires tracking multiple objects even in
the presence of occlusions:

p3p1 p2
p3

p3
p1

p2

Association algorithm
to best match predictions

with detections (using both
IoU and appearance)

To do that, neural trackers exploit three main methods:

Object detection
CNN (e.g., YOLO)

Kalman filter to predict
motion during occlusions

46

Optimized real-time tracking
The association algorithm has to find the best match between
detections and predictions:

1

2

3

The association is formulated as an
optimization problem on a bipartite graph
where each detection-prediction pair is
associated with a similarity score (e.g.,
cosine similarity, or IoU), and we have to
maximize the total cost:

max ∑ cij xij∑i = 1
n

j = 1
n

xij = 1 ∀i = 1, … n∑ j = 1
n

xij = 1 ∀j = 1, … n∑ i = 1
n

detections predictions

47

Optimized real-time tracking
We optimized the entire tracking pipeline by:
 accelerating CNNs on multiple DPUs on FPGA
 accelerating image pre- and post-processing on FPGA
 parallelizing the matching algorithm on multiple cores

Kalman
predictions

Object
Detector

Appearance
network

Appearance
Matching

IoU-based
matching

Tracklet manag.
 Kalman update
 Appearance update
 Tracklet creation
 Tracklet deletion

Matched objects

Unmatched objects

Low score detections

Reference paper
E. Cittadini, M. Marinoni, A. Biondi, G. Cicero, G. Buttazzo, "Supporting AI-Powered
Real-Time Cyber-Physical Systems on Heterogeneous Platforms via Hypervisor
Technology", Real-Time Systems, 59(4):609-635, 2023.

Xilinx
Ultrascale++

ZCU104
and Kria

48

Optimized real-time tracking
The system was implemented to track persons by a quadrotor, using
two execution domains isolated by the CLARE hypervisor:

CLARE Hypervisor

Xilinx
Kria

Linux FreeRTOS

AI-powered
software

Safety-critical
software

accelerator Ttrusted EE

Tracking is carried out at

30 fps with optimization

3 fps without optimization

49

51

Neural Network

Training set

Can we trust a DNN on inputs that are quite
different from those shown in the training set?

Can we trust a NN?

Speed
limit 50

52

Training set

?

Can we trust a DNN on inputs that are quite
different from those shown in the training set?

Can we trust a NN?

Neural Network

Out-of-distribution inputs

53

Can a DNN recognize such images?

54

Accidents due to AI

23 march 2018
23 March 2018: A Tesla X missed to recognize lanes and crashed
into a concrete lane divider at 70 miles per hour.

55

Accidents due to AI
June 1, 2020: A model 3 Tesla missed to recognize an overturned
truck on a highway in Taiwan and crashed into it at 68 mph.

57

Neural networks are prone to adversarial attacks, i.e.,
malicious inputs containing imperceptible perturbations that can
make a neural network to make wrong predictions.

Genuine input 0 0.5 1

Neural
Network

0 0.5 1

Neural
Network=+

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

imperceptible
perturbation

Adversarial input

Cyber-attacks to DNNs

Real-world attacks
Classic adversarial inputs must have access to the AI system (DNN
input, memory, or camera) to modify the image.

PARKING (92%) BRAD PITT (93%) RIFLE (91%)

Real-world Adversarial attacks are directly applied to objects in the
physical world, without accessing the AI system.

person

NO DETECTION

58

59

Coverage analysis

x

Trusted
dataset

online

off-line
Prediction

score

Signature of layer L for
class c derived off-line

from the trusted data set.

∀L

Network
signature

RETIS Lab proposed an efficient method to analyze the internal
activations of a neural network to detect both anomalous and
adversarial inputs through a confidence score:

Paper
G. Rossolini, A. Biondi, G. Buttazzo, "Increasing the Confidence of Deep Neural Networks
by Coverage Analysis", IEEE Trans. on Software Engineering, 49(2):802-815, 2023.

60

Coverage analysis

x

Trusted
dataset

online

off-line
Prediction

score

Signature of layer L for
class c derived off-line

from the trusted data set.

Activation map of
layer L derived online

from a new input x:

Comparison
metrics

Confidence
score

∀L

∀L

Network
signature

For a new input x, the current activation state is compared with the
stored signature corresponding to the predicted class. The higher
the matching, the higher the confidence:

Predicted class

61

Input transformations

Blurring

CNN
cat

dog
bird
fish

0 0.5 1

CNN
cat

dog
bird
fish

0 0.5 1

Adversarial
image

Another approach exploits the fact that standard AEs loose their
effect when they are subject to certain input transformations
(e.g., blurring, translation, rotations):

62

Input transformations

Blurring

For genuine images, the same transformations do not cause a strong
degradation in the prediction:

CNN
cat

dog
bird
fish

0 0.5 1

CNN
cat

dog
bird
fish

0 0.5 1

Genuine
image

63

Input transformations

Blurring

CNN

CNN

KL divergence > τ

AE

not AE

p

q ≈ p

Genuine
image

Y

N

RETIS Lab proposed a detection method that compares the two
distributions using a KL-divergence: a sample is considered to be AE
if the two predictions are “distant” from each other:

Paper
F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input
Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and
Learning Systems, 34(3):1329-1341, March 2023.

64

Input transformations

Blurring

CNN

CNN

KL divergence > τ

AE

not AE

p

q ≠ p

Paper
F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input
Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and
Learning Systems, 34(3):1329-1341, March 2023.

Y

N

Adversarial
image

RETIS Lab proposed a detection method that compares the two
distributions using a KL-divergence: a sample is considered to be AE
if the two predictions are “distant” from each other:

65

Real-world adv. attacks
An extensive experimental study has been performed to evaluate the
robustness of segmentation networks against real-world attacks,
based on patches and physical posters:

on billboards behind trucks

66

Real-world adv. attacks
Experiments on the CARLA simulator highlighted that some semantic
segmentations networks are more sensitive to adversarial attacks:

Paper
F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo, "Evaluating the Robustness of
Semantic Segmentation for Autonomous Driving against Real-World Adversarial Patch
Attacks", Proc. of WACV 2022.

Input
image

Segmented
image

No AttackRegular
Poster

Adversarial Poster

67

Normal Poster

68

Adversarial Poster

69

Z-mask defense
A new defense method to identify and mask the adversarial region:

Paper
G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-
realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th
AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

70

Z-mask in action

71

Paper
G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-
realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th
AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

Z-mask defense
Z-mask applied on CARLA to neutralize an adversarial poster:

No attack Adversarial Poster Defense Mask

Input
image

Seg.
image

73

So what about AI in CPS?
We have seen that AI models have intrinsic weaknesses in terms of
 timing predictability, safety, security, and certifiability.

We cannot prevent AI algorithms from being attacked
or producing wrong results, but we can take a number
of countermeasures to prevent them from harming.

Does it mean that we cannot use AI in complex CPS?

Some solutions already exist, but more research is needed to

 Increase predictability when accelerating AI models
 Reduce response times by compression, distillation, & optimization
 Increase safety by detecting faults and anomalous inputs
 Increase security by proper defense mechanisms

74

Safe architecture

 Achieve fault-tolerance
by replication + voting

DNN1

DNN2

DNN3

V
O
T
E
R

 Detect anomalous inputs
and adversarial attacks

 Switch to a back-up controller
in anomalous conditions

Look ahead
simulation

Safety
monitor

Physical
systemBackup

controller

Unsafe input
detector

 Detect dangerous outputs
by safety monitoring

Act on the architecture to implement fault detection & exclusion:

75

Overall architecture

VOTER

Safety
Monitor

Integrated
confidence

Backup
controller

DNN1

DNN2

DNN3

Sensory
input

Other
AI functions

Safe
output

High-performance domain Safety-critical domain

Linux Erika Enterprise

CLARE Hypervisor

 Ensure security and isolation by a hypervisor.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Types of computations
	Slide Number 8
	Mixed requirements
	 Multi-domain systems
	Security is a serious issue
	Multi-domain isolation
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	FPGA acceleration
	Slide Number 29
	The FRED framework
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Xilinx DPU
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	DNN splitting
	Optimized real-time tracking
	Optimized real-time tracking
	Optimized real-time tracking
	Optimized real-time tracking
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Accidents due to AI
	Accidents due to AI
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Coverage analysis
	Coverage analysis
	Input transformations
	Input transformations
	Input transformations
	Input transformations
	Real-world adv. attacks
	Real-world adv. attacks
	Slide Number 67
	Slide Number 68
	Z-mask defense
	Slide Number 70
	Slide Number 71
	Slide Number 72
	So what about AI in CPS?
	Safe architecture
	Overall architecture
	Slide Number 76

