

Institut de Recherche en Informatique et Systèmes Aléatoires

Machine Learning for Timing Estimation: the good, the bad and the ugly – short version

Isabelle Puaut RT-ML workshop, 2024

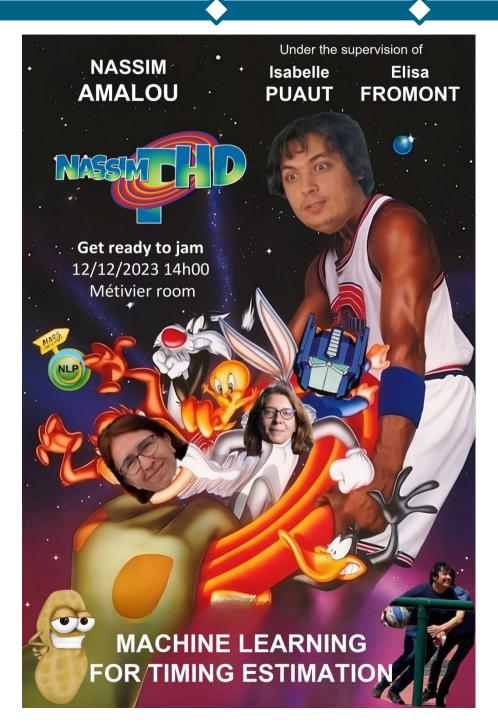
 Motivations for using ML in WCET analysis

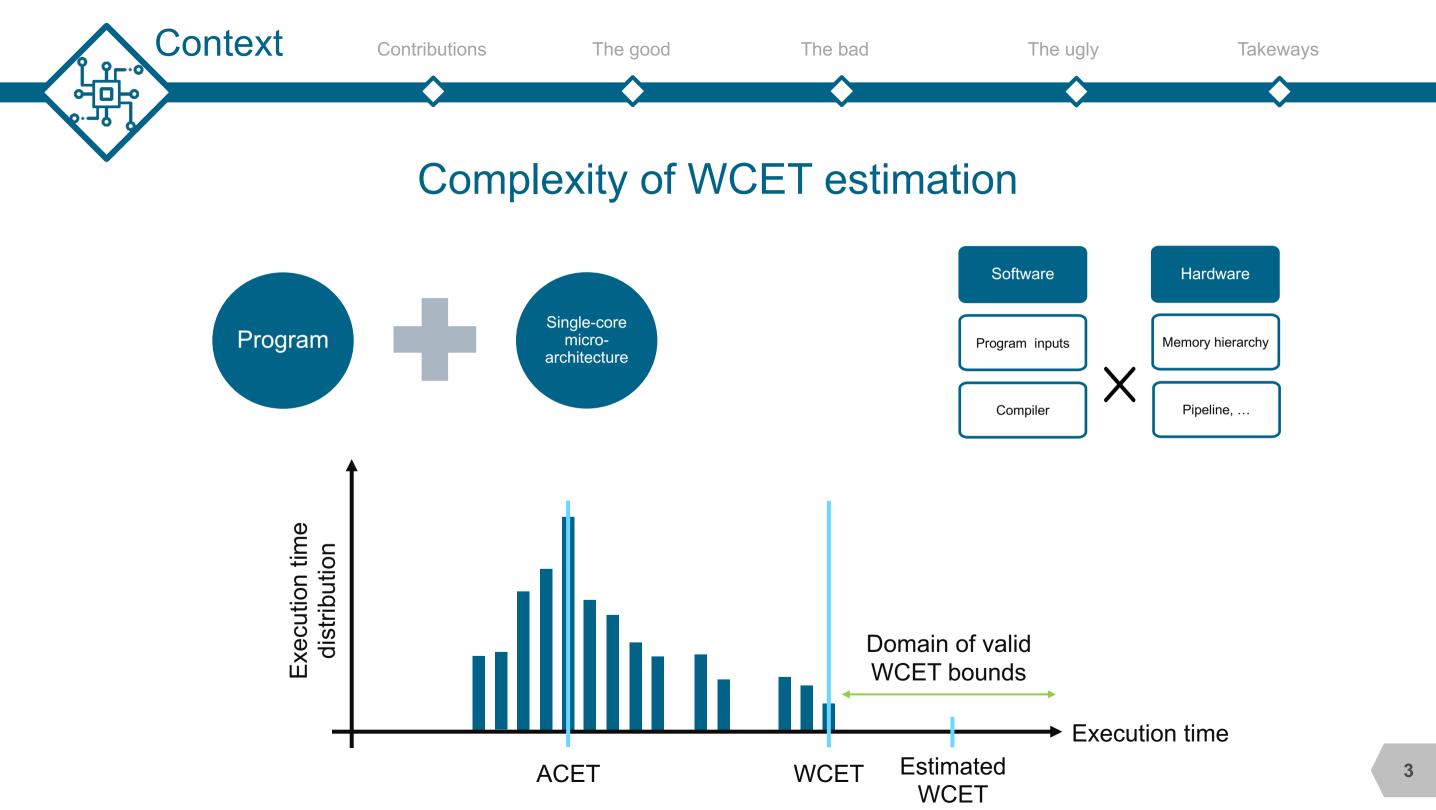
- Our contributions (in a nutshell)
- The good

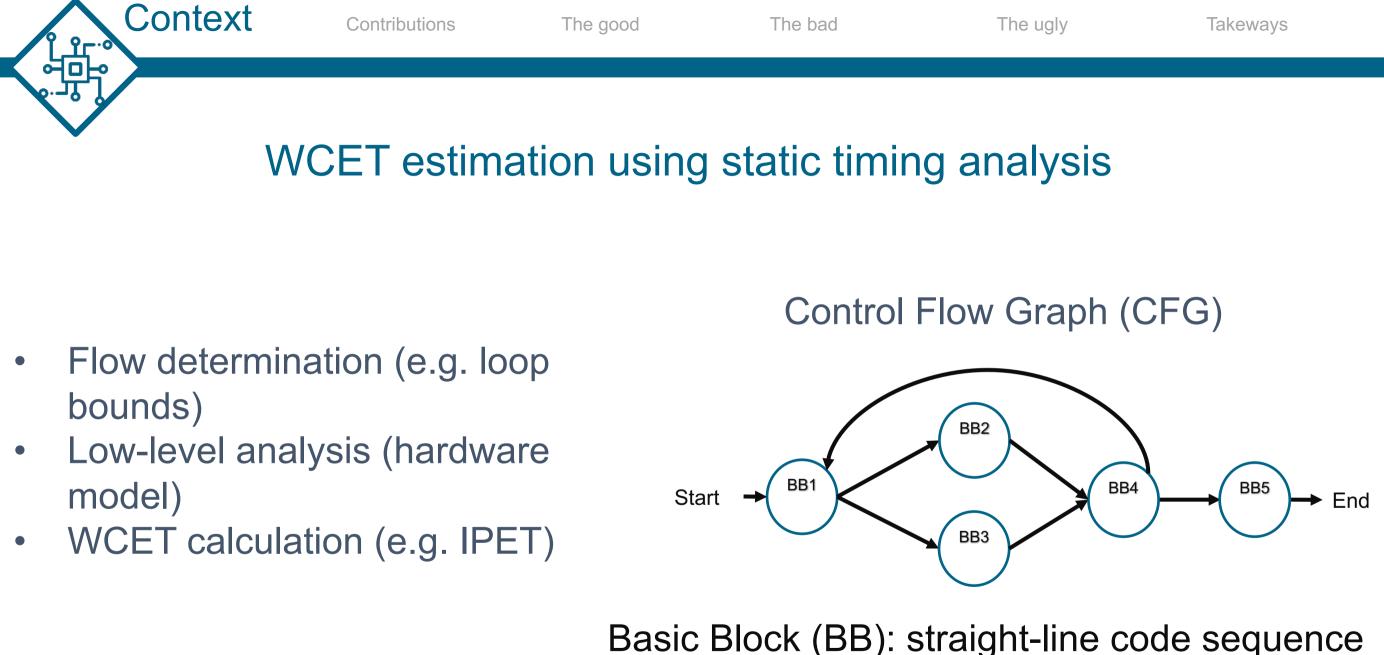
Outline

어마

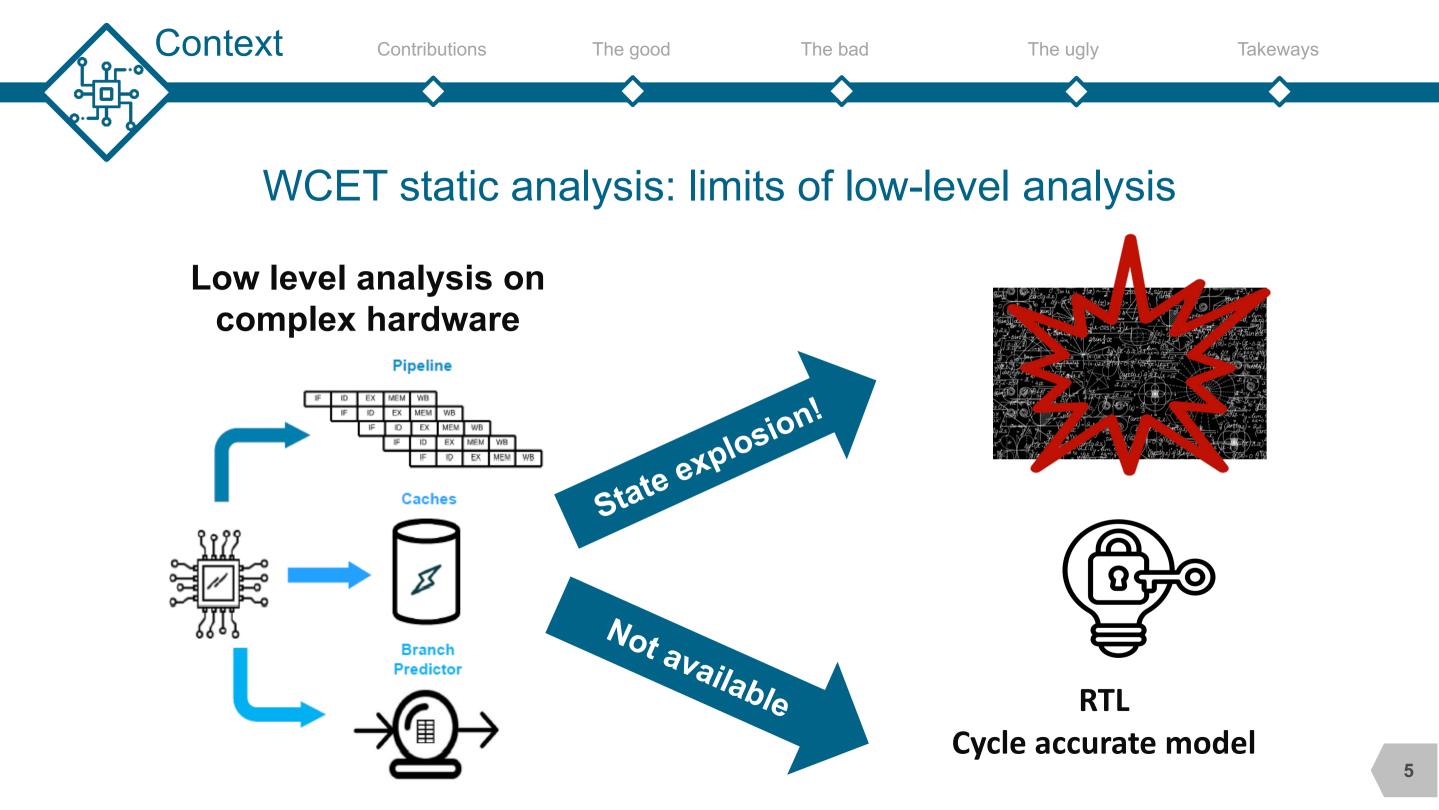
- The bad
- The ugly
- Takeways

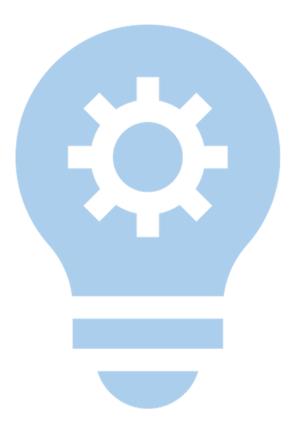






with no branch except last instruction



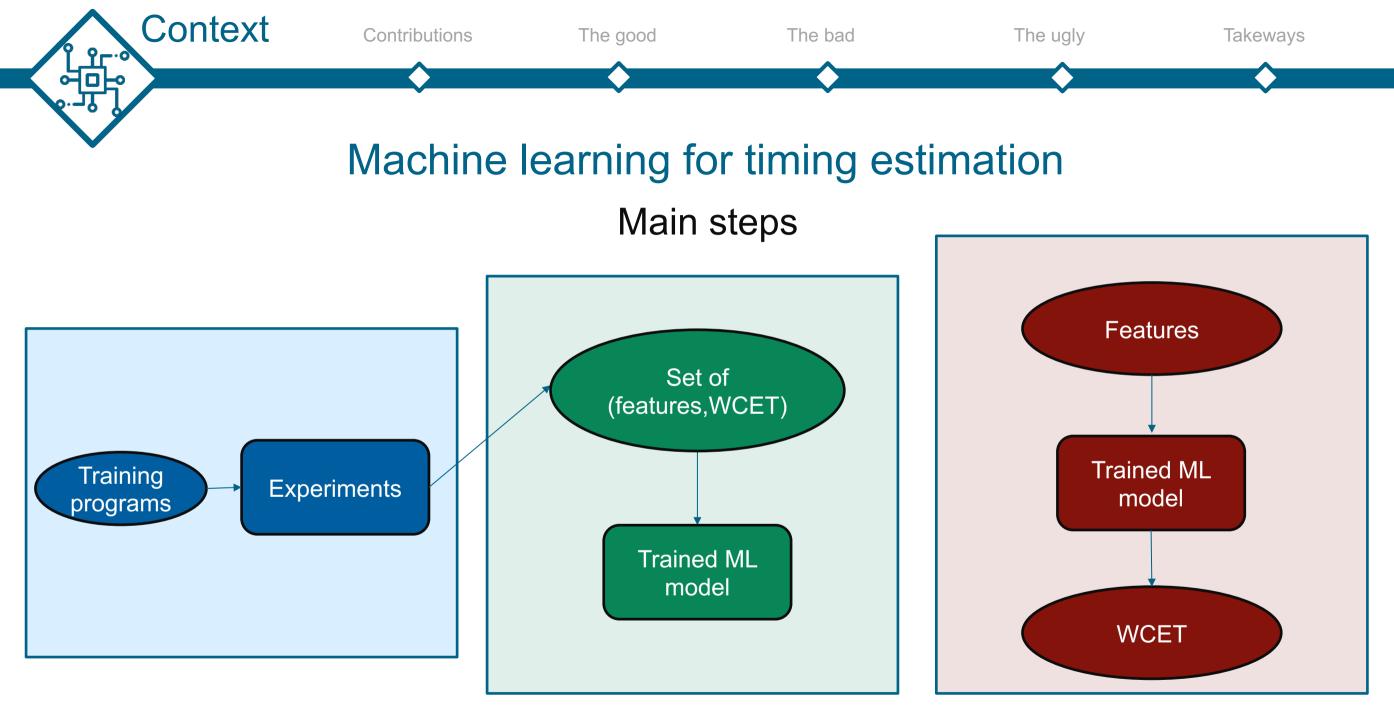


Contributions

Machine learning for timing estimation

Replace the low-level analysis by a machine learning (ML) model

Supervised learning



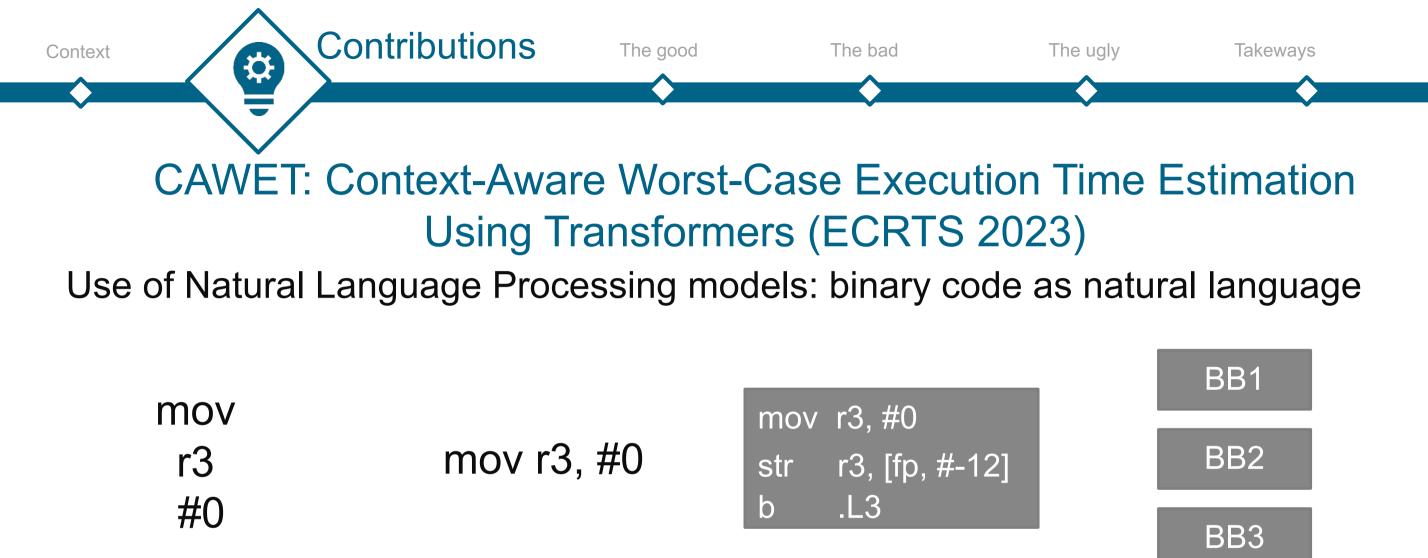
1. Collecting training data

2. Training the model

Context

Spectrum of contributions

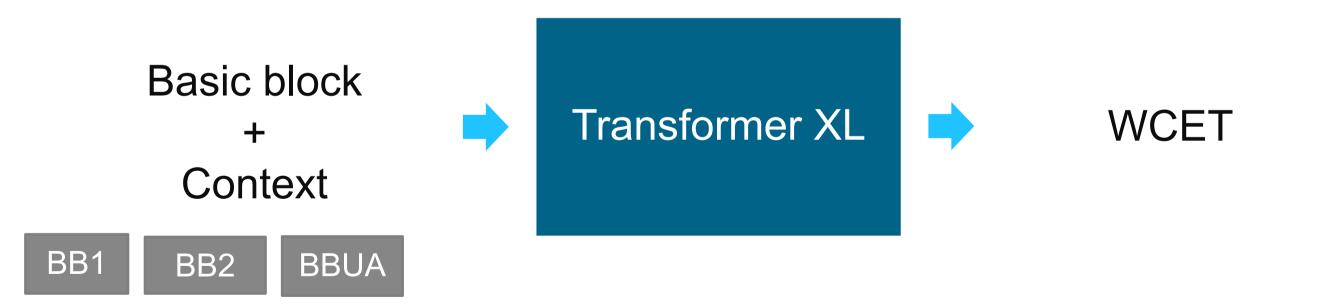
- Collection of timing data (at basic block level)
 - Synthetic programs vs real code
 - Metric: average-case performance and worst-case timing
 - Features: proportions of instructions, sequences of instructions (BB "in context")
- Learning
 - Basic techniques: Linear Regression, Random Forests, Gradient Boosting, Neural Networks (scikit-learn)
 - Natural Language Processing (NLP) Techniques: LSTM, Transformers-XL
- Large panel of architectures:
 - Very simple ones: TI MSP430, Cortex M4
 - More complex ones: Cortex M7, Cortex A53



operation/operandsinstructionbasic blockbasic block sequence====letterswordsentenceparagraph

CAWET: use of Transformers XL

Deep learning model for processing (very) long sequential data



Context

Contributions

Benefits of machine learning for timing estimation (by construction)

No need for details of the processor microarchitecture	Once deployed, no measurements needed	Easy porting to a new architecture	Tokenization for free
--	---	--	--------------------------

Only need to measure (in the worst-case) Fast predictions

Only re-train Tokenizers exist

Context

Good precision with simple targets

The bad

The ugly

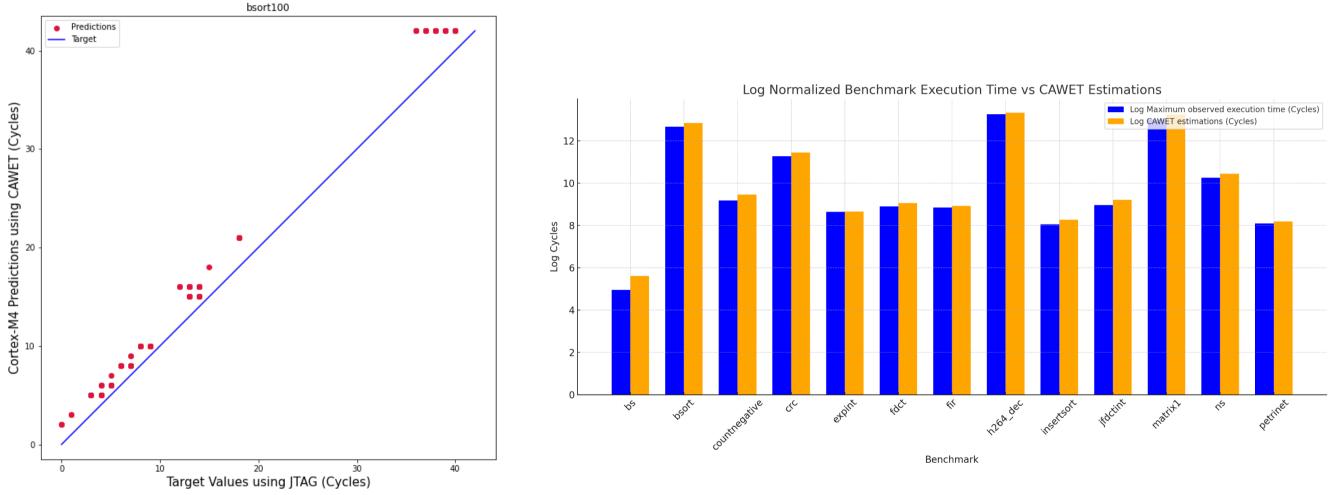
Takeways

ML algorithm	MAPE (MSP430)
Linear regression	56.7%
Bayesian Ridge	62.1%
Gradient Boosting	42.1%
Random Forest	43.4%
Multilayer perceptron	8.2%

Low-power TI MSP430 micro-controller (2-stage pipeline, tiny icache, no dcache), basic ML algorithms

ML algorithm	MAPE (Cortex M4)
Multilayer perceptron	43.8%
LSTM	36.2%
CAWET (Transformer-XL)	23.8%

MAPE on Cortex M4 (in-order pipeline, 3-stages, no cache, jtag)



On Cortex M4 (BB level on left, program level at right)

The bad

Pessimism augments with more complex targets

ML algorithm	MAPE (Cortex M4)	MAPE (Cortex M7)
Multilayer perceptron	43.8%	132.7%
LSTM	36.2%	126.4%
CAWET (Transformer-XL)	23.8%	102.2%

Cortex M7 (in-order pipeline, 6-stages, L1 caches, jtag)

Hyper-parameter selection may get you nuts

Loss function	MSE				MAPE							
Learning rate	10	-4	10	-3	10	-2	10	-4	10	-3	10	-2
Optimizer	SGD	ADAM	SGD	ADAM	SGD	ADAM	SGD	ADAM	SGD	ADAM	SGD	ADAM
Default	163%	159%	182%	198%	170%	195%	152%	161%	210%	176%	182%	169%
Larger ML network size	210%	139%	156%	167%	321%	124%	110%	134%	152%	143%	126%	134%
Without float instructions	77%	69%	88%	65%	75%	98%	78%	65%	56%	55%	89%	60%
Learning on normalized time	19.2%	18.7%	19.5%	19.2%	17%	22.1%	15.2%	11.4%	14.4%	15.9%	17.3%	19,1%

ACET learning, LSTM, Cortex-M7, learning lasts several days

• Handcrafted features, Multi-Layer-Perceptron (MLP)

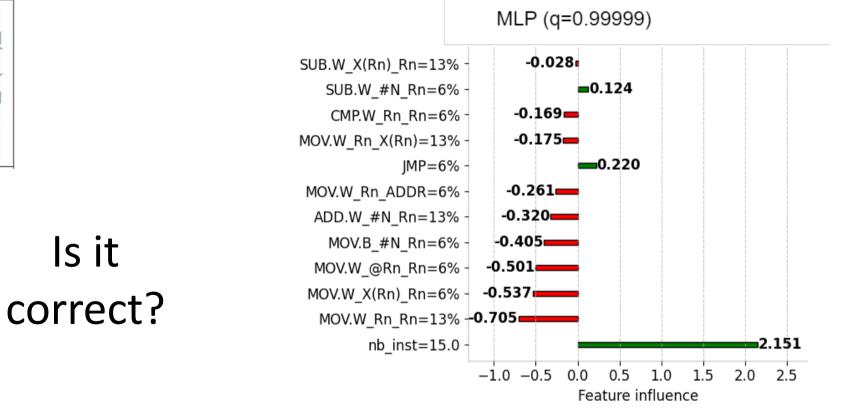
Instruction proportions	Adding access type
%MOV, %ADD, %SUB	%instruction_with_direct_access %instruction_with_indirect_access
Error = 311%	Error = 181%

 \sim

The good

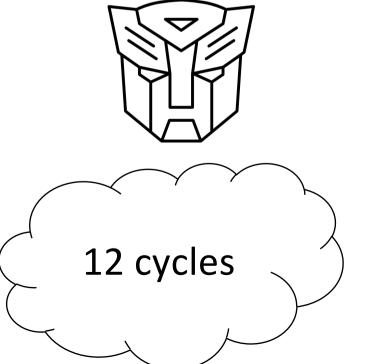
The bad

Models are hard to debug

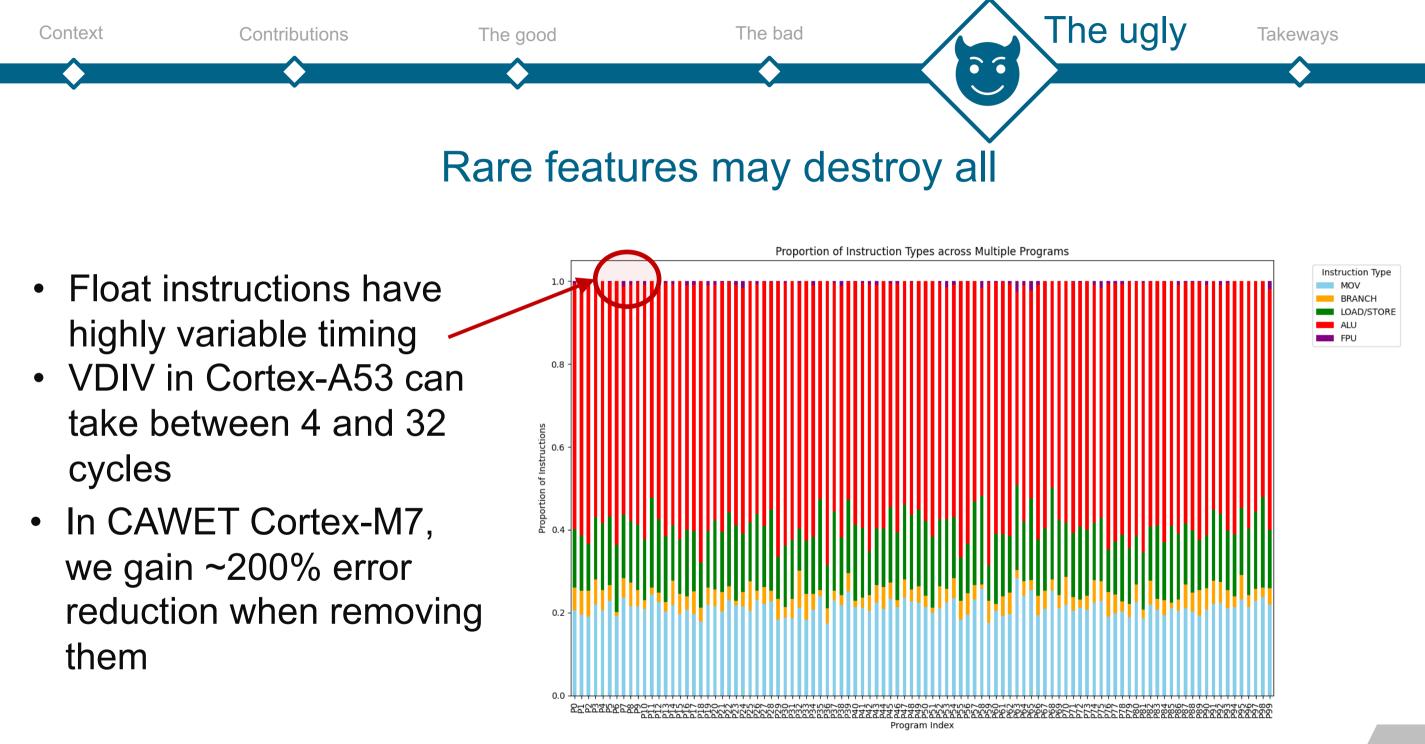


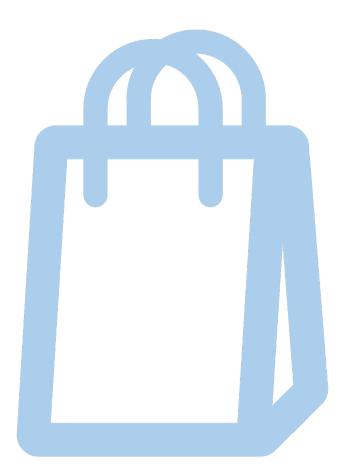
- Local Interpretable Model-agnostic Explanations (LIME) - see Wortex talk
- The most impacting feature is instruction count, really?

Instruction_Src_Dst	MOV.W_X(Rn)_Rn	SUB.W_#N_Rn
MOV.W_Rn_Rn	ADD.W_#N_Rn	SUB.W_Rn_ADDF
MOV.W_@Rn_Rn	CMP.W_Rn_Rn	JMP
MOV.B_#N_Rn	MOV.W_Rn_Rn	SUB.W_X(Rn)_Rn

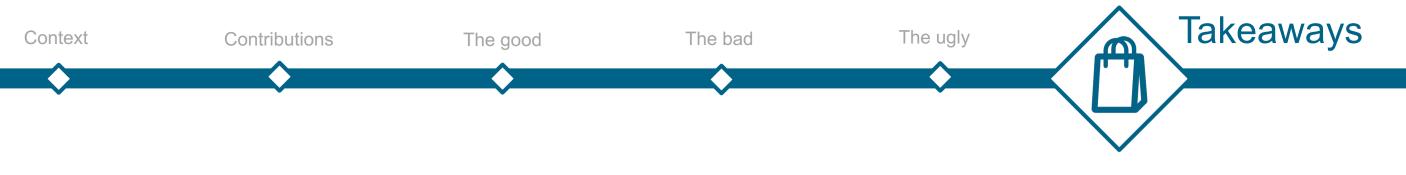


The ugly





Takeaways



Takeways: lessons learnt

- Feature selection is key to success
- Training data is crucial
- ML for timing estimation works pretty well, but
 - Many (too many) parameters to control: be calm, patient, and methodic
 - Requires domain expertise and ML expertise: cooperate with ML experts!
 - Techniques hard to debug: need for (more) explainability
 - No formal guarantee of safety/precision: certifiable ML

• Extension multi-cores

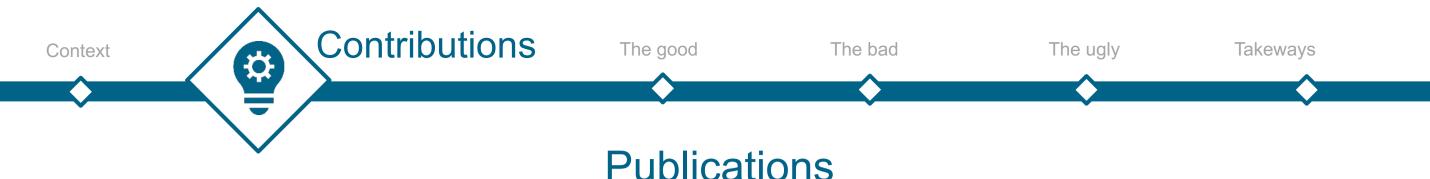
Postdoc position (University of Toulouse, and University of Rennes, France), project AlxIA (Artificial Intelligence for Interference Analysis)

For the bounty please contact:

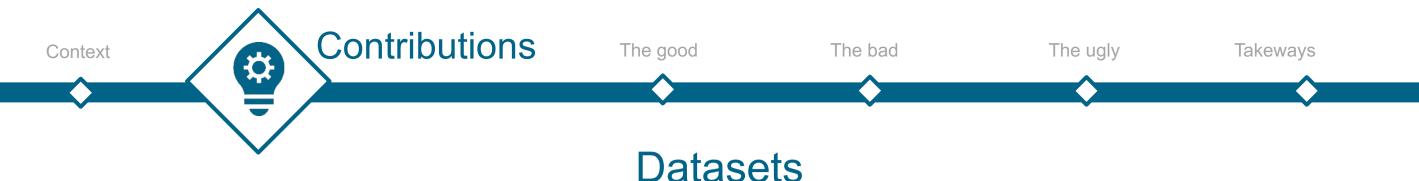
- Thomas CARLE : thomas.carle@irit.fr
- Isabelle PUAUT : puaut@irisa.fr
- More details needed? Join the WCET workshop for the long version!

Any question?

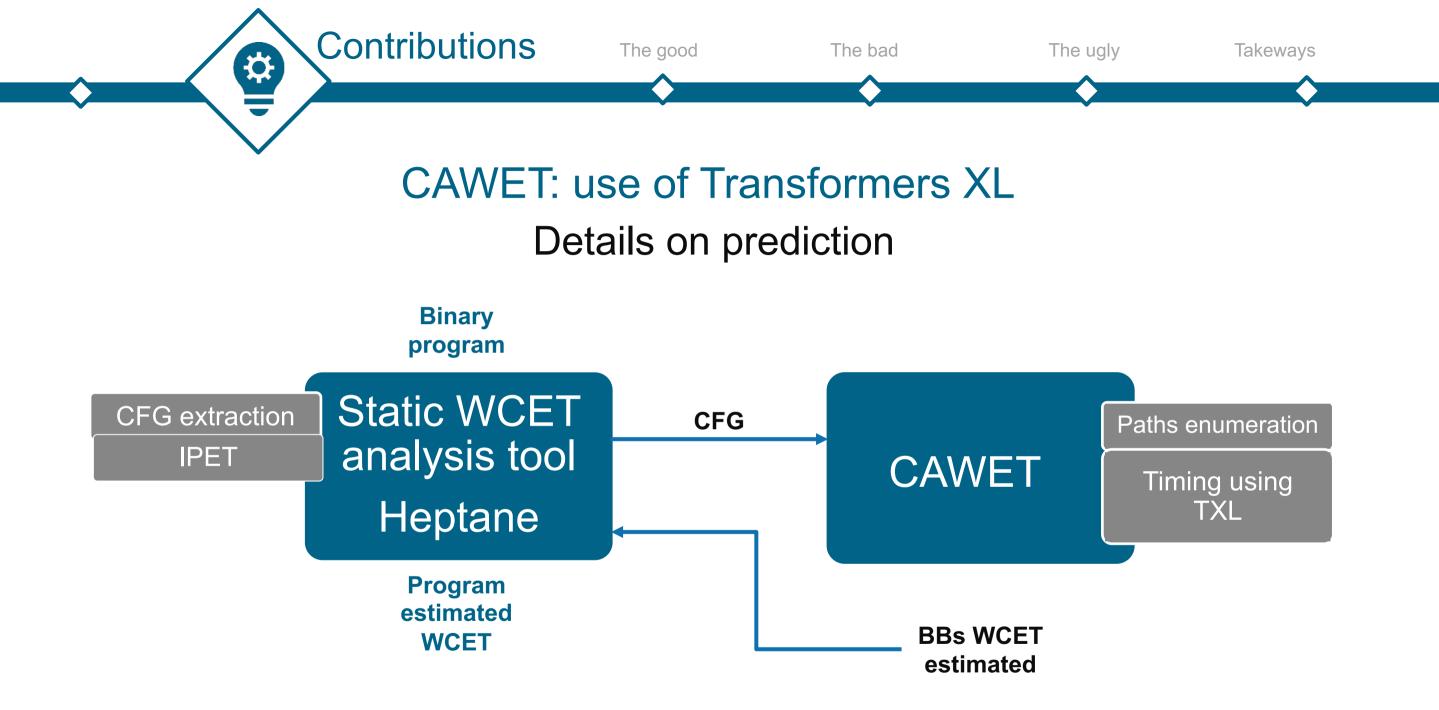
No question, really?



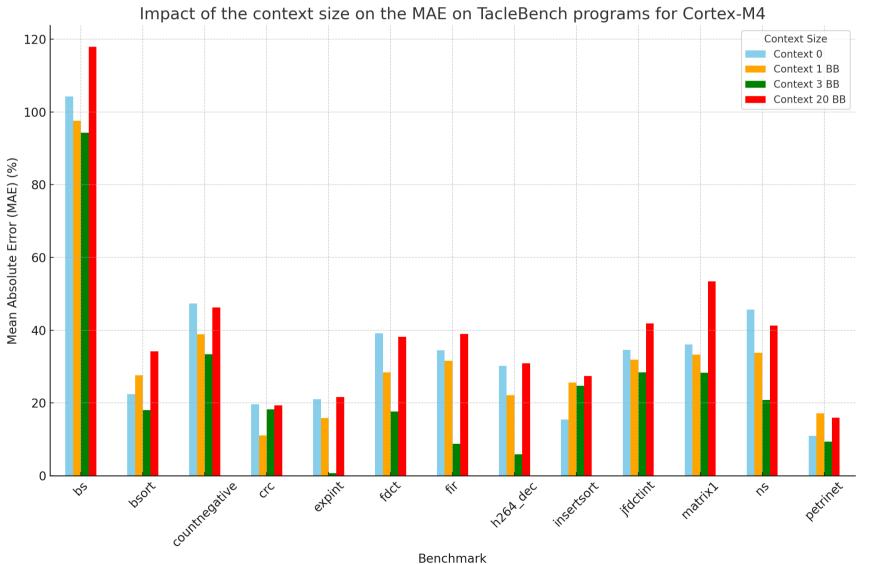
- A. N. Amalou, I. Puaut and G. Muller. WE-HML: Hybrid WCET Estimation using Machine Learning for Architectures With Caches. RTCSA 2021.
- A. N. Amalou, E. Fromont and I. Puaut. CATREEN: Context-Aware Code Timing Estimation with Stacked Recurrent Networks. ICTAI 2022.
- A. N. Amalou, E. Fromont and I. Puaut. CAWET: Context-Aware Worst-Case Execution Time Estimation Using Transformers." ECRTS 2023.
- A. N. Amalou, E. Fromont and I. Puaut. Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers.". CC, 2024.
- H. Reymond, A. N. Amalou and I. Puaut. WORTEX: Worst-Case Execution Time and Energy Estimation in Low-Power Microprocessors using Explainable ML. WCET 2024

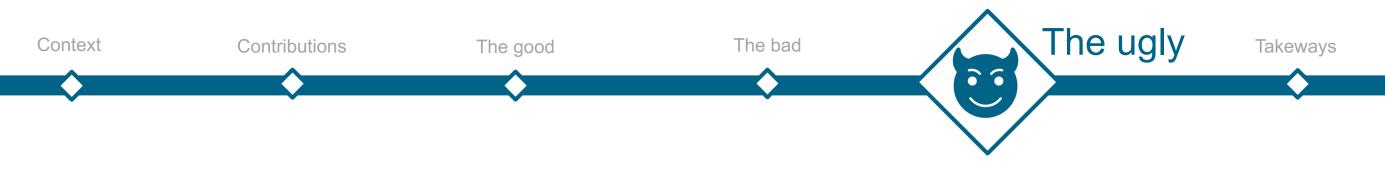


- A. N. Amalou, I. Puaut. A dataset of synthetically generated code blocks for the learning of WCET on Cortex A53 [Dataset]. Zenodo
- A. N. Amalou, E. Fromont and I. Puaut. Training dataset for transformers consisting of basic blocks and their execution times along with the execution context of these blocks, for various Cortex processors M7, M4, A53, and A72. [Dataset]. Zenodo.
- H. Reymond, H. Chabot, A. N. Amalou, I. Puaut, MSP430FR5969 Basic Block Worst-Case Energy Consumption (WCEC) and Worst-Case Execution Time (WCET) dataset. [Dataset]. Zenodo

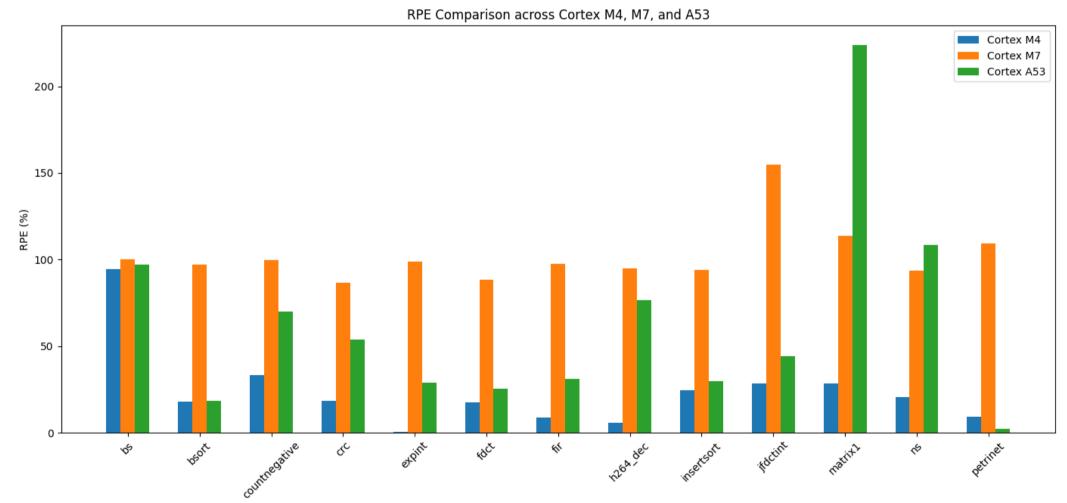


[22] Hardy, D., Rouxel, B., & Puaut, I. (2017). The heptane static worst-case execution time estimation tool. In 17th International Workshop on Worst-Case Execution Time Analysis



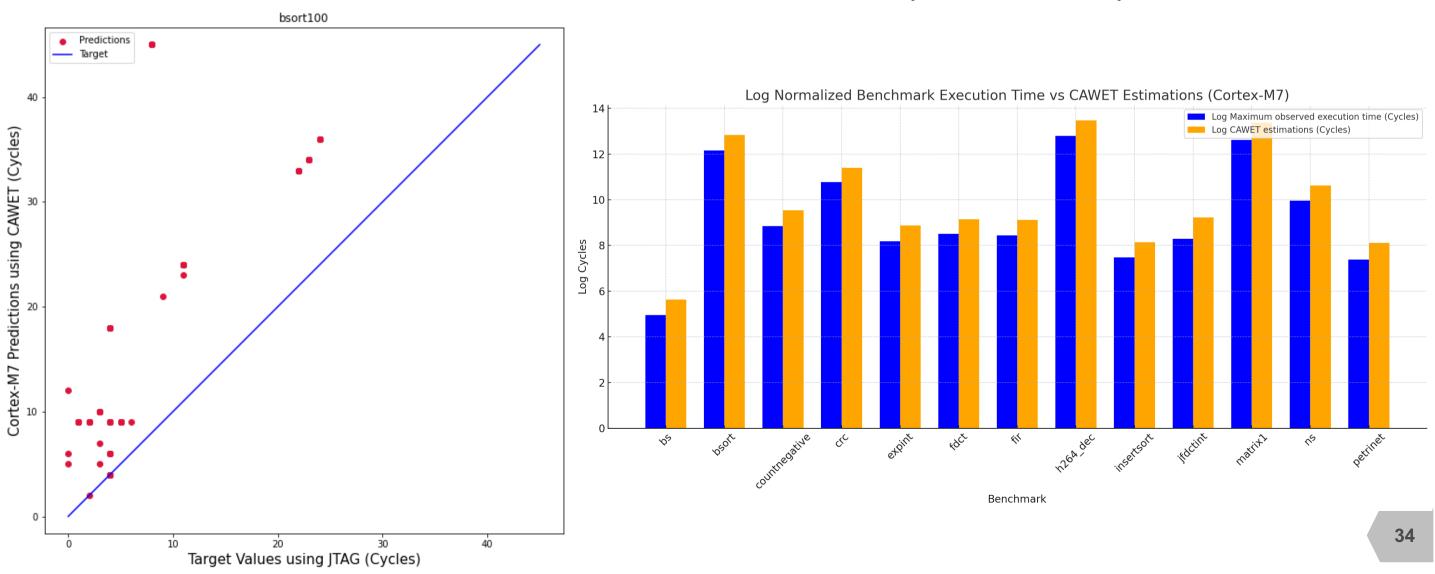


Pessimism and hardware complexity



Benchmark

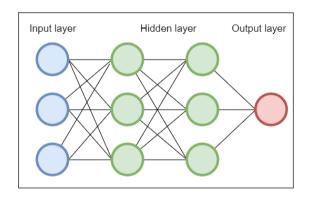
Never under-estimates WCETs (Cortex-M7)



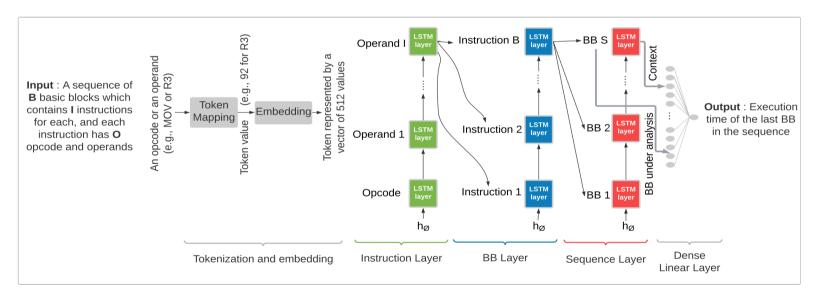
Contributions The good The bad The ugly Takeways

Experimental setup: competitors

Multilayer perceptron (MLP) based on the work of WE-HML [8]



LSTM based: ITHEMAL [20] and CATREEN [9]



40

[8] AMALOU A. N., PUAUT I. and MULLER G. "WE-HML: Hybrid WCET Estimation using Machine Learning for Architectures With Caches." The 27th International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE, 2021.

[20] MENDIS, C., et al. Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks. International Conference on Learning Representations, 2018.

[9] AMALOU A. N., FROMONT E., and PUAUT I. "CATREEN: Context-Aware Code Timing Estimation with Stacked Recurrent Networks." The 34th IEEE International Conference on Tools with Artificial Intelligence IEEE, 2022.

ARM targets used in experimental evaluation

The bad

The ugly

Takeways

The good

Contributions

;;;

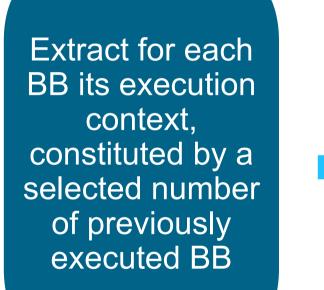
Core	Cortex-M4	Cortex-M7	Cortex-A53
Board	STM32F407	STM32H743	Raspberry Pi 3
Pipeline type & (#stage)	In-order (3)	In-order superscalar (6)	In-order superscalar (8)
Cache memory	N/A	L1	L2
Branch predictor	N/A	Yes	Yes
Measurement solution	JTAG	JTAG	Instrumentation
Microarchitecture complexity	Low	Medium	High

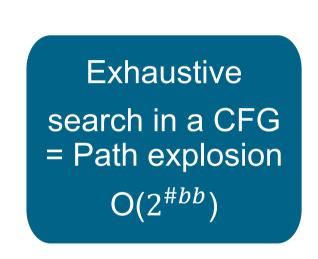
ORXESTRA (ACET) on M4, M7, A53. Evaluation metrics: (MAPE)

Target	Metric	MLP [1]	ITHEMAL [9]	CATREEN [2]	ORXESTRA [3]
Cortex-M4	MAPE	26.4%	14.4%	8.8%	7.8%
Cortex-M7	MAPE	22.7%	17.6%	13.3%	9.6%
Cortex-A53	MAPE	38.4%	10.1%	8.5%	5.2%

- ORXESTRA outperforms all models on all targets
- Context aware models are better than context-agnostic ones

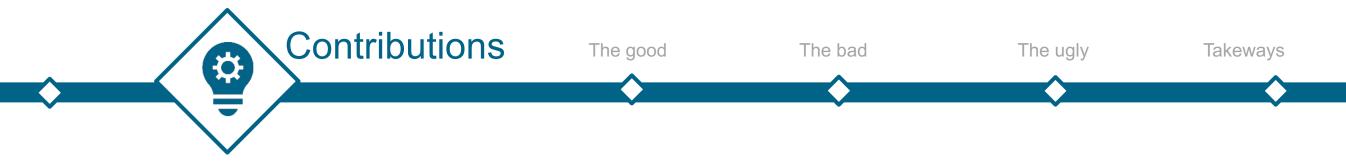
CAWET: Context extraction





Solution:

- Divide to conquer
- Local exploration in SESE regions
- (more details if asked for)



Comparison of WCET predictions for CAWET [12], WE-HML [8] and a neural network baseline on TacleBench programs

Predictor	Cortex-M4 MRPE	Cortex-M7 MRPE	Cortex-A53 MRPE
WE-HML [1] (Multilayer perceptron)	-	-	494.2%
Multilayer perceptron	43.8%	132.7%	85.7%
CAWET [3]	23.8%	102.2%	62.4%

• CAWET is less pessimistic than WE-HML

