Toward predictable Al-enabled Real-Time Systems

Giorgio Buttazzo

giorgio.buttazzo@santannapisa.it

Sant'Anna School of Advanced Studies

Workshop on Learning-Enabled Real-Time Systems, Lille, June 9, 2024

Retis me systems Laboratory

Features & Requirements

Typical features

- Perceive complex scenes
- Real-time performance
- Mixed criticality and req.
- Large code size
- Safety-critical
- Distributed

Requirements

- AI & deep learning components
- RTOS, efficient resource manag.
- Hypervisors, component isolation
- Security, Intrusion detection
- Fault/anomaly detection
- RT Cloud, RT middleware (DDS)

Major challenge

Note that each layer has to guarantees these properties and it relies on the properties ensured by the layers below it.

This talk

This talk focuses on several issues common to **Al-powered CPS**, illustrating problems and potential solutions:

- -> Mixed requirements
- Analysis & optimization
- --> Middleware issues
- -> HW acceleration
- Model compression
- -> Safety
- --> Security
- ---- Architecture

Issues in AI-based CPS

- 1. Complex CPS require different types of computations
- 2. Al models are **computationally intensive**: HW acceleration
- 3. HP-HW **not always available** in embedded systems to run in RT: model compression (quantization, pruning, distillation, optimization)
- 4. Even if available, **GPUs are unpredictable**: FPGAs are more predictable and consume less energy
- AI models are not trustworthy: prediction score ≠ confidence: methods to detect anomalous inputs and derive confidence.
- 6. Al models are prone to **adversarial attacks**, also in the real world: detection and defense mechanisms

Types of computations

- High-Performance (HPC):
- Real-Time (RTC):

Computationally intensive, a lot of memory Reactive, periodic, timing guarantees

– Non Critical (**NCC**):

neither HP nor RT (functionally correct)

	HPC	RTC	NCC
Examples	train DNNs, simulate	visual tracking,	comfort functions,
	virtual worlds	ABS, robot control	user interface
Objective	run fast, increase	guarantee WCRT	correct
	throughput	& bounded delays	functionality
SW support	Rich OS	RTOS	Rich OS
	(Linux, QNX, VxWorks)	(FreeRTOS, Erika)	(Linux, QNX, VxWorks)
HW support	parallel arch, GPUs,	single core or	single core or
	specialized HW	multi core CPUs	multi core CPUs

Mixed requirements

Complex systems normally require all types of software components:

Mixed requirements

Consider for example a self-driving car.

Multi-domain systems

Interference: low-critical tasks can delay highly-critical ones due to interference among share resources (memory, bus)

Security: an attack to a component can propagate to others

In 2015, a Jeep Cherokee was remotely attacked by exploiting a vulnerability of the infotainment system. The hackers gained control of the car, including steering, braking, turning on the wipers, blasting the radio, and stopping the engine.

Multi-domain isolation

A safe solution is to **isolate** the different software components by a **Type 1 bare-metal hypervisor** with **security** and **real-time** features:

Hypervisor features

- 1. Strong temporal & spatial isolation among execution domains by secure cache partitioning, CPU/memory reservations & virtualization
- 2. Hard real-time scheduling of execution domains
- 3. I/O virtualization to efficiently share resources among domains
- 4. Deterministic inter-domain communication: zero-copy & wait-free shared-memory paradigms, cyclic async buffers, bounded latency ...
- 5. Security mechanisms against denial-of-service and side-channel attacks, run-time security monitoring, address space layout randomization, control flow Integrity, ISO 21434 qualification, ...
- 6. **Safety**: totally static, MISRA compliance, ISO 26262 qualification, VMlevel health-monitoring, ...

Optimizing RT software

With the growing complexity of computing platforms, optimizing software became quite challenging!

Such an **optimization process** requires a **precise timing analysis** to predict the response times of various interacting SW tasks.

Timing analysis

Optimization

Application model

Model and Analysis

Thus, the application is modeled as a **directed acyclic graph** (**DAG**) where each node has a WCET and each edge has a (min, max) delay range:

In addition, each node can be manually allocated to a different core or the **best allocation** is automatically found by optimization.

Reference paper

F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, "Event-Driven Delay-Induced Tasks: Model, Analysis, and Applications", Proc. of the IEEE RTAS 2021.

From code to analysis

DAG and analysis can directly be derived from the application code (e.g., OpenMP parallel code):

Reference paper

R. Vargas, E.Quinones, A. Marongiu, "OpenMP and Timing Predictability: A Possible Union?", Proc, of DATE 2015.

DDS-enabled RT systems

Often, applications needs to deal with multiple levels of scheduling:

- Deep learning frameworks (TensorFlow, Pythorch)
- Communication middleware (ROS 2, DDS)
- Operating System
- Hypervisor

Such scheduling levels have substantial effects on the timing behavior of the final application.

End-to-end latency analysis

RETIS Lab developed

- a compositional model for DDS-enabled RT systems
- a specific instance for FastDDS
- a fine-grained response-time analysis for FastDDS messages

Reference paper

G. Sciangula, D. Casini, A. Biondi, C. Scordino, M. Di Natale, "Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications", Proc. of the Euromicro Conference on Real-time Systems (ECRTS 2023), Vienna, Austria, July 11-14, 2023.

RETIS Lab developed

- Analysis-driven optimization for automatic design-space exploration of FastDDS-based RT systems.
- Case study evaluation based on Autoware Reference System.

Reference paper

G. Sciangula, D. Casini, A. Biondi, C. Scordino, "End-to-End Latency Optimization of Thread Chains Under the DDS Publish/Subscribe Middleware", Proc. of the Design, Automation, and Test in Europe Conference (DATE 2024), Valencia, Spain, March 25-27, 2024. 22

Al acceleration

DNN acceleration

To be used in real time, the <u>inference</u> of deep neural networks (DNN) requires hardware acceleration. This is usually done by

General purpose GPUs (GPGPUs)

Programmable logic (FPGA)

Both solutions have pro & cons both requires DNN optimization

GPU acceleration

GPGPUs are the most used to accelerated DNNs, because of two main advantages:

 Response time can be reduced by two orders of magnitude;

✓ Development is supported by standard frameworks.

On the other hand, there are serious **disadvantages**:

- **X** Concurrent tasks are executed in **non-preemptive** fashion;
- **X** Significant **power consumption**, **weight**, and **encumbrance**.

This prevents their usage in small embedded systems:

Since the execution of GPU requests is **non-preemptive**, high-priority requests cannot preempt lower-priority ones:

Note that GPU requests may not be served by FCFS due to internal memory constraints.

GPU + TensorRT

To solve this problem, an external **Resource Manager** must be implemented to properly schedule the acceleration requests coming from the application tasks:

FPGA acceleration

On the other end, FPGAs have the following advantages:

- They exhibit a highly predictable behavior in terms of execution times.
- They consume much less power with respect to GPUs.

✓ Commercial boards have lower weight, encumbrance, & cost.

Hence, they are ideal for **battery-operated systems**, as space robots, satellites, and UAVs. But...

- **X** No FPU is available, unless explicitly programmed by the user (but consuming a fraction of the available fabric).
- **X Difficult programming** (efficient coding requires a deep knowledge of low-level architecture details).

FPGA acceleration

There exist solutions to address the weakness of both approaches.

Dynamic partial reconfiguration (**DPR**) allows reprogramming a portion of the FPGA while the rest is still running:

FPGA virtualization

RETIS Lab developed a programming framework (**FRED**) that exploits dynamic partial reconfiguration (**DPR**) to virtualize the FPGA area:

Timesharing is possible if HW accelerators do not run continuously, but execute periodically with $T_i > C_i$ (which is normally the case).

Task model

FRED applications consist of **SW-tasks** (running on the PS) and **HW-tasks** (running on the PL):

Task model

After issuing a **request for acceleration**, a SW task is **suspended** until the results are produced.

For example

- $t = t_1$ A1, A2, A3 are executing on the FPGA;
- $t = t_2$ τ_4 triggers the execution of A4 on slot 1 (busy);
- $t = t_3$ A1 finishes, so A4 can be programmed on slot 1;
- $t = t_4$ A4 can now run on slot 1;

SW tasks

Example of schedule

Increased schedulability

FPGA

- Execute all the tasks on the CPUs (leave FPGA empty)
- 2. Statically allocate some task on FPGA and execute the others on the CPUs

 Use FRED to share the FPGA with all the tasks

Processors

FRED can make a system feasible, when it is not under a fully static approach or a full SW implementation.

E,F

The FRED framework

FRED includes a set of tools:

FRED Paper

A. Biondi et al., "A Framework for Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs", Proc. of the IEEE Real-Time Systems Symposium, 2016.

Xilinx DPU

A more flexible way to accelerate AI models is by a proper **softcore coprocessor**, as the Xilinx **deep learning processing unit** (**DPU**):

Model compression

It reduces the number of bits used for representing the parameters.

It reduces the number of parameters by setting some weights to zero.

It consists of training a smaller model to perform as the original one.

It acts in the architecture to reduce the number of operations & parameters.

These methods can be combined together.

Model distillation

Idea: use a pre-trained big model (teacher) to label a large set of unlabeled data and train a small DNN (student) on these data.

Paper

C. Bucila, R. Caruana, and A. Niculescu-Mizil, "Model compression", Proc. of the Int. Conf. on Knowledge Discovery and Data Mining (KDD'06), New York, NY, USA, 2006. 40

Distillation

Geoffrey Hinton further elaborated this idea, noting that a human teacher can transfer a specific theory to students, each having a different brain structure and different synaptic weights.

knowledge:input-output mapping

He also noted that the probabilities of incorrect answers tell us a lot about how the big model tends to generalize.

Paper

G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network", Proc. of NIPS 2014.

Soft labels

In other words, a soft distribution is more informative than a perfect ground-truth target, and both are needed in learning.

Hence, he **modified the softmax function** by introducing a new parameter T (called **temperature**) that reduces the differences between class scores:

$$y_i = \frac{\exp(z_i/T)}{\sum_{j=1}^n \exp(z_j/T)}$$

Increasing T, the distribution tends to reduce the score differences and thus better emphasizes the lowest scores:

Distillation can be performed as follows:

DNN splitting

In complex CPS using multiple DNNs, a network can be split into several blocks to enable preemption and improve response times of higher-priority DNNs:

Choosing the best split points is an optimization process.

Real-time object tracking, requires tracking multiple objects even in the presence of **occlusions**:

To do that, **neural trackers** exploit three main methods:

The association algorithm has to find the best match between detections and predictions:

The association is formulated as an optimization problem on a bipartite graph where each detection-prediction pair is associated with a similarity score (e.g., cosine similarity, or IoU), and we have to maximize the total cost:

$$\begin{cases} \max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \sum_{j=1}^{n} x_{ij} = 1 \quad \forall i = 1, \dots n \\ \sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots n \end{cases}$$

We optimized the entire tracking pipeline by:

- accelerating CNNs on multiple DPUs on FPGA
- accelerating image pre- and post-processing on FPGA
- parallelizing the matching algorithm on multiple cores

Xilinx Ultrascale++ ZCU104 and Kria

47

Reference paper

E. Cittadini, M. Marinoni, A. Biondi, G. Cicero, G. Buttazzo, "Supporting AI-Powered Real-Time Cyber-Physical Systems on Heterogeneous Platforms via Hypervisor Technology", Real-Time Systems, 59(4):609-635, 2023.

The system was implemented to track persons by a quadrotor, using two execution domains isolated by the **CLARE hypervisor**:

On board real-time tracking by optimized DeepSORT 33 fps on a Xilinx ZCU 104 ReTiS Lab 2023

Al safety issues

Can we trust a NN?

Training set

Can we trust a DNN on inputs that are quite different from those shown in the training set?

Can we trust a NN?

Training set

Can we trust a DNN on inputs that are quite different from those shown in the training set?

Out-of-distribution inputs

Can a DNN recognize such images?

Accidents due to Al

March 2018: A Tesla X missed to recognize lanes and crashed into a concrete lane divider at 70 miles per hour.

Accidents due to Al

June 1, 2020: A model 3 Tesla missed to recognize an overturned truck on a highway in Taiwan and crashed into it at 68 mph.

Al security issues

Cyber-attacks to DNNs

Neural networks are prone to **adversarial attacks**, i.e., malicious inputs containing imperceptible perturbations that can make a neural network to make wrong predictions.

Real-world attacks

Classic adversarial inputs must have access to the AI system (DNN input, memory, or camera) to modify the image.

Real-world Adversarial attacks are directly applied to objects in the physical world, without accessing the AI system.

PARKING (92%)

BRAD PITT (93%)

RIFLE (91%)

NO DETECTION

Coverage analysis

RETIS Lab proposed an efficient method to analyze the internal activations of a neural network to detect both **anomalous** and **adversarial inputs** through a **confidence score**:

Paper

G. Rossolini, A. Biondi, G. Buttazzo, "Increasing the Confidence of Deep Neural Networks by Coverage Analysis", *IEEE Trans. on Software Engineering*, 49(2):802-815, 2023. 59

Coverage analysis

For a new input x, the current activation state is compared with the stored **signature** corresponding to the predicted class. The higher the matching, the higher the confidence:

Another approach exploits the fact that standard AEs loose their effect when they are subject to certain **input transformations** (e.g., blurring, translation, rotations):

For genuine images, the same transformations do not cause a strong degradation in the prediction:

RETIS Lab proposed a detection method that compares the two distributions using a **KL-divergence**: a sample is considered to be AE if the two predictions are "distant" from each other:

Paper

F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input Transformations, Defense Perturbations, and Voting", *IEEE Trans. on Neural Networks and Learning Systems*, 34(3):1329-1341, March 2023. 63

RETIS Lab proposed a detection method that compares the two distributions using a **KL-divergence**: a sample is considered to be AE if the two predictions are "distant" from each other:

Paper

F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input Transformations, Defense Perturbations, and Voting", *IEEE Trans. on Neural Networks and Learning Systems*, 34(3):1329-1341, March 2023. 64

Real-world adv. attacks

An extensive experimental study has been performed to evaluate the robustness of **segmentation networks** against real-world attacks, based on patches and physical posters:

on billboards

behind trucks

Real-world adv. attacks

Experiments on the CARLA simulator highlighted that some semantic segmentations networks are more **sensitive to adversarial attacks**:

Paper

F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo, "Evaluating the Robustness of Semantic Segmentation for Autonomous Driving against Real-World Adversarial Patch Attacks", Proc. of WACV 2022.

Normal Poster

Adversarial Poster

Z-mask defense

A new defense method to identify and mask the adversarial region:

G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physicallyrealizable adversarial attacks through internal over-activation analysis", Proc. of the 37th AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023. ⁶⁹

Z-mask in action

person: 94.92%

Z-mask defense

Z-mask applied on CARLA to neutralize an adversarial poster:

Paper

G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physicallyrealizable adversarial attacks through internal over-activation analysis", Proc. of the 37th AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023. ⁷¹

Concluding remarks

We have seen that AI models have intrinsic weaknesses in terms of

timing predictability, safety, security, and certifiability.

Does it mean that we cannot use AI in complex CPS?

We cannot prevent AI algorithms from being attacked or producing wrong results, but we can take a number of countermeasures to prevent them from harming.

Some solutions already exist, but more research is needed to

- Increase predictability when accelerating AI models
- Reduce response times by compression, distillation, & optimization
- Increase safety by detecting faults and anomalous inputs
- Increase security by proper defense mechanisms

Safe architecture

Act on the architecture to implement fault detection & exclusion:

- Achieve fault-tolerance by replication + voting
- Detect anomalous inputs and adversarial attacks
- Detect dangerous outputs by safety monitoring
- Switch to a back-up controller in anomalous conditions

Overall architecture

Ensure security and isolation by a hypervisor.

75

Thank you