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Increasing complexity
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Features & Requirements
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Typical features

 Perceive complex scenes

 Real-time performance

 Mixed criticality and req.

 Large code size

 Safety-critical

 Distributed

Requirements

AI & deep learning components

RTOS, efficient resource manag.

Hypervisors, component isolation

Security, Intrusion detection

Fault/anomaly detection

RT Cloud, RT middleware (DDS)

several challenges



Predictability

SecuritySafety
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Major challenge

Middleware support

Real-Time software support

AI algorithms

Heterogeneous hardware

Note that each layer has to guarantees these properties and
it relies on the properties ensured by the layers below it.
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This talk
This talk focuses on several issues common to AI-powered CPS,
illustrating problems and potential solutions:

Mixed requirements
Analysis & optimization
Middleware issues
HW acceleration
Model compression
Safety
Security
Architecture

AI-powered CPS



Issues in AI-based CPS
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1. Complex CPS require different types of computations

2. AI models are computationally intensive: HW acceleration

3. HP-HW not always available in embedded systems to run in RT: 
model compression (quantization, pruning, distillation, optimization)

4. Even if available, GPUs are unpredictable:
FPGAs are more predictable and consume less energy

5. AI models are not trustworthy: prediction score ≠ confidence:
methods to detect anomalous inputs and derive confidence.

6. AI models are prone to adversarial attacks, also in the real world:
detection and defense mechanisms



7

Types of computations
– High-Performance (HPC):
– Real-Time (RTC):
– Non Critical (NCC):

Examples

Objective

SW support

HW support

HPC RTC NCC

Rich OS
(Linux, QNX, VxWorks)

guarantee WCRT 
& bounded delays

correct 
functionality

run fast, increase
throughput

parallel arch, GPUs,
specialized HW

single core or
multi core CPUs

single core or
multi core CPUs

Computationally intensive, a lot of memory
Reactive, periodic, timing guarantees
neither HP nor RT (functionally correct)

RTOS
(FreeRTOS, Erika)

Rich OS
(Linux, QNX, VxWorks)

visual tracking, 
ABS, robot control

comfort functions, 
user interface

train DNNs, simulate 
virtual worlds
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HPC RTC

NCC

AI for 
CPS

Complex 
system

Mixed computational requirements
Mixed criticality

Complex systems normally require all types of software components:

Mixed requirements
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Mixed requirements
Consider for example a self-driving car.

Steering, throttle modulation,
braking, and engine control are
highly critical and must be
managed by a certified RTOS.

RTOS

Perception, tracking, localization
need to be managed by a rich OS
to exploit device drivers, libraries,
and AI development frameworks.

Rich OS

Not certifiable SW
Large attack surface

Safety-critical,
Secure, certified



High-performance
component

High-criticality
component

Linux RTOS

AI-powered 
software 

Safety-critical 
software
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Multi-domain systems
Interference: low-critical tasks can delay highly-critical ones due to 

interference among share resources (memory, bus)

attack Non-critical
component

Linux

Non-critical 
software

GPU core
1

core
2

core
4

core
3

Hardware platform

Security: an attack to a component can propagate to others
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Security is a serious issue
In 2015, a Jeep Cherokee was remotely attacked by exploiting a
vulnerability of the infotainment system. The hackers gained control
of the car, including steering, braking, turning on the wipers, blasting
the radio, and stopping the engine.



Hypervisor

Hardware
platform

high performance high-criticality

Linux RTOS

AI-powered 
software 

Safety-critical 
software
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Multi-domain isolation
A safe solution is to isolate the different software components by a
Type 1 bare-metal hypervisor with security and real-time features:

Accelerator Ttrusted EE

IDS

attack
non-critical

Linux

Non-critical 
software



Hypervisor features
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https://accelerat.eu/clare/

3. I/O virtualization to efficiently share resources among domains

4. Deterministic inter-domain communication: zero-copy & wait-free
shared-memory paradigms, cyclic async buffers, bounded latency …

5. Security mechanisms against denial-of-service and side-channel attacks,
run-time security monitoring, address space layout randomization,
control flow Integrity, ISO 21434 qualification, …

6. Safety: totally static, MISRA compliance, ISO 26262 qualification, VM-
level health-monitoring, …

1. Strong temporal & spatial isolation among execution domains by
secure cache partitioning, CPU/memory reservations & virtualization

2. Hard real-time scheduling of execution domains



Optimizing RT software
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With the growing complexity of computing platforms, optimizing
software became quite challenging!

Such an optimization process requires a precise timing analysis
to predict the response times of various interacting SW tasks.

multicore

GPGPU

FPGA

Heterogeneous

single 
core

How to group functions to tasks
How to schedule tasks
What to accelerate

How to assign priorities to tasks
How to allocate tasks to computing elements

How to synchronize the access to shared resources



Timing analysis
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System to be controlled
I/O 

devices RTOS

System model

Application 
model

Application 
constraints

Platform model

Task 
allocation

Periods, deadlines, 
jitter, throughput Feasibility 

check
Y/N
Prob.

Timing 
Analysis

WCRT, actual jitter, 
actual throughput



Optimization
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System to be controlled
I/O 

devices RTOS

Timing 
Analysis

System model

Application 
model

Application 
constraints

Task 
allocation

Platform model

Feasibility 
check

Y/N
Prob.

Periods, deadlines, 
jitter, throughput

WCRT, actual jitter, 
actual throughputOptimizer



Application model
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time

C1 C2CPU C3

A

C4

B

v1 v2 v3 v4

C1 C2 C3 C4

(B1, B2)

(A1, A2) (0,0) (0,0)

HW
accelerator

Application model

A ∈ [A1, A2] B ∈ [B1, B2]



(0,0)

(0,0)(1,3)
3

5 6

786
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Model and Analysis
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Thus, the application is modeled as a directed acyclic graph (DAG)
where each node has a WCET and each edge has a (min, max) delay
range:

Reference paper
F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-Induced Tasks: 
Model, Analysis, and Applications”, Proc. of the IEEE RTAS 2021.

In addition, each node can be manually allocated to a different core
or the best allocation is automatically found by optimization.

Core 1

Core 2



From code to analysis
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Program code Code structure DAG model Timing analysis

DAG and analysis can directly be derived from the application code
(e.g., OpenMP parallel code):

Reference paper
R. Vargas, E.Quinones, A. Marongiu, “OpenMP and Timing Predictability:
A Possible Union?”, Proc, of DATE 2015.
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Tasks

Operating System
(e.g,. Linux, QNX)

Data Distribution Service

Higher-level framework and application

Sensor acq. 
publisher

Set rate
subscriber

Sensor data
topic

Sampling rate
topic

Cyber-RT

Hypervisor

1 GHz 100 
MHz FPGAGPU

Multicore Heterogeneous Platform

100 
MHz

Topics

Often, applications needs to deal
with multiple levels of scheduling:

DDS-enabled RT systems

1 GHz

1 GHz 1 GHz

 Deep learning frameworks 
(TensorFlow, Pythorch)
 Communication middleware 

(ROS 2, DDS)
 Operating System
 Hypervisor

Such scheduling levels have
substantial effects on the timing
behavior of the final application.
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RETIS Lab developed
 a compositional model for DDS-enabled RT systems
 a specific instance for FastDDS
 a fine-grained response-time analysis for FastDDS messages

Main benefit: 
validate the timing 

requirements of 
complex DDS-based 

systems

Reference paper
G. Sciangula, D. Casini, A. Biondi, C. Scordino, M. Di Natale, "Bounding the Data-Delivery
Latency of DDS Messages in Real-Time Applications", Proc. of the Euromicro Conference on
Real-time Systems (ECRTS 2023), Vienna, Austria, July 11-14, 2023.

End-to-end latency analysis
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RETIS Lab developed
 Analysis-driven optimization for automatic design-space 

exploration of FastDDS-based RT systems.
 Case study evaluation based on Autoware Reference System.

Main benefit: 
helping designers 

in configuring
DDS-enabled

real-time systems

Reference paper
G. Sciangula, D. Casini, A. Biondi, C. Scordino, "End-to-End Latency Optimization of Thread
Chains Under the DDS Publish/Subscribe Middleware", Proc. of the Design, Automation, and
Test in Europe Conference (DATE 2024), Valencia, Spain, March 25-27, 2024.

Analysis-based 
optimization algorithm

OUTPUT
System configuration found

Optimized Solution

INPUT
System model

Analysis-Driven Optimization

22

Optimization of DDS RT systems





DNN acceleration
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To be used in real time, the inference of deep neural networks (DNN)
requires hardware acceleration. This is usually done by

Programmable logic (FPGA)

General purpose GPUs (GPGPUs)

Both solutions have pro & cons
both requires DNN optimization



GPU acceleration
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GPGPUs are the most used to
accelerated DNNs, because
of two main advantages:

Response time can be reduced
by two orders of magnitude;

Development is supported by standard frameworks.

On the other hand, there are serious disadvantages:

Concurrent tasks are executed in non-preemptive fashion;

Significant power consumption, weight, and encumbrance.

This prevents their usage in 
small embedded systems:



GPU + TensorRT
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τ1

τ2

τ3

GPU

priority

Since the execution of GPU requests is non‐preemptive,
high‐priority requests cannot preempt lower‐priority ones:

deadline missAcceleration request

Note that GPU requests may not be served by FCFS due to internal
memory constraints.



GPU + TensorRT
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To solve this problem, an external Resource Manager must be
implemented to properly schedule the acceleration requests coming
from the application tasks:

GPU
τ1 τ2

τ3

Resource Manager

Acceleration 
requests
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FPGA acceleration
On the other end, FPGAs have the
following advantages:

They exhibit a highly predictable
behavior in terms of execution times.

They consume much less power
with respect to GPUs.

Commercial boards have lower weight, encumbrance, & cost.

Hence, they are ideal for battery-operated systems, as space robots,
satellites, and UAVs. But…

No FPU is available, unless explicitly programmed by the user 
(but consuming a fraction of the available fabric).

Difficult programming (efficient coding requires a deep 
knowledge of low-level architecture details).
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There exist solutions to address the 
weakness of both approaches.

Deploy the 
full DNN on 
the FPGA

Accelerate DNN 
operations by a 
coprocessor (DPU)

Faster,
Less flexible,
DDN may not fit

Slower,
More flexible

FPGA acceleration
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The FRED framework
Dynamic partial reconfiguration (DPR) allows reprogramming a
portion of the FPGA while the rest is still running:

A1

A2

A3

A1

A2 A3

A4 A1

FPGA

A4

A4 A1

A1
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A1
A2

A4
A5
A6

A3

Virtual FPGA

Physical FPGA

Timesharing is possible if HW accelerators do not run continuously,
but execute periodically with Ti > Ci (which is normally the case).

The virtual FPGA are is much
larger than the physical one.

FPGA virtualization
RETIS Lab developed a programming framework (FRED) that exploits
dynamic partial reconfiguration (DPR) to virtualize the FPGA area:



Task model

A1

SW task

HW task

Bitstream for 
the FPGA

Area required 
on the FPGA

request for HW acceleration
<request>

shared 
memory

<put data>

Input data

<get data>

results

Processor System (PS)

Core4

Core2

Core3

Core1
DRAM

Slot 1 Slot 2

Slot 3

32Programmable Logic (PL)

FRED applications consist of SW-tasks (running on the PS) and HW-tasks
(running on the PL):



Task model

After issuing a request for acceleration, a SW task is suspended
until the results are produced.

SW task

A1HW task R

suspension

Reconfiguration time
33

A1

SW task

HW task

Bitstream for 
the FPGA

Area required 
on the FPGA

request for HW acceleration
<request>

shared 
memory

<put data>

Input data

<get data>

results



Dynamic FPGA allocation

RP

FPGA area

SW tasks

A1
A2 A3

A5

A6

A4

A7

τ1 τ2 τ3 τ4

For example

Slot 1 Slot 2

Slot 3configuration 
request of 
A4 in slot1

34

Reconfiguration 
Port

t = t2 τ4 triggers the execution of A4 on slot 1 (busy);
t = t3 A1 finishes, so A4 can be programmed on slot 1;
t = t4 A4 can now run on slot 1;

A1 A2

A3

t = t1 A1, A2, A3 are executing on the FPGA;

A4



τ1

τ2

τ3

τ4

Example of schedule

FPGA

A2
A1

slot3
slot2
slot1

A3

A4

35

A5

waiting for HW task completion
waiting for busy recon. port
waiting for busy slot

SW-task execution
HW-task execution
reconfig. time



Increased schedulability
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FRED can make a system feasible, when it is not under
a fully static approach or a full SW implementation.

A B

E

C

F

D1. Execute all the 
tasks on the CPUs 
(leave FPGA empty)

FPGA Processors

2. Statically allocate 
some task on FPGA 
and execute the 
others on the CPUs

C

F

DSlot 1   Slot 2

Slot 3

Slot 1   Slot 2

Slot 3

3. Use FRED to 
share the FPGA 
with all the tasks

Slot 1   Slot 2

Slot 3

A,B C,D

E,F

A B

E



The FRED framework
FRED includes a set of tools:

Virtual FGPA Bus Synthethizer:
a tool that optimizes the 
Interconnect hierarchy to 
match timing constraints

Bus Manager:
achieves predictable arbitration, 

protection from timing attacks, and 
bandwidth isolation

Linux runtime:
it manages HW acceleration 

requests with predictable 
response times

FRED Analyzer:
a tool to verify timing 

constraints, accounting 
different sources of delays

Floorplanner:
a tool that optimizes the 

allocation of HW accelerators on 
the FPGA fabric

URL: fred.santannapisa.it
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FRED Paper
A. Biondi et al., "A Framework for Supporting Real-Time Applications on Dynamic 
Reconfigurable FPGAs", Proc. of the IEEE Real-Time Systems Symposium, 2016. 
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Xilinx DPU
A more flexible way to accelerate AI models is by a proper softcore
coprocessor, as the Xilinx deep learning processing unit (DPU):

DPU1

Xilinx Runtime (XRT)

DPU2 DPU3 DPU4

FPGA

CPU1 CPU2

CPU3 CPU4

PS PL

Hardware

Drivers

Vitis AI AI Quantized & AI Compiler

TensorFlow / PyTorchAI Framework

AI application



Pruning

Quantization

Distillation

Model compression
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Model 
compression

These methods can be combined together.

Better 
Architecture

It acts in the architecture 
to reduce the number of 
operations & parameters.

It consists of training a 
smaller model to perform 
as the original one.

It reduces the number of 
bits used for representing 
the parameters.

It reduces the number of 
parameters by setting 
some weights to zero.



Model distillation

40

Paper
C. Bucila, R. Caruana, and A. Niculescu-Mizil, "Model compression", Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining (KDD’06), New York, NY, USA, 2006.

Idea: use a pre-trained big model (teacher) to label a large set of
unlabeled data and train a small DNN (student) on these data.

L

Labeling

Complex 
DNN

(Teacher)

label

U

Small 
DNN 

(Student)

L

Loss

Distilling



Distillation
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Geoffrey Hinton further elaborated this idea, noting that a human teacher
can transfer a specific theory to students, each having a different brain
structure and different synaptic weights.

Paper
G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network",
Proc. of NIPS 2014.

knowledge:input-output mapping

He also noted that the probabilities of incorrect answers tell us a lot about
how the big model tends to generalize.

8 is the second highest score

0 is the second highest score

0   1   2   3   4   5   6   7   8   9
7 is the second highest score



Soft labels
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T = 1

class index

1
yi

class index

T > 1
1

yi

Increasing T, the distribution tends to reduce the score differences and thus
better emphasizes the lowest scores:

In other words, a soft distribution is more informative than a
perfect ground-truth target, and both are needed in learning.

yi =
exp(zi / T)

exp(zj / T)∑j=1
n

Hence, he modified the softmax function by introducing a new
parameter T (called temperature) that reduces the differences
between class scores:



Training
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Distillation can be performed as follows:

Complex 
DNN

(Teacher)
Small 
DNN 

(Student)

x

SoftmaxT > 1

Distillation 
Loss

Soft 
label

Softmax

y

Softmax

Soft 
prediction

T > 1 T = 1

Student 
Loss

Hard label

Hard 
prediction

Total Loss

PS PSPT

Fixed 
weights



44

DNN splitting
In complex CPS using multiple DNNs, a network can be split into
several blocks to enable preemption and improve response times of
higher-priority DNNs:

Choosing the best split points is an optimization process.

Block 1 Block 2 Block 3 Block 4
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Optimized real-time tracking
Real-time object tracking, requires tracking multiple objects even in
the presence of occlusions:

p3p1 p2
p3

p3
p1

p2

Association algorithm
to best match predictions 

with detections (using both 
IoU and appearance)

To do that, neural trackers exploit three main methods:

Object detection
CNN (e.g., YOLO)

Kalman filter to predict
motion during occlusions
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Optimized real-time tracking
The association algorithm has to find the best match between
detections and predictions:

1

2

3

The association is formulated as an
optimization problem on a bipartite graph
where each detection-prediction pair is
associated with a similarity score (e.g.,
cosine similarity, or IoU), and we have to
maximize the total cost:

max ∑ cij xij∑i = 1
n

j = 1
n

xij = 1  ∀i = 1, … n∑ j = 1
n

xij = 1  ∀j = 1, … n∑ i = 1
n

detections predictions
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Optimized real-time tracking
We optimized the entire tracking pipeline by:
 accelerating CNNs on multiple DPUs on FPGA
 accelerating image pre- and post-processing on FPGA
 parallelizing the matching algorithm on multiple cores

Kalman
predictions

Object 
Detector

Appearance 
network

Appearance
Matching

IoU-based 
matching

Tracklet manag.
 Kalman update
 Appearance update
 Tracklet creation
 Tracklet deletion

Matched objects

Unmatched objects

Low score detections

Reference paper
E. Cittadini, M. Marinoni, A. Biondi, G. Cicero, G. Buttazzo, "Supporting AI-Powered
Real-Time Cyber-Physical Systems on Heterogeneous Platforms via Hypervisor
Technology", Real-Time Systems, 59(4):609-635, 2023.

Xilinx  
Ultrascale++

ZCU104
and Kria
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Optimized real-time tracking
The system was implemented to track persons by a quadrotor, using
two execution domains isolated by the CLARE hypervisor:

CLARE Hypervisor

Xilinx
Kria

Linux FreeRTOS

AI-powered 
software 

Safety-critical 
software

accelerator Ttrusted EE

Tracking is carried out at

30 fps with optimization

3 fps without optimization
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Neural Network

Training set

Can we trust a DNN on inputs that are quite 
different from those shown in the training set?

Can we trust a NN?

Speed 
limit 50
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Training set

?

Can we trust a DNN on inputs that are quite 
different from those shown in the training set?

Can we trust a NN?

Neural Network



Out-of-distribution inputs
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Can a DNN recognize such images?
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Accidents due to AI

23 march 2018 
23 March 2018: A Tesla X missed to recognize lanes and crashed
into a concrete lane divider at 70 miles per hour.
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Accidents due to AI
June 1, 2020: A model 3 Tesla missed to recognize an overturned
truck on a highway in Taiwan and crashed into it at 68 mph.
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Neural networks are prone to adversarial attacks, i.e.,
malicious inputs containing imperceptible perturbations that can
make a neural network to make wrong predictions.

Genuine input 0        0.5       1

Neural
Network

0        0.5       1

Neural
Network=+

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

imperceptible
perturbation

Adversarial input

Cyber-attacks to DNNs



Real-world attacks
Classic adversarial inputs must have access to the AI system (DNN
input, memory, or camera) to modify the image.

PARKING (92%) BRAD PITT (93%) RIFLE (91%)

Real-world Adversarial attacks are directly applied to objects in the
physical world, without accessing the AI system.

person

NO DETECTION

58
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Coverage analysis

x

Trusted 
dataset

online

off-line
Prediction 

score

Signature of layer L for 
class c derived off-line 

from the trusted data set.

∀L

Network
signature

RETIS Lab proposed an efficient method to analyze the internal
activations of a neural network to detect both anomalous and
adversarial inputs through a confidence score:

Paper
G. Rossolini, A. Biondi, G. Buttazzo, "Increasing the Confidence of Deep Neural Networks 
by Coverage Analysis",  IEEE Trans. on Software Engineering, 49(2):802-815, 2023.
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Coverage analysis

x

Trusted 
dataset

online

off-line
Prediction 

score

Signature of layer L for 
class c derived off-line 

from the trusted data set.

Activation map of 
layer L derived online 

from a new input x:

Comparison 
metrics

Confidence 
score

∀L

∀L

Network
signature

For a new input x, the current activation state is compared with the
stored signature corresponding to the predicted class. The higher
the matching, the higher the confidence:

Predicted class
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Input transformations

Blurring

CNN
cat

dog
bird
fish

0       0.5      1

CNN
cat

dog
bird
fish

0       0.5      1

Adversarial 
image

Another approach exploits the fact that standard AEs loose their
effect when they are subject to certain input transformations
(e.g., blurring, translation, rotations):
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Input transformations

Blurring

For genuine images, the same transformations do not cause a strong
degradation in the prediction:

CNN
cat

dog
bird
fish

0       0.5      1

CNN
cat

dog
bird
fish

0       0.5      1

Genuine 
image
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Input transformations

Blurring

CNN

CNN

KL divergence > τ

AE

not AE

p

q ≈ p

Genuine 
image

Y

N

RETIS Lab proposed a detection method that compares the two
distributions using a KL-divergence: a sample is considered to be AE
if the two predictions are “distant” from each other:

Paper
F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input
Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and
Learning Systems, 34(3):1329-1341, March 2023.
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Input transformations

Blurring

CNN

CNN

KL divergence > τ

AE

not AE

p

q ≠ p

Paper
F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input
Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and
Learning Systems, 34(3):1329-1341, March 2023.

Y

N

Adversarial 
image

RETIS Lab proposed a detection method that compares the two
distributions using a KL-divergence: a sample is considered to be AE
if the two predictions are “distant” from each other:
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Real-world adv. attacks
An extensive experimental study has been performed to evaluate the
robustness of segmentation networks against real-world attacks,
based on patches and physical posters:

on billboards behind trucks
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Real-world adv. attacks
Experiments on the CARLA simulator highlighted that some semantic
segmentations networks are more sensitive to adversarial attacks:

Paper
F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo, "Evaluating the Robustness of
Semantic Segmentation for Autonomous Driving against Real-World Adversarial Patch
Attacks", Proc. of WACV 2022.

Input 
image

Segmented
image

No AttackRegular 
Poster

Adversarial Poster
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Normal Poster
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Adversarial Poster
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Z-mask defense
A new defense method to identify and mask the adversarial region:

Paper
G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-
realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th
AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.
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Z-mask in action
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Paper
G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-
realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th
AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

Z-mask defense
Z-mask applied on CARLA to neutralize an adversarial poster:

No attack Adversarial Poster Defense Mask

Input
image

Seg.
image
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So what about AI in CPS?
We have seen that AI models have intrinsic weaknesses in terms of
 timing predictability, safety, security, and certifiability.

We cannot prevent AI algorithms from being attacked 
or producing wrong results, but we can take a number 
of countermeasures to prevent them from harming.

Does it mean that we cannot use AI in complex CPS?

Some solutions already exist, but more research is needed to

 Increase predictability when accelerating AI models
 Reduce response times by compression, distillation, & optimization
 Increase safety by detecting faults and anomalous inputs
 Increase security by proper defense mechanisms
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Safe architecture

 Achieve fault-tolerance
by replication + voting

DNN1

DNN2

DNN3

V
O
T
E
R

 Detect anomalous inputs
and adversarial attacks

 Switch to a back-up controller
in anomalous conditions

Look ahead 
simulation

Safety 
monitor

Physical 
systemBackup 

controller

Unsafe input 
detector

 Detect dangerous outputs 
by safety monitoring

Act on the architecture to implement fault detection & exclusion:
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Overall architecture

VOTER

Safety 
Monitor

Integrated 
confidence

Backup 
controller

DNN1

DNN2

DNN3

Sensory 
input

Other
AI functions

Safe 
output

High-performance domain Safety-critical domain

Linux Erika Enterprise

CLARE Hypervisor

 Ensure security and isolation by a hypervisor.
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