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• Motivations for using ML
in WCET analysis

• Our contributions (in a nutshell)
• The good
• The bad
• The ugly
• Takeways 

Outline
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Context The good TakewaysThe bad The uglyContributions

Complexity of WCET estimation

ACET WCET Estimated 
WCET

Ex
ec

ut
io

n 
tim

e 
di

st
rib

ut
io

n

Execution time

Program
Single-core 

micro-
architecture

Software

Program  inputs

Compiler

Hardware

Memory hierarchy

Pipeline, …

Domain of valid 
WCET bounds



4

• Flow determination (e.g. loop
bounds)

• Low-level analysis (hardware 
model)

• WCET calculation (e.g. IPET)

Control Flow Graph (CFG)

Basic Block (BB): straight-line code sequence 
with no branch except last instruction

BB1Start End

BB2

BB3

BB4 BB5

WCET estimation using static timing analysis

Context The good TakewaysThe bad The uglyContributions
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Low level analysis on 
complex hardware

WCET static analysis: limits of low-level analysis

State explosion!

RTL
Cycle accurate model

Not available

Context The good TakewaysThe bad The uglyContributions



Contributions
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Machine learning (ML)

Supervised learning

Basic 
block WCET

Machine learning for timing estimation
Replace the low-level analysis by a machine learning (ML) model

Context The good TakewaysThe bad The uglyContributions
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Context The good TakewaysThe bad The uglyContributions

Machine learning for timing estimation
Main steps

1. Collecting training data 2. Training the model 3. Prediction

Training 
programs Experiments

Trained ML 
model

Features

WCET

Set of 
(features,WCET)

Trained ML 
model
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Spectrum of contributions

Contributions The good TakewaysThe bad The uglyContext

• Collection of timing data (at basic block level)
• Synthetic programs vs real code
• Metric: average-case performance and worst-case timing
• Features: proportions of instructions, sequences of instructions (BB “in context”)

• Learning
• Basic techniques: Linear Regression, Random Forests, Gradient Boosting, Neural

Networks (scikit-learn)
• Natural Language Processing (NLP) Techniques: LSTM, Transformers-XL

• Large panel of architectures:
• Very simple ones: TI MSP430, Cortex M4
• More complex ones: Cortex M7, Cortex A53
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basic block sequence
= 

paragraph

mov r3, #0

instruction 
= 

word

mov r3, #0
str r3, [fp, #-12]
b .L3

basic block 
= 

sentence

mov 
r3
#0

operation/operands 
= 

letters

BB1

BB2

BB3

CAWET: Context-Aware Worst-Case Execution Time Estimation 
Using Transformers (ECRTS 2023)

Contributions The good TakewaysThe bad The uglyContext

Use of Natural Language Processing models: binary code as natural language
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Phase (1): Pre-training

CAWET: use of Transformers XL
Deep learning model

for processing (very) long sequential data

Basic block
+

Context
Transformer XL WCET

[13] DAI Z., et al. Transformer-xl: Attentive language models beyond a fixed-length context 2019

Contributions The good TakewaysThe bad The uglyContext

BB1 BB2 BBUA



The good
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Benefits of machine learning for timing estimation 
(by construction)

Easy porting to 
a new 

architecture  

No need for details
of the processor 
microarchitecture

Once deployed, no 
measurements 

needed

The goodContributions TakewaysThe bad The uglyContext

Only need to measure
(in the worst-case)

Tokenization for 
free

Fast predictions Only re-train Tokenizers exist
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The goodContributions TakewaysThe bad The uglyContext

Good precision with simple targets

ML algorithm MAPE (MSP430)
Linear regression 56.7%
Bayesian Ridge 62.1%
Gradient Boosting 42.1%
Random Forest 43.4%
Multilayer perceptron 8.2%

Low-power TI MSP430 micro-controller (2-stage 
pipeline, tiny icache, no dcache), basic ML algorithms
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The goodContributions TakewaysThe bad The uglyContext

Still acceptable precision with a more complex target

MAPE on Cortex M4 (in-order pipeline, 3-stages, no cache, jtag)

ML algorithm MAPE 
(Cortex M4)

Multilayer perceptron 43.8%
LSTM 36.2%
CAWET (Transformer-XL) 23.8%
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The goodContributions TakewaysThe bad The uglyContext

Never under-estimates WCETs

On Cortex M4 (BB level on left, program level at right)



The bad
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Context

Pessimism augments with more complex targets

Cortex M7 (in-order pipeline, 6-stages, L1 caches, jtag)

The badContributions TakewaysThe good The ugly

ML algorithm MAPE 
(Cortex M4)

MAPE
(Cortex M7)

Multilayer perceptron 43.8% 132.7%
LSTM 36.2% 126.4%
CAWET (Transformer-XL) 23.8% 102.2%
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Hyper-parameter selection may get you nuts

The badContributions TakewaysThe good The uglyContext

Loss function MSE MAPE
Learning rate 𝟏𝟎!𝟒 𝟏𝟎!𝟑 𝟏𝟎!𝟐 𝟏𝟎!𝟒 𝟏𝟎!𝟑 𝟏𝟎!𝟐

Optimizer SGD ADAM SGD ADAM SGD ADAM SGD ADAM SGD ADAM SGD ADAM

Default 163% 159% 182% 198% 170% 195% 152% 161% 210% 176% 182% 169%

Larger ML 
network size

210% 139% 156% 167% 321% 124% 110% 134% 152% 143% 126% 134%

Without float
instructions

77% 69% 88% 65% 75% 98% 78% 65% 56% 55% 89% 60%

Learning on 
normalized time

19.2% 18.7% 19.5% 19.2% 17% 22.1% 15.2% 11.4% 14.4% 15.9% 17.3% 19,1%

ACET learning, LSTM, Cortex-M7, learning lasts several days
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• Handcrafted features, Multi-Layer-Perceptron (MLP)

Feature selection is tricky

The badContributions TakewaysThe good The uglyContext

Instruction proportions Adding access type
%MOV, %ADD, %SUB… %instruction_with_direct_access

%instruction_with_indirect_access…
Error = 311% Error = 181%
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Models are hard to debug

The badContributions TakewaysThe good The uglyContext

12 cycles

Is it
correct?

• Local Interpretable Model-agnostic Explanations 
(LIME) - see Wortex talk

• The most impacting feature is instruction count, 
really? 



The ugly
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Rare features may destroy all  

The uglyContributions TakewaysThe good The badContext

• Float instructions have 
highly variable timing

• VDIV in Cortex-A53 can 
take between 4 and 32 
cycles

• In CAWET Cortex-M7, 
we gain ~200% error 
reduction when removing 
them



Takeaways



Takeways: lessons learnt

• Feature selection is key to success
• Training data is crucial
• ML for timing estimation works pretty well, but

• Many (too many) parameters to control: be calm, patient, and 
methodic

• Requires domain expertise and ML expertise: cooperate with ML 
experts!

• Techniques hard to debug: need for (more) explainability
• No formal guarantee of safety/precision: certifiable ML

TakeawaysContributions The uglyThe good The badContext
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Takeways: future work
• Extension multi-cores

TakeawaysContributions The uglyThe good The badContext

Postdoc position (University of Toulouse, and 
University of Rennes, France), project AIxIA
(Artificial Intelligence for Interference Analysis)

For the bounty please contact:
• Thomas CARLE  : thomas.carle@irit.fr
• Isabelle PUAUT : puaut@irisa.fr
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• More details needed? Join the WCET workshop for the long version!



Any question? 
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No question, really? 
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Publications

Contributions The good TakewaysThe bad The uglyContext

• A. N. Amalou, I. Puaut and G. Muller. WE-HML: Hybrid WCET Estimation using Machine
Learning for Architectures With Caches. RTCSA 2021.

• A. N. Amalou, E. Fromont and I. Puaut. CATREEN: Context-Aware Code Timing
Estimation with Stacked Recurrent Networks. ICTAI 2022.

• A. N. Amalou, E. Fromont and I. Puaut. CAWET: Context-Aware Worst-Case Execution
Time Estimation Using Transformers.” ECRTS 2023.

• A. N. Amalou, E. Fromont and I. Puaut. Fast and Accurate Context-Aware Basic Block
Timing Prediction using Transformers.”. CC, 2024.

• H. Reymond, A. N. Amalou and I. Puaut. WORTEX: Worst-Case Execution Time and
Energy Estimation in Low-Power Microprocessors using Explainable ML. WCET 2024
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Datasets

Contributions The good TakewaysThe bad The uglyContext

• A. N. Amalou, I. Puaut. A dataset of synthetically generated code blocks for the learning
of WCET on Cortex A53 [Dataset]. Zenodo

• A. N. Amalou, E. Fromont and I. Puaut. Training dataset for transformers consisting of
basic blocks and their execution times along with the execution context of these blocks,
for various Cortex processors M7, M4, A53, and A72. [Dataset]. Zenodo.

• H. Reymond, H. Chabot, A. N. Amalou, I. Puaut, MSP430FR5969 Basic Block Worst-
Case Energy Consumption (WCEC) and Worst-Case Execution Time (WCET) dataset.
[Dataset]. Zenodo



Static WCET 
analysis tool

Heptane

3131

Static WCET 
analysis tool

Heptane
CAWET 

Binary 
program

CFG

Program 
estimated 

WCET BBs WCET 
estimated 

Paths enumerationCFG extraction
IPET

Timing using 
TXL

[22] Hardy, D., Rouxel, B., & Puaut, I. (2017). The heptane static worst-case execution time estimation tool. In 17th International 
Workshop on Worst-Case Execution Time Analysis

Contributions The good TakewaysThe bad The ugly

CAWET: use of Transformers XL
Details on prediction
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Context size

The uglyContributions TakewaysThe good The badContext
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Pessimism and hardware complexity 

The uglyContributions TakewaysThe good The badContext
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The goodContributions TakewaysThe bad The uglyContext

Never under-estimates WCETs (Cortex-M7)
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LSTM based: ITHEMAL [20] and CATREEN [9] Multilayer perceptron (MLP) 
based on the work of WE-HML [8]

[20] MENDIS, C., et al. Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks. International 
Conference on Learning Representations, 2018.
[9] AMALOU A. N., FROMONT E., and PUAUT I. ”CATREEN: Context-Aware Code Timing Estimation with Stacked Recurrent Networks.” The 34th IEEE
International Conference on Tools with Artificial Intelligence IEEE, 2022.

[8] AMALOU A. N., PUAUT I. and MULLER G. ”WE-HML: Hybrid WCET Estimation using Machine Learning for Architectures With Caches.” The 27th
International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE, 2021.

Experimental setup: competitors

Contributions The good TakewaysThe bad The ugly
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Core Cortex-M4 Cortex-M7 Cortex-A53

Board STM32F407 STM32H743 Raspberry Pi 3

Pipeline type & (#stage) In-order (3) In-order 
superscalar (6)

In-order 
superscalar (8)

Cache memory N/A L1 L2

Branch predictor N/A Yes Yes

Measurement solution JTAG JTAG Instrumentation
Microarchitecture 

complexity Low Medium High

ARM targets used in experimental evaluation

Contributions The good TakewaysThe bad The ugly
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ORXESTRA (ACET) on M4, M7, A53. Evaluation metrics: (MAPE)

Target Metric MLP [1] ITHEMAL [9] CATREEN [2]
Cortex-M4 MAPE 26.4% 14.4% 8.8%

Cortex-M7 MAPE 22.7% 17.6% 13.3%

Cortex-A53 MAPE 38.4% 10.1% 8.5%

• ORXESTRA outperforms all models on all targets
• Context aware models are better than context-agnostic ones

ORXESTRA [3]
7.8%

9.6%

5.2%

Contributions The good TakewaysThe bad The ugly
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CAWET: Context extraction

Solution:

• Divide to conquer
• Local exploration in SESE 

regions
• (more details if asked for)

[21] DEGIOANNI T., & PUAUT I. StAMP: Static Analysis of Memory access Profiles for real-time 
tasks. In 20th International Workshop on Worst-Case Execution Time Analysis 2022.

Extract for each 
BB its execution 

context, 
constituted by a 
selected number 

of previously 
executed BB

Exhaustive
search in a CFG 
= Path explosion

O(2#"")

Contributions The good TakewaysThe bad The ugly
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Predictor Cortex-M4
MRPE

Cortex-M7
MRPE

Cortex-A53
MRPE

WE-HML [1]
(Multilayer perceptron) - - 494.2%

Comparison of WCET predictions for CAWET [12], WE-HML [8] 
and a neural network baseline on TacleBench programs

• CAWET is less pessimistic than WE-HML

Multilayer perceptron 43.8% 132.7% 85.7%

CAWET [3] 23.8% 102.2% 62.4%

Contributions The good TakewaysThe bad The ugly
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Existing research Contributions Conclusion & 
Perspectives

Timing estimation using 
Transformer XL

WCET estimation using 
Transformer XLContext

Context
= 

previously executed BBs
+

the basic block itself

BB1

BB2

BB4

int main() {
int a = 12; int b = 7;
int max = 0;
if (a > b) {

max=a;
}
else {

max=b;
}
return max;

}

BB1

BB2

BB3

BB4

Execution context


