

A Roadmap for Real-time Embedded Al

Presented by: Tarek Abdelzaher, UIUC (PI)

IIII

Real-time Research:

A Time of Big (Collaborative) Growth!

Why is the recent AI/ML revolution a key opportunity for real-time computing?

• We specialize in managing bottleneck computing resources.

→ AI/ML is creating the world's largest computing bottleneck!

• We specialize in embedded computing

 \rightarrow Embodied AI is embedded AI

AI + RT/Embedded collaborations could bring a wealth of new perspectives and applications

Acknowledgements

NEWS ▼ FEATURES ▼ OPINIONS ▼ SPORTS ▼ BUZZ ▼ CU FAITH & LIFE HOUSING PHO

NEWS 2017 Illinois chosen to lead \$25 million research project

BY **SAMANTHA BOYLE**, STAFF WRITER OCTOBER 21, 2017

Computers and other cyber technologies are playing cyber threats, \$25 million has been allocated to the U

Tarek Abdelzaher, academic leader of the Alliance for

Semiconductor Research Corporation

Abdelzaher's IoBT REIGN Alliance Receives 5-year Extension Worth Up to

University of Illinois and IBM to launch \$200M Discovery Accelerator Institute

New Center Based at UIUC will Develop Distributed Computing Technology for 2030 and Beyond

\$25.5M

Print C Order Reprints

2022

Challenge Set #1: AI + Managing Bottleneck Resources

Challenge:

Al and Time Constraints

Exploit latency/quality trade-offs in AI to meet time constraints

[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017.

[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017.

[2] Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong Liu, Tianshi Wang, Jinyang Li and Tarek Abdelzaher, "Scheduling Real-time Deep Learning Services as Imprecise Computations," In Proc. IEEE International Conference on Embedded and Real-time Computing Systems and Applications (RTCSA), South Korea, August 2020

Real-time Scheduling of Inference Tasks as "Imprecise Computations"

Challenge: Different data inputs offer different degrees of complexity. Some are easily recognizable patterns, but others are not.

Idea:

- Break execution into stages
- Use the confidence estimates to predict utility from executing the next stage of each task
- Scheduler executes the task (stage) with the highest marginal utility

Real-time Model "Caching" (An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)

What is the optimal sequence of models to try in order to minimize average latency to successful decision?

Real-time Model "Caching" (An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)

AI models of different quality and different computational complexity

What is the optimal sequence of models to try in order to minimize average latency to successful decision?

[3] Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns, Robert I. Davis, Zhishan Guo, Yigong Hu, "Scheduling IDK Classifiers with Arbitrary Dependences to Minimize the Expected Time to Successful Classification," Journal of Real-time Systems, March 2023.

Multimodal Classifier Cascades and Execution Ordering

Figure shows expected durations of execution of classifier sequences made of acoustic, seismic, and camera-based object classifiers.

Significant average latency reductions are possible without jeopardizing expected accuracy by optimally ordering the execution sequence of different classifiers (where each escalates to the next when unsure) Challenge:

Attention Management (Prioritization)

Attend to more relevant parts of the data first

Attention-based Resource Allocation at the Edge

Input Frames

[4] Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Rohan Tabish, Simon Yu, Ayoosh Bansal, Heechul Yun, Lui Sha and Tarek Abdelzaher, "On Removing Algorithmic Priority Inversion from Missioncritical Machine Inference Pipelines," In Proc. IEEE Real-time Systems Symposium (RTSS), Houston, TX (Online), December 2020. Best Paper Award

Attention Cueing: Decide What Data Are More Important

- Purpose of cueing:
 - Decide where to look (i.e., where to allocate computational attention)
 - Decide on (scene segment) prioritization and processing quality

Attention Cueing: Decide What Data Are More Important

- Purpose of cueing:
 - Decide where to look (i.e., where to allocate computational attention)
 - Decide on (scene segment) prioritization and processing quality

[5] Yigong Hu, Shengzhong Liu, Tarek Abdelzaher, Maggie Wigness, Philip David, "On Exploring Image Resizing for Optimizing Criticality-based Machine Perception," Journal of Real-time Systems, August 2022.

Give More Important Data Better Service (e.g., Differentiated Perception)

Idea: To save on less important segments, resize them and use a smaller neural network

Observations:

Lowest deadline miss rate Highest accuracy

Lowest latency

Larger (better) batch size

[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, "Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine Perception," In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award

Attention (Self-)Cueing

- Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement between objects and the observer.
- Cue attention to regions of larger change.

Previous Frame

Optical Flow Map

New Frame

[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, "Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine Perception," In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award

Attention (Self-)Cueing

- Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement • between objects and the observer.
- Cue attention to regions of larger change. ٠

Optical Flow Map

New Frame

Attention Management Extends Beyond the Embedded Device!

Attention is a key concept in AI and a key bottleneck

There is significant room for innovation in prioritizing attention to different data regions to meet deadlines and derive the corresponding (machine) *cognitive capacity*¹ constraints.

¹As humans, we often do not fall "behind" real-time (in perception/reasoning) but rather limit our attention and ignore progressively more extraneous stimuli.

Example: Maintaining Temporal Knowledge Graphs

Question Answering⁴

Information Retrieval⁵

[1] Personalized recommendation system based on knowledge embedding and historical behavior;
 [2] Dynamic Knowledge Graph based Multi-Event Forecasting, in KDD 2020;
 [3] Xiangxiang Zeng et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning. Journal of proteome research 2020;
 [4] <u>https://towardsdatascience.com/the-new-benchmark-for-question-answering-over-knowledge-graphs-gald-9-plus-da37b227c995;</u>
 [5] http://www.cs.cmu.edu/~callan/Projects/IIS-1422676/

New Entities Continuously Join Temporal Knowledge Graphs

• New entities continuously join graphs:

Attention Prioritization: What Data Are More Important (in Temporal Graph Learning)?

How best to Compute Embeddings of New Nodes and Update Old Nodes Given New Observations?

The solution learns the functions that compute/update the embeddings of new nodes given their (most important) interactions/relations with other nodes (neighbors).

The attention management contribution lies in a novel attention framework that *prioritizes the neighbors* to infer new embeddings from; updates are based on important neighbors only.

[7] Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher, "Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graph," In Proc. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, November 2022

Overall Performance

• Observation:

 $\circ~$ The approach improves accuracy given the same latency

					1		1	1			11	
	YAGO				WIKI				ICEWS18			
Models	1-shot		2-shot		1-shot		2-shot		1-shot		2-shot	
	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
TransE	0.183	0.268	0.193	0.304	0.144	0.186	0.146	0.213	0.049	0.077	0.058	0.086
TransR	0.189	0.270	0.198	0.312	0.160	0.183	0.160	0.225	0.050	0.080	0.060	0.090
RotatE	0.215	0.280	0.210	0.359	0.175	0.190	0.201	0.268	0.068	0.098	0.070	0.091
RE-NET	0.221	0.304	0.233	0.390	0.212	0.259	0.239	0.294	0.185	0.250	0.200	0.341
LAN	0.196	0.269	0.200	0.310	0.174	0.275	0.162	0.273	0.170	0.301	0.188	0.317
I-GEN	0.238	0.321	0.237	0.402	0.181	0.241	0.223	0.287	0.199	0.320	0.177	0.337
T-GEN	0.247	0.331	0.260	0.379	0.202	0.245	0.240	0.319	0.131	0.262	0.161	0.259
MetaDyGNN	0.269	0.396	0.316	0.496	0.241	0.371	0.271	0.390	0.249	0.420	0.269	0.441
MetaTKGR	0.294*	0.428*	0.356*	0.526*	0.277*	0.419*	0.309*	0.441*	0.295*	0.496*	0.301*	0.500*
Gains (%)	9.43	8.04	12.69	6.14	14.64	12.93	14.04	13.20	18.45	17.87	11.47	13.39

Challenge:

Attention Management (Scheduling)

Consolidate attention foci for efficient processing within time constraints

[8] Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, "Algorithms for Canvas-based Attention Scheduling with Resizing," In Proc. IEEE RTAS, May 2024.

Consolidate the Most Pertinent Data for Efficient Downstream Processing

A Spatial-temporal Scheduling Problem and Spatial-temporal "Perception Schedulability" Bound

A Spatial-temporal Scheduling Problem and Spatial-temporal "Perception Schedulability" Bound

Under EDF, a GPU that can process a volume of input data, V_{GPU} , per frame, will always meet all inspection deadlines if the sum of object volumes (each normalized by its relative inspection deadline, counted in the number of frame periods) does not exceed:

$$\frac{1}{2}V_{GPU}-v_{max},$$

where v_{max} is the largest object size.

$$\sum_{o_i \in \mathcal{O}(k)} \frac{v_i}{D_i^{k_i}} \le \frac{1}{2} V_{GPU} - v_{max}$$

Evaluation Results

Canvas-EDF: canvas-based attention scheduling with EDF policy

Canvas-switch: canvas-based attention scheduling with task switching policy

Batching: attention scheduling with batching-based neural network execution

DS: downsize the entire frame to fit the frame rate

Challenge:

Latency/Quality Trade-offs in Data Communication (for Downstream AI)

Learn compressed data representations that improve latency/quality trade-offs [9] Shengzhong Liu, Tianshi Wang, Jinyang Li, Dachun Sun, Mani Srivastava, and Tarek Abdelzaher, "AdaMask: Enabling Machine-Centric Video Streaming with Adaptive Frame Masking for DNN Inference Offloading," In Proc. ACM Multimedia, Lisbon, Portugal, October 2022.

Pareto Boundaries and MPEG Encoding

Figures:

- The upper figure shows the accuracybandwidth tradeoff for different configurations. The Pareto boundary, along with the impact of individual knobs are highlighted with curves.
- The lower figure shows the value change of each control knob on the Pareto boundary.

Analysis:

- Most points on the Pareto boundary use masked images (blue points).
- CRF (green curve) and masking level (purple curve) are better dimensions for trading less accuracy for higher compression ratios.

[10] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, Tarek Abdelzaher, "Deep Compressive Offloading: Speeding Up Neural Network Inference by Trading Edge Computation for Network Latency," In Proc. 18th ACM Conference on Embedded Networked Sensor Systems (SenSys), Japan (Online), November 2020.

Compressive Data Offloading

Contribution: Asymmetric auto-encoder (lighter on the client side) Reduces network latency during offloading, while keeping accuracy

Challenge:

Embedded Realtime AI and Thermal Constraints

Latency/Quality Trade-offs and Temperature

Thermal Effects of an Al Module (on a Raspberry Pi)

The need to perform DVPS on the board creates latency/quality/temperature tradeoffs

Overheating may trigger an emergency shutdown

Temperature control prevents shutdown but increases latency, offering a novel trade-off space

Challenge Set #2: AI + Embedded Computing
Intelligent Embedded Sensing (or "Edge AI") Growth Exceeding Expectations

2021 Report: **\$1.95B** by 2026

2024 Report: **\$61.6B** by 2028

Challenge: Data Labeling for AI Training (to Support Embedded/IoT Applications)

- Labeled Data Scarcity: Difficulties finding sufficient labeled training data for IoT sensors
 - Can't use standard (after-the-fact) labeling approaches due to lack of data interpretability

IoT time-series data are hard to interpret after the fact.

Diversity of Signatures: IoT sensor time-series conflate "foreground" and "background" influences leading to an exponential explosion of different sensory signatures for the same phenomenon

- Example: Acoustic and vibration sensors will be impacted by both the foreground activities and background noise (superimposed together), making it harder to isolate activity signature
- Example: The sound of a moving car will depend not only on the car but also on the type of road/terrain, creating different signatures in different environments.

Implications of Labeled Data Scarcity and Diversity of Signatures: *Potential Overfitting!*

Lack of sufficient labeled training data prevents the use of modern AI models (they have too many parameters to train, thus requiring a lot of labeled samples)

[11] Tianshi Wang, Denizhan Kara, Jinyang Li, Shengzhong Liu, Tarek Abdelzaher, Brian Jalaian, "The Methodological Pitfall of Dataset-Driven Research on Deep Learning: An IoT Example," In Proc. *Military Communications Conference (MILCOM), IoT-AE Workshop*, Rockville, MD, December 2022.

Overfitting Experiment: A Tale of Two Classifiers

Overfitting Experiment: A Tale of Two Classifiers

- We collected seismic and acoustic data from multiple moving vehicles in multiple environments to train a classifier to determine vehicle type from its acoustic/seismic signature
- Separated the data into training, validation, and testing sets (80%, 10%, 10%).
- Trained the classifier to detect a specific type of vehicle; tuned hyper-parameters with validation set
- Testing results:
 - The larger classifier (DeepSense) is better in the absence of domain shift (on same roads, in the same environmental conditions)
 - Upon a small domain shift (testing in a new location not in training data), the smaller (simple) classifier is significantly better

No Domain Shift

Small Domain Shift

Today's Academic Literature Greatly Underestimates the Brittleness of Embedded AI

Overfitting!

"Bad test results? Let me fix this and try again!"

See:

https://sigbed.org/2022/11/22/the-methodological-pitfall-of-dataset-driven-research-on-deep-learning-in-the-iot-space/

Solution

Can we use *unlabeled data* to train the AI instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved screen monitor), we are able to identify this type of objects thereafter without additional "labeled data". Why?

Solution

Can we use *unlabeled data* to train the AI instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved screen monitor), we are able to identify this type of objects thereafter without additional "labeled data". Why?

Because we learned to pay attention to "discriminative features" that help us distinguish different objects. These features can be learned *without knowing object labels*.

Supervised versus Self-Supervised Learning: A Difference in Objective

Supervised (Task-specific): The objective is to learn to associate data with particular object labels (specific to the classification task).

Self-supervised (Task-independent): The objective is to better represent notions of similarity in input data in order to help distinguish similar versus dissimilar objects (in multiple dimensions of similarity) and/or to predict "missing parts" of objects/contexts.

Foundation models: Self-supervised (task-independent) training at scale to extract representations of data that facilitate many downstream tasks

Challenge:

Foundation Models for Embedded Systems

Adapt self-supervised training to embedded application needs

Foundation Model Pre-training Encodes Inputs into a High-Dimensional Semantic Similarity Space; Finetuning Maps them to the Task

Towards Foundation Models for Embedded Systems: Design the "Right" Self-supervised Pretraining

Common Self-Supervised Pretraining Approaches 1. Contrastive Learning: "Teach" Similarity

Common Self-Supervised Pretraining Approaches 1. Contrastive Learning Issue: Requires Augmentation Design; Introduces Inductive Bias

Common Self-Supervised Pretraining Approaches 2. Masked Autoencoders

Observation

Validation

Challenge:

Contrastive Learning from Embedded Systems Data

[12] Dongxin Liu, Tianshi Wang, Shengzhong Liu, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher, "Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-Frequency Perspective," In Proc. 30th International Conference on Computer Communications and Networks (ICCCN), Athens, Greece, July 2021

Contrastive Learning from Embedded Sensing: Time versus Frequency Domain

Contrastive Learning from Embedded Sensing: Time versus Frequency Domain

 In IoT, sensing data measure physical phenomena

acceleration, vibration, or wireless signal propagation

- Underlying processes are fundamentally a function of signal frequencies
- IoT signals have a sparser and more compact representations in the frequency domain.

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Question #1: What is a notion of similarity between two different sensor time-series?

Physical Event/Activity

Multi-sensory Signature of Physical Event/Activity

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Suggestion: Similarity based on signature co-occurrence?

Physical Event/Activity

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Question #2: How to capture the additional information visible to individual modalities only?

Physical Event/Activity

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Suggestion: Shared versus private latent subspaces

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Question #3: How to ensure a parsimonious (non-redundant) representation?

Contrastive Learning from Embedded Sensing: *Multimodal* Data

• Suggestion: Enforce orthogonality among shared and private latent subspaces

FOCAL: A Miniature "Vibrometry" Foundation Model (Using *Multimodal* Contrastive Learning)

- Extract both <u>shared</u> and <u>private</u> information from multi-modal sensing signals in self-supervised manner.
- Appropriately address the information temporal locality within time series data.

FOCAL: A Miniature "Vibrometry" Foundation Model (Using *Multimodal* Contrastive Learning)

	-	Dataset		MOD		ACIDS		RealWorld-HAR		PAMAP2	
		Encoder	Framework	Acc	F1	Acc	F1	Acc	F1	Acc	F1
	<u> </u>		Supervised	0.9404	0.9399	0.9566	0.8407	0.9348	0.9388	0.8849	0.8761
Evaluation			SimCLR	0.8855	0.8855	0.7438	0.6101	0.7138	0.6841	0.6802	0.6583
			MoCo	0.8808	0.8812	0.7717	0.6205	0.7859	0.7708	0.7559	0.7387
			CMC MAE	0.9196	0.9180	0.8443	0.7244	0.7975	0.8116	0.7906	0.7706
Downstream Performance			Cosmo	0.8989	0.8998	0.8511	0.6929	0.8956	0.8888	0.8356	0.8135
		DeepSense	Cocoa	0.8774	0.8764	0.6644	0.5359	0.8465	0.8488	0.7603	0.7187
	with a Linear Classifier		MTSS	0.4153	0.3582	0.4352	0.2441	0.2989	0.1405	0.3541	0.1795
			TS2Vec	0.7669	0.7648	0.5224	0.3587	0.6595	0.5984	0.5729	0.4715
	Our method consistently outperforms SOTA		GMC	0.9257	0.9267	0.9096	0.7929	0.8869	0.8948	0.8119	0.7860
	time-series contrastive frameworks (TS2Vec,		TS-TCC	0.9318	0.9528	0.8257	0.6950	0.8073	0.8971	0.7776	0.8143 0.7250
	TNC, and GMC), visual contrastive		Our Method	0.9732	0.9729	0.9516	0.8580	0.9382	0.9290	0.8588	0.8463
	frameworks (SimCLR, MoCo, CMC), and multi-modal contrastive frameworks (CMC, Cosmo, Cocoa, GMC).		Supervised	0.8948	0.8931	0.9137	0.7770	0.9313	0.9278	0.8612	0.8384
			SimCLR	0.9250	0.9247	0.9128	0.8144	0.7046	0.7220	0.7705	0.7424
			MoCo	0.9390	0.9384	0.9174	0.8100	0.7813	0.8024	0.7717	0.7313
	MOD: Self-collected data using seismic/acoustic signals to classify moving vehicle types. ACIDS: Seismic/acoustic signals to classify military swi vehicle types.	-	CMC	0.9129	0.9105	0.8128	0.6857	0.8840	0.8955	0.8080	0.7901
Datasets			MAE	0.7803	0.7772	0.8516	0.7023	0.8829	0.8813	0.7910	0.7606
		SW-T	Cocoa	0.3429	0.3378	0.7110	0.0080	0.8004	0.8109	0.7741	0.7300
		n-TransformerV2	MTSS	0.4206	0.4163	0.3429	0.2250	0.5136	0.4370	0.2847	0.1714
			TS2Vec	0.7254	0.7174	0.7183	0.5748	0.6151	0.5955	0.6195	0.5426
	RealWorld-HAR: Use acc/gyro/mag/light signals to		GMC TNC	0.8640 0.8533	0.8611	0.9402	0.7766	0.9319	0.9379 0 8784	0.8312	0.8083
	PAMAP2: Use acc/gyro/mag signals to recognize human activities.		TS-TCC	0.8734	0.8735	0.9041	0.7547	0.8731	0.8454	0.7997	0.7260
			Our Method	0.9805	0.9800	0.9489	0.8262	0.9451	0.9503	0.8580	0.8401

Table 1: Finetune Results with Linear Classifier

Results: Downstream Performance on Multiple Tasks with K-Nearest-Neighbor Classifier (K=5)

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, "On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study," In Proc. FM-Sys, May 2024.

Evaluation of Robustness

How much fine-tuning (with labeled data) is needed to adapt a pre-trained model to a domain shift (new environment or new target)?

(Husky not seen during pre-training)

Fine-tuning performance at deployment for different labeled data sizes

Supervised-Finetune

Supervised

FOCAL

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, "On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study," In Proc. FM-Sys, May 2024.

Learning Speed

Accuracy curves of Supervised Training versus Fine-tuning (FOCAL)

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, "On the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study," In Proc. FM-Sys, May 2024.

Resource Overhead

Small enough to run fine-tuning and inference on Edge devices (e.g., Raspberry Shake)

Much faster than training a supervised model with the same amount of data

Inference Time (from 1 second of data) on Raspberry Pi Device

Encoder	Size (MB)	Parameters (M)	Infer Speed (s)
DeepSense SWIN-Transformer TSMixer	$25.27 \\ 44.955 \\ 7.463$	$6.6220 \\ 11.7725 \\ 1.9523$	$0.1011 \\ 0.1841 \\ 0.0709$

Model	Framework	B=1	B=2	B=4	B=8	B=16	B=32	B=64	B=128	Average Improvement
DeepSense	Supervised FOCAL - Finetuned	0.6499 0.1052	0.8850 0.1374	1.2151 0.1724	1.9488 0.2452	3.4106 0.3481	6.9621 0.5901	13.3596 1.0795	29.6567 2.0166	88.49%
SW-T	Supervised FOCAL - Finetuned	1.2364 0.2639	1.5483 0.4035	2.2258 0.6932	3.5723 1.2597	6.1268 2.4553	11.2664 4.5907	21.5920 9.2683	42.6260 18.6447	64.84%
TSMixer	Supervised FOCAL - Finetuned	0.3526 0.1215	0.5386 0.2092	0.8981 0.3825	1.5925 0.7470	3.0116 1.4690	5.8583 2.8076	11.5925 5.6527	24.8614 12.9797	54.94%

Training Time on Raspberry Pi Device

Challenge:

Masked Auto-Encoders for Embedded Computing

Masked Autoencoders

Observation

Validation

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, "FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing," In Proc. *The Web Conference (WWW)*, May 2024.

Challenges

1. No Scale and Shift Invariance

Position and scale shifts in spectrogram imply semantic differences.

2. Multi-Modal Fusion is Essential

Each sensor modality offers unique insights, and their fusion leads to a richer understanding.

3. Varied Information Density across Spectrum
② Signal and noise have different densities in different parts of the spectrum.

Audio FFT signatures for a moving vehicle. 1 The presence of characteristic peaks in localized regions needs local harmonic associations and shift-sensitive representations. 2 Higher frequency regions mostly contain noise.

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, "FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing," In Proc. *The Web Conference (WWW)*, May 2024.

FreqMAE

- 1. **Timeseries Spectrogram (TS) Transformer:** Transformer incorporating <u>localized attention</u> with a <u>spectrogram-compatible shifting mechanism</u>.
- 2. Factorized Modality Fusion: Learns private embeddings for modality-specific information and shared embeddings for cross-modal representations.
- 3. Weighted Loss Function: Emphasizes lower frequency within samples, and higher energy samples across datasets for efficient self-supervised pretraining.

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, "FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing," In Proc. *The Web Conference (WWW)*, May 2024.

Evaluation

Datasets: Four different public datasets from two application domains

- Vehicle Classification (VC): ACIDS and MOD
- Human Activity Recognition(HAR): PAMAP2 and RealWorld-HAR

Preprocessing: Create spectrograms via FFT after splitting time-series to evenly sized sample windows

Training: Divide dataset runs to train-validation-test sets (roughly 8:1:1)

Dataset	# Classes	Modalities ²	# Samples	Application
MOD	7	MP, S	39,609	VC
ACIDS	9	MP, S	27,597	VC
RealWorld-HAR	8	A, G, M, L	12,887	HAR
PAMAP2	18	A, G, M	9,611	HAR

Table 1: Dataset Summary
[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, "FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing," In Proc. *The Web Conference (WWW)*, May 2024.

Evaluation

- Improved classification accuracy compared to other approaches (especially when the amount of labeled data (for training and/or fine-tuning) is low
- Reduced need for labeled samples

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, "FreqMAE: Frequency-Aware Masked Autoencoder for Multi-Modal IoT Sensing," In Proc. *The Web Conference (WWW)*, May 2024.

Masking Strategies

	PAMAP		RWHAR		ACIDS	
Metric	Acc	F1	Acc	F1	Acc	F1
CMC	0.7571	0.7223	0.8211	0.8384	0.7836	0.6452
Cosmo	0.7910	0.7469	0.8529	0.7968	0.8776	0.7298
SimCLR	0.7346	0.6635	0.7830	0.7181	0.5658	0.4879
TS2Vec	0.5706	0.4942	0.6117	0.5002	0.6539	0.4913
TS-TCC	0.7871	0.7107	0.8684	0.8227	0.8758	0.7400
Vanilla MAE	0.7382	0.6999	0.8638	0.8700	0.8521	0.6908
LIMU-BERT	0.7847	0.7612	0.7946	0.7261	0.5023	0.3171
AudioMAE	0.7808	0.7478	0.8163	0.7437	0.7845	0.6120
PhyMask	0.8056	0.7719	0.9059	0.9137	0.9265	0.8044

Tables show improved performance with a new masking strategy (PhyMask) that prefers masking semantically significant regions

Deployment Experiments

	MOD-A		MOD-B		MOD-C	
Metric	Acc	F1	Acc	F1	Acc	F1
CMC	0.7415	0.7390	0.5760	0.4983	0.6412	0.5691
Cosmo	0.4205	0.3059	0.5816	0.5214	0.5496	0.2376
SimCLR	0.6733	0.6685	0.5377	0.3922	0.6107	0.3730
TS2Vec	0.6563	0.6439	0.5260	0.3521	0.5725	0.4487
TS-TCC	0.6051	0.5910	0.5012	0.1720	0.5802	0.4099
Vanilla MAE	0.8580	0.8602	0.6626	0.6347	0.6794	0.6326
LIMU-BERT	0.5000	0.1667	0.4233	0.1983	0.5649	0.2407
CAV-MAE	0.4801	0.4431	0.50309	0.21076	0.5419	0.3409
AudioMAE	0.5113	0.4981	0.4839	0.3475	0.4961	0.4571
FreqMAE	0.8750	0.8766	0.6885	0.6622	0.7710	0.7340

Testing in three locations: A, B, and C.

Conclusions

The recent AI/ML revolution is a key opportunity for real-time computing!

- We specialize in managing bottleneck computing resources.
 - → AI/ML is creating the world's largest computing bottleneck!
 - Exploit latency/quality tradeoffs in computing and communication
 - Prioritize data processing (i.e., attention scheduling) to meet latency constraints
 - Derive spatial-temporal real-time attention bounds
 - Explore the impact of thermal control, DVFS, etc.
- We specialize in embedded computing
 - \rightarrow Embodied AI is embedded AI

Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, ...)

AI + RT/Embedded collaborations could bring a wealth of new perspectives and applications

Al is Creating the World's Largest Computing Bottleneck

Moore's Law: Capacity doubles **every 18 months**. Al model size doubles approximately **every 3.4 months**.

https://www.computerweekly.com/news/252475371/StanfordUniversity-finds-that-AI-is-outpacing-Moores-Law

Training compute (FLOP) of milestone Machine Learning systems over time n = 166

Emerging Applications in Human Interactions

Creating new interaction spaces (between humans and the environment), not natively supported by the underlying physical objects.

Virtual Reality: Manipulate human perception to create (virtual) spaces that allow novel computationally-enabled interactions **Ubiquitous Computing (IoT):** Embed computation into the environment to create (smart) spaces that allow novel computationally enabled interactions

Physical

Virtual

Mark Weiser's cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)

Emerging Applications in Human Interactions

Creating new into

About Us 🗸

← → C 🗯 immerse.illinois.edu

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

IMMERSE: Center for Immersive Computing

Research Education Infrastructure

Integrating the virtual with the physical

PRESS RELEASE 10 June 2024

visionOS 2 brings new spatial computing experiences to **Apple Vision Pro**

Powerful new capabilities come to Apple Vision Projust months after its U.S. release, including a new way to turn favorite photos into spatial photos, new gestures for navigating visionOS, and more ways for developers to take advantage of spatial computing

6 🗛 🖉

Extended Reality Technology Center

Events ~

News

IMMERSE: Center for Immersive Computing

Carnegie Mellon University

[16] Tarek Abdelzaher, Matthew Caesar, Charith Mendis, Klara Nahrstedt, Mani Srivastava and Minlan Yu, "Challenges in Metaverse Research: An Internet of Things Perspective," In Proc. 1st IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, June 2023.

Why Now?

Virtual reality and ubiquitous computing visions have existed for over 40 years. Why an emerging application now?

Mark Weiser's cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)

How Do Content-Centric Applications Rise?

How Do Content-Centric Applications Rise?

Hint: When the cost of content creation is lowered

• YouTube? (2005)

• Promoted by the proliferation of camera phones

How Do Content-Centric Applications Rise?

Hint: When the cost of content creation is lowered

• Instagram? (2010)

 Promoted by the proliferation of digital photography

Top sensor types in IoT GAS TEMPERATURI SMOKE IR SENSOR ROMETER CHEMICAL SENSOR SENSOR SENSOR NSOR SENSOR PROXIMITY SENSOR 9

How Do Content-Centric Applications Rise?

Hint: When the cost of content creation is lowered

- Internet of Things? (~ 2010)
 - Promoted by the proliferation of cheap sensor data (and connectivity)

What about Immersive Computing?

GENERATIV

What about Immersive Computing? (~ now)

Hint: When the cost of content creation is lowered

- 360 cameras (Content Capture)
- Generative AI (Creative Authorship)

Immersive Computing: A Computing Services Perspective

Image source: https://www.digitaljournal.com/

Application: Observational Science at Scale From Millions of Observations to Compact Models of Phenomena

Observations

Validation

Towards a Science of Observational Social-Information Dynamics

In the 17th Century

A new **observational instrument** (Galileo's Telescope)

&

A new latent state representation (discovery of gravity)

A new **observational instrument** (Online Social Media)

&

A new latent state representation (network embedding)

A science of the motion of object positions in physical space

Newton's Laws of Mechanics

A science of the motion of human positions (beliefs) in ideological space

Observational Social-Information Dynamics [17] Jinning Li, Huajie Shao, Dachun Sun, Ruijie Wang, Yuchen Yan, Jinyang Li, Shengzhong Liu, Hanghang Tong, Tarek Abdelzaher, "Unsupervised Belief Representation Learning with Information-Theoretic Variational Graph Auto-Encoders," In Proc. *SIGIR*, Madrid, Spain, July 2022.

Ideological (Belief) Embedding

(i) Dimensions represent different views(ii) Nodes move depending on their view adoption(iii) The original is "neutral"

Version 1.0: Non-negative matrix factorization. (Linear "encoding" and "decoding".)

Version 2.0: Graph Auto-Encoder [1]. Non-linear (Graph Convolutional) "encoding" and linear "decoding" (taking both link

Application: Social Dynamics Forecasting (Predict Escalation/Radicalization/Reconciliation)

[18] Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy, Christian Lebiere, and Boleslaw Szymanski, "The Paradox of Information Access: On Modeling Polarization in the Age of Information," *IEEE Transactions on Control of Network Systems*, Accepted in 2023.

- The dynamic trajectories of beliefs predict future population opinion distribution
- Predicting (and defending against) the potential impact of adversarial manipulations in the information space

The Paradox of Information Access: On Modeling Polarization in the Age of Information

Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy, Christian Lebiere, and Boleslaw Szymanski

Abstract— The paper derives a new nonlinear stochastic model of evolution of human beliefs that demonstrates how an increase in democratized information production and sharing, combined with consumers' confirmation bias and natural bias for outlying content, result in increased polarization. The model shows that the evolution of human beliefs can be approximated by a nonlinear diffusion-drift equation in which systematic psychological biases contribute to drift, whereas other random influences contribute to diffusion. The nonlinear formulation predicts a growth in polarization that is attributable to increasing information production and sharing. While the core contribution is analytical, an anecdotal model parameter fitting to empirical data is also presented. Specifically, we show that our model closely predicts the changing and increasingly polarized distribution of ideology of members of the US Congress over the last quarter-century (taken as an approximate proxy for shifts in the US population ideology), when we take the mobile phone penetration curve as a proxy for democratization of information access. The model suggests that escaping the polarizing forces in the age of information access may be an uphill battle.

Index Terms—Social networks; dynamic models; polarization; paradox of information access.

I. INTRODUCTION

In this paper, we ask the question: how do increasing information production and sharing relate to societal polarization? A model is derived that shows that human beliefs follow a diffusion-drift equation in which ingrained systematic psychological biases contribute to belief drift, whereas other

random factors and influences contribute to diffusion. The diffusion-drift equation predicts a steady-state belief distribution in which *increased access to information production and sharing contributes to increased levels of polarization*. The extent of this effect depends on the relative strength of drift versus diffusion terms. Anecdotal empirical evidence is presented that at least some societies may indeed be operating in a regime consistent with a non-trivial information-accessfacilitated polarization growth. Specifically, for the US, the model accurately predicts the growing polarization of the US Congress, taking as input the technology penetration curve for mobile phones (as a proxy for democratized information access and sharing) in the last 25 years.

The work is motivated by the historic change in information access patterns in the 21st century. Over the course of most of human history, information *broadcast* has been prohibitively expensive. It required significant investments (e.g., having a radio station or a publishing house). With the invention of the Internet, the barrier to making content available for potentially global consumption was significantly reduced. We say that "information broadcast" (both access and sharing) has become *democratized*. While the benefits of democratizing information broadcast are undeniable, it is interesting to model the impact of this change on societal polarization (as such models are a prerequisite to the design of proper mitigation policies for any undesirable side effects).

follow a diffusion-drift equation in which ingrained systematic psychological biases contribute to belief drift, whereas other in the US may have contributed to exclo

Ideological polarization in the US congress

Understanding impact of messages on beliefs:

Message → Message Embedding Message Embedding (of consumed messages)

→ Actor Embedding
Actor Embedding (+ Interactions)
→ Next step Actor Embedding

Application: Influence Pathway Discovery

[19] Xinyi Liu, Ruijie Wang, Dachun Sun, Jinning Li, Christina Youn, You Lyu, Jianyuan Zhan, Dayou Wu, Xinhe Xu, Mingjun Liu, Xinshuo Lei, Zhihao Xu, Yutong Zhang, Zehao Li, Qikai Yang and Tarek Abdelzaher, "Influence Mapping on Social Media based on Interpretable Ideological Embedding," In Proc. *9th International Conference on Collaboration and Internet Computing (IEEE CIC)*, Atlanta, GA, Nov 2023.

Exogenous Influence Embedding

DARPA INCAS

- Characterize population response to information campaigns
- Segment populations by observed response to persuasion, and correlate persuasion tactics with population segment attributes

DARPA SocialSim

- Multiscale modeling and simulation techniques for online information propagation and belief dynamics
- Decoupling of macroscopic and microscopic models (e.g., detailed cascade models versus aggregate trends)

DARPA MIPs

- Develop a toolkit for the discovery, visualization, and analysis of influence pathways in the information space.
- Develop "what-if" capabilities for intervention modeling

Conclusions

The recent AI/ML revolution is a key opportunity for real-time computing!

- We specialize in managing bottleneck computing resources.
 - → AI/ML is creating the world's largest computing bottleneck!
 - Exploit latency/quality tradeoffs in computing and communication
 - Prioritize data processing (i.e., attention scheduling) to meet latency constraints
 - Derive spatial-temporal real-time attention bounds
 - Explore the impact of thermal control, DVFS, etc.
- We specialize in embedded computing
 - \rightarrow Embodied AI is embedded AI

Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, ...)

AI + RT/Embedded collaborations could bring a wealth of new perspectives and applications