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Real-time Research:
A Time of Big (Collaborative) Growth!  
Why is the recent AI/ML revolution a key 
opportunity for real-time computing?
◦ We specialize in managing bottleneck computing 
resources.
 AI/ML is creating the world’s largest computing bottleneck!

◦ We specialize in embedded computing 
  Embodied AI is embedded AI
AI + RT/Embedded collaborations could bring a wealth of 
new perspectives and applications
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Challenge Set #1: 
AI + Managing Bottleneck 
Resources



Challenge: 

AI and Time 
Constraints Exploit latency/quality trade-offs in 

AI to meet time constraints
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Heterogeneous Human Activity Recognition with (Compressed) DeepSense

Image Recognition with (Compressed) VGGNet

[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In 
Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017. 
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Heterogeneous Human Activity Recognition with (Compressed) DeepSense

Quality-Latency Trade-off: 
(Different “Levels of Service” can offer 
different inference latency to different 

classes of applications) 

[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In 
Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017. 



Real-time Scheduling of Inference Tasks as 
“Imprecise Computations” 
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Challenge: Different data inputs offer 
different degrees of complexity. Some are 
easily recognizable patterns, but others 
are not.

Idea: 
• Break execution into stages
• Use the confidence estimates to 

predict utility from executing the next 
stage of each task

• Scheduler executes the task (stage) 
with the highest marginal utility 

[2] Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong Liu, Tianshi Wang, Jinyang Li and Tarek Abdelzaher, “Scheduling Real-time Deep Learning Services as Imprecise 
Computations,” In Proc. IEEE International Conference on Embedded and Real-time Computing Systems and Applications (RTCSA), South Korea, August 2020



Real-time Model “Caching”
(An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)
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What is the optimal sequence of models to try in order to minimize average latency to successful decision?

AI models of different quality and different computational complexity



Real-time Model “Caching”
(An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)
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AI models of different quality and different computational complexity

What is the optimal sequence of models to try in order to minimize average latency to successful decision?

Failure 
Correlations



Multimodal Classifier Cascades and 
Execution Ordering
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Figure shows expected durations of 
execution of classifier sequences made of 
acoustic, seismic, and camera-based 
object classifiers.

Significant average latency reductions are 
possible without jeopardizing expected 
accuracy by optimally ordering the 
execution sequence of different classifiers 
(where each escalates to the next when 
unsure)

[3] Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns, Robert I. Davis, Zhishan Guo, Yigong Hu, “Scheduling IDK Classifiers with Arbitrary Dependences to Minimize the Expected Time to 
Successful Classification,” Journal of Real-time Systems, March 2023. 



Challenge: 

Attention 
Management 
(Prioritization) Attend to more relevant parts of the 

data first



Neural Network
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Input
Frames

Detection
Results

FIFO Schedule

Attention-based Resource Allocation at 
the Edge
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Attention Cueing &
Criticality Assignment

Camera

Input Data 
Frames

Scheduling
and Batching

Device Layer

CPUs GPUs

Prioritized 
Queues

Decisions

Criticality-Aware Architecture

Ranging Sensor
(LiDAR)

External
Cueing

Pick New 
Frame 

Camera

Input Data 
Frames

Device Layer

CPUs GPUs

Traditional Architecture

Neural 
Network

Decisions

FIFO Flat
Processing

Image Resizing

Object Tracking

Self
Cueing

(Preemptive)
Neural Network

Quantized
Images

Degrees of
Attention

Parallelize the
Attention

Example: Attention-based 
Perception Resource Allocation

[4] Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Rohan Tabish, Simon Yu, Ayoosh Bansal, Heechul Yun, Lui Sha and Tarek Abdelzaher, “On Removing Algorithmic Priority Inversion from Mission-
critical Machine Inference Pipelines,” In Proc. IEEE Real-time Systems Symposium (RTSS), Houston, TX (Online), December 2020. Best Paper Award
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• Purpose of cueing:
• Decide where to look (i.e., where to allocate computational attention)
• Decide on (scene segment) prioritization and processing quality 

Attention Cueing: Decide What Data Are More 
Important
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Critical ImportantNext

• Purpose of cueing:
• Decide where to look (i.e., where to allocate computational attention)
• Decide on (scene segment) prioritization and processing quality 

Attention Cueing: Decide What Data Are More 
Important
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(b) Deadline Miss Rate

Resizing

(a) Normalized Accuracy

Resizing

Idea: To save on less 
important segments, 
resize them and use a 
smaller neural network

Observations:

Lowest deadline miss rate

Highest accuracy

Lowest latency

Larger (better) batch size

Give More Important Data Better Service 
(e.g., Differentiated Perception)

[5] Yigong Hu, Shengzhong Liu, Tarek Abdelzaher, Maggie Wigness, Philip David, “On Exploring Image Resizing for Optimizing Criticality-based Machine Perception,” Journal of Real-time Systems, 
August 2022.
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Previous Frame New FrameOptical Flow Map

• Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement 
between objects and the observer.

• Cue attention to regions of larger change.

Attention (Self-)Cueing

[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, “Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine 
Perception,” In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award
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Previous Frame New FrameOptical Flow Map

• Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement 
between objects and the observer.

• Cue attention to regions of larger change.

Attention (Self-)Cueing

Critical

Important

[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, “Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine 
Perception,” In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award
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Attention Management Extends Beyond 
the Embedded Device!

Attention is a key concept in AI and a key bottleneck
There is significant room for innovation in prioritizing attention to 
different data regions to meet deadlines and derive the 
corresponding (machine) cognitive capacity1 constraints.

1As humans, we often do not fall “behind” real-time (in perception/reasoning) but rather limit 
our attention and ignore progressively more extraneous stimuli.  



Example: Maintaining Temporal Knowledge 
Graphs
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Question Answering4

Recommendation1 Social Event Forecasting2

[1] Personalized recommendation system based on knowledge embedding and historical behavior; [2] Dynamic Knowledge Graph based Multi-Event Forecasting, in KDD 2020; [3] Xiangxiang Zeng et al. Repurpose open data to 
discover therapeutics for COVID-19 using deep learning. Journal of proteome research 2020; [4] https://towardsdatascience.com/the-new-benchmark-for-question-answering-over-knowledge-graphs-qald-9-plus-da37b227c995;
[5] http://www.cs.cmu.edu/~callan/Projects/IIS-1422676/

Drug Analytics3

Information Retrieval5

https://towardsdatascience.com/the-new-benchmark-for-question-answering-over-knowledge-graphs-qald-9-plus-da37b227c995


• New entities continuously join graphs:

New Entities Continuously Join Temporal 
Knowledge Graphs
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A new politician A new user A new post A new product A new query

Wikipedia Entries Wikipedia Ontology Political Actor/Event Database



Attention Prioritization: What Data Are More 
Important (in Temporal Graph Learning)?

The solution learns the functions that compute/update the embeddings of new nodes given their 
(most important) interactions/relations with other nodes (neighbors). 
The attention management contribution lies in a novel attention framework that prioritizes the 
neighbors to infer new embeddings from; updates are based on important neighbors only.

How best to Compute Embeddings of New Nodes and Update Old Nodes Given New Observations?



Overall Performance 
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• Observation:
o The approach improves accuracy given the same latency 

[7] Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher, “Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graph,” In Proc. 
36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, November 2022



Challenge: 

Attention 
Management 
(Scheduling) Consolidate attention foci for efficient 

processing within time constraints



Consolidate the Most Pertinent Data for 
Efficient Downstream Processing

[8] Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.

Original Data

Sparse Attention
(Inefficient)

Dense Attention
(Efficient)

Key Data Item Consolidation



A Spatial-temporal Scheduling Problem and 
Spatial-temporal “Perception Schedulability” 
Bound

Spatial 
Objects 
(Tasks) 

Attention Volume 
Constraint (Capacity)

Perception 
(Data 
Inspection 
Task) 
Deadline 
and Period

[8] Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.



Under EDF, a GPU that can process a volume of input data, 𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺, per 
frame, will always meet all inspection deadlines if the sum of object 
volumes (each normalized by its relative inspection deadline, counted 
in the number of frame periods) does not exceed:

1
2
𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 

where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the largest object size.

[8] Yigong Hu, Ila Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.

A Spatial-temporal Scheduling Problem and 
Spatial-temporal “Perception Schedulability” 
Bound



Canvas-EDF: canvas-based attention scheduling with EDF policy

Canvas-switch: canvas-based attention scheduling with task switching policy

Batching: attention scheduling with batching-based neural network execution

DS: downsize the entire frame to fit the frame rate

Deadline missesAccuracy

Evaluation Results



Challenge: 

Latency/Quality 
Trade-offs in Data 
Communication (for 
Downstream AI)

Learn compressed data 
representations that improve 
latency/quality trade-offs



32

Figures:
• The upper figure shows the accuracy-

bandwidth tradeoff for different 
configurations. The Pareto boundary, 
along with the impact of individual knobs 
are highlighted with curves.

• The lower figure shows the value change 
of each control knob on the Pareto 
boundary.

Analysis:
• Most points on the Pareto boundary use 

masked images (blue points).
• CRF (green curve) and masking level 

(purple curve) are better dimensions for 
trading less accuracy for higher 
compression ratios.

Pareto Boundaries and MPEG Encoding
[9] Shengzhong Liu, Tianshi Wang, Jinyang Li, Dachun Sun, Mani Srivastava, and Tarek Abdelzaher, “AdaMask: Enabling Machine-Centric Video Streaming with Adaptive Frame Masking for DNN 
Inference Offloading,” In Proc. ACM Multimedia, Lisbon, Portugal, October 2022.



Compressive Data Offloading
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Contribution: Asymmetric auto-encoder 
(lighter on the client side)
Reduces network latency during 
offloading, while keeping accuracy

[10] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, Tarek Abdelzaher, “Deep Compressive Offloading: Speeding Up Neural Network Inference by Trading Edge 
Computation for Network Latency,” In Proc. 18th ACM Conference on Embedded Networked Sensor Systems (SenSys), Japan (Online), November 2020.



Challenge: 

Embedded Real-
time AI and Thermal 
Constraints Latency/Quality Trade-offs and 

Temperature



Thermal Effects of an AI Module (on a 
Raspberry Pi) 
The need to perform DVPS on the board creates latency/quality/temperature tradeoffs

Overheating may trigger an emergency shutdown Temperature control prevents shutdown but 
increases latency, offering a novel trade-off space



Challenge Set #2: 
AI + Embedded Computing



Intelligent Embedded Sensing (or “Edge AI”)
Growth Exceeding Expectations

37

2021 Report: $1.95B by 2026 2024 Report: $61.6B by 2028



Challenge: Data Labeling for AI Training 
(to Support Embedded/IoT Applications) 
  Labeled Data Scarcity: Difficulties finding sufficient labeled training data for IoT sensors
 Can’t use standard (after-the-fact) labeling approaches due to lack of data interpretability

  Diversity of Signatures: IoT sensor time-series conflate “foreground” and “background” influences 
leading to an exponential explosion of different sensory signatures for the same phenomenon
 Example: Acoustic and vibration sensors will be impacted by both the foreground activities and background 

noise (superimposed together), making it harder to isolate activity signature
 Example: The sound of a moving car will depend not only on the car but also on the type of road/terrain, 

creating different signatures in different environments.

38

IoT time-series 
data are hard to 
interpret after 
the fact.



Implications of Labeled Data Scarcity and 
Diversity of Signatures: Potential Overfitting!

Lack of sufficient labeled training data prevents the use of 
modern AI models (they have too many parameters to train, 
thus requiring a lot of labeled samples)

39

Data points ≈ number of 
model parameters  
overfitting noisy data; 
poor generalization

Data points >> number of 
model parameters  
better robustness to noise, 
improved generalization

Incorrect 
Extrapolation 
(Generalization)

Likely Better 
Extrapolation 
(Generalization)

Perfect match 
to training data

Less accurate match 
to training data



Overfitting Experiment: A Tale of Two Classifiers
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DeepSense
(Neural Network)

Simple Model: XGBoost
(Decision-tree Classifier)

44,680 
parameters

2,070,098
parameters

[11] Tianshi Wang, Denizhan Kara, Jinyang Li, Shengzhong Liu, Tarek Abdelzaher, Brian Jalaian, “The Methodological Pitfall of Dataset-Driven Research on Deep Learning: An IoT Example,” In Proc. 
Military Communications Conference (MILCOM), IoT-AE Workshop, Rockville, MD, December 2022.
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No Domain Shift

Small Domain Shift

• We collected seismic and acoustic data from multiple moving 
vehicles in multiple environments to train a classifier to 
determine vehicle type from its acoustic/seismic signature 

• Separated the data into training, validation, and testing sets 
(80%, 10%, 10%).

• Trained the classifier to detect a specific type of vehicle; tuned 
hyper-parameters with validation set

• Testing results:
• The larger classifier (DeepSense) is better in the absence of 

domain shift (on same roads, in the same environmental 
conditions) 

• Upon a small domain shift (testing in a new location not in 
training data), the smaller (simple) classifier is significantly 
better 

Overfitting Experiment: A Tale of Two Classifiers



Today’s Academic Literature Greatly Underestimates 
the Brittleness of Embedded AI

Improved model structure

Model Testing

“Bad test results? Let me fix this and try again!”

Model Development

Training Dataset

Model Training Hyperparameter 
Tuning

Validation dataset Testing dataset

Dataset Separation

Overfitting!

See: 
https://sigbed.org/2022/11/22/the-methodological-pitfall-of-dataset-driven-research-on-deep-learning-in-the-iot-space/



Solution
Can we use unlabeled data to train the AI instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved 
screen monitor), we are able to identify this type of objects thereafter without 
additional “labeled data”. Why? 

43



Solution
Can we use unlabeled data to train the AI instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved 
screen monitor), we are able to identify this type of objects thereafter without 
additional “labeled data”. Why? 

Because we learned to pay attention to “discriminative features” that help us 
distinguish different objects. These features can be learned without knowing 
object labels.

44



Supervised versus Self-Supervised 
Learning: A Difference in Objective
Supervised (Task-specific): The objective is to learn to associate 
data with particular object labels (specific to the classification task).

Self-supervised (Task-independent):  The objective is to better 
represent notions of similarity in input data in order to help 
distinguish similar versus dissimilar objects (in multiple dimensions 
of similarity) and/or to predict “missing parts” of objects/contexts.

Foundation models: Self-supervised (task-independent) training at scale 
to extract representations of data that facilitate many downstream tasks

45



Challenge: 

Foundation Models 
for Embedded 
Systems Adapt self-supervised training to 

embedded application needs 



Foundation Model Pre-training Encodes Inputs into 
a High-Dimensional Semantic Similarity Space; Fine-
tuning Maps them to the Task

47

Semantic encoding 
in a sufficiently 
high-dimensional 
space

Age classifier

Genre classifier

Language classifier

Finetuning

Pretraining

Downstream Tasks



Towards Foundation Models for Embedded Systems:
Design the “Right” Self-supervised Pretraining

48

Semantic encoding 
in a sufficiently 
high-dimensional 
space

Pretraining

?



Common Self-Supervised Pretraining Approaches
1. Contrastive Learning: “Teach” Similarity

49

Similar Pair

Similarity-preserving 
Augmentation

Dissimilar Pair

Random 
Item



Common Self-Supervised Pretraining Approaches
1. Contrastive Learning
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Similar Pair

Similarity-preserving 
Augmentation

Dissimilar Pair

Random 
Item

Issue: Requires Augmentation Design;
Introduces Inductive Bias



Common Self-Supervised Pretraining Approaches
2. Masked Autoencoders
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Representation 
in a Latent Space

“Encoder”
(Dimensionality 

Reduction)

Decoder
(Reconstruction)

Observation Validation

Masking

Error?



Challenge:

Contrastive 
Learning from 
Embedded 
Systems Data

52



Contrastive Learning from Embedded Sensing: 
Time versus Frequency Domain
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Large unlabeled
dataset
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Projection head

Representations

1. Self-supervised Contrastive Pre-Training

Data augmentation in time-domain
or frequency domain? Encoder for Frequency Domain Data?

[12] Dongxin Liu, Tianshi Wang, Shengzhong Liu, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher, “Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-
Frequency Perspective,” In Proc. 30th International Conference on Computer Communications and Networks (ICCCN), Athens, Greece, July 2021



Contrastive Learning from Embedded Sensing: 
Time versus Frequency Domain
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• In IoT, sensing data measure physical 
phenomena

 acceleration, vibration, or wireless signal 
propagation

• Underlying processes are fundamentally 
a function of signal frequencies

• IoT signals have a sparser and more 
compact representations in the 
frequency domain.



• Question #1: What is a notion of similarity between two different sensor time-series?
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Contrastive Learning from Embedded Sensing: 
Multimodal Data

Physical Event/Activity Multi-sensory Signature of Physical Event/Activity

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.
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Physical Event/Activity Multi-sensory Signature of Physical Event/Activity

Same time interval = similar Different intervals = dissimilar

• Suggestion: Similarity based on signature co-occurrence?

Contrastive Learning from Embedded Sensing: 
Multimodal Data

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.



• Question  #2: How to capture the additional information visible to individual 
modalities only? 
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Physical Event/Activity Multi-sensory Signature of Physical Event/Activity

Same time interval = similar Different intervals = dissimilar

Seismic-only 
feature

Acoustic-
only feature

Contrastive Learning from Embedded Sensing: 
Multimodal Data

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.



• Suggestion: Shared versus private latent subspaces
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Multi-sensory Signature of Physical Event/Activity

Same time interval = similar Different intervals = dissimilar

Seismic-only 
feature

Acoustic-
only feature

Se
is

m
ic

Shared

Latent Representation 
Space

Contrastive Learning from Embedded Sensing: 
Multimodal Data

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.



• Question #3: How to ensure a parsimonious (non-redundant) representation?
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Multi-sensory Signature of Physical Event/Activity

Same time interval = similar Different intervals = dissimilar

Seismic-only 
feature

Acoustic-
only feature

Se
is

m
ic

Shared

Latent Representation 
Space

Contrastive Learning from Embedded Sensing: 
Multimodal Data

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.



• Suggestion: Enforce orthogonality among shared and private latent subspaces 
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Multi-sensory Signature of Physical Event/Activity

Same time interval = similar Different intervals = dissimilar

Seismic-only 
feature

Acoustic-
only feature

Se
is

m
ic

Shared

Latent Representation 
Space

Enforce Orthogonality

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing: 
Multimodal Data



• Extract both shared and private information from multi-modal sensing signals in 
self-supervised manner.

• Appropriately address the information temporal locality within time series data.
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FOCAL: A Miniature “Vibrometry” Foundation 
Model (Using Multimodal Contrastive Learning)

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.
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Semantic encoding in a 
sufficiently high-
dimensional space

Self-supervised 
Pretraining

?

(1) New Input

velocity

distance

…

FOCAL: A Miniature “Vibrometry” Foundation 
Model (Using Multimodal Contrastive Learning)

[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series 
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana, December 2023.

Fine-tuning: insert a few 
labeled points to map 
space regions to labels
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Our method consistently outperforms SOTA 
time-series contrastive frameworks (TS2Vec, 
TNC, and GMC), visual contrastive 
frameworks (SimCLR, MoCo, CMC), and 
multi-modal contrastive frameworks (CMC, 
Cosmo, Cocoa, GMC).

Downstream Performance
with a Linear Classifier

Swin-TransformerV2

Evaluation

Our Method  

Our Method  

MOD: Self-collected data using seismic/acoustic 
signals to classify moving vehicle types.
ACIDS: Seismic/acoustic signals to classify military 
vehicle types.
RealWorld-HAR: Use acc/gyro/mag/light signals to 
recognize human activities.
PAMAP2: Use acc/gyro/mag signals to recognize 
human activities.

Da
ta

se
ts



Results: Downstream Performance on Multiple Tasks 
with K-Nearest-Neighbor Classifier (K=5)
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Other 
Downstream 
Tasks

Classify by 
target type

Classify by 
target distance

Classify by 
target speed



How much fine-tuning (with labeled data) is needed to adapt a pre-trained 
model to a domain shift (new environment or new target)? 

Fine-tuning performance at  deployment  for different  labeled data sizes
Test  Confusion Matrix fror Different  Targets

(Husky not  seen during pre-t raining)

Evaluation of Robustness

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, “On 
the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study,” In Proc. FM-Sys, May 2024.



Accuracy curves of Supervised Training versus Fine-tuning (FOCAL)

Learning Speed

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, “On 
the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study,” In Proc. FM-Sys, May 2024.



Small enough to run fine-tuning and inference 
on Edge devices (e.g., Raspberry Shake)

Much faster than training a supervised model 
with the same amount of data

Inference Time (from 1 second of data) on 
Raspberry Pi Device

Resource Overhead

Training Time on Raspberry Pi Device

[14] Tomoyoshi Kimura, Jinyang Li, Tianshi Wang, Denizhan Kara, Yizhuo Chen, Yigong Hu, Ruijie Wang, Maggie Wigness, Shengzhong Liu, Mani Srivastava, Suhas Diggavi, Tarek Abdelzaher, “On 
the Efficiency and Robustness of Vibration-based Foundation Models for IoT Sensing: A Case Study,” In Proc. FM-Sys, May 2024.



Challenge:

Masked 
Auto-Encoders for 
Embedded 
Computing
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Masked Autoencoders

Representation 
in a Latent Space

“Encoder”
(Dimensionality 

Reduction)

Decoder
(Reconstruction)

Observation Validation

Masking

Error?



1. No Scale and Shift Invariance 
(1) Position and scale shifts in spectrogram imply 
semantic differences.

2. Multi-Modal Fusion is Essential
Each sensor modality offers unique insights, and their 
fusion leads to a richer understanding.

3. Varied Information Density across Spectrum
(2) Signal and noise have different densities in different 
parts of the spectrum.

Challenges

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.



1. Timeseries Spectrogram (TS) Transformer: Transformer incorporating localized attention with a spectrogram-
compatible shifting mechanism.

2. Factorized Modality Fusion: Learns private embeddings for modality-specific information and shared embeddings for 
cross-modal representations.

3. Weighted Loss Function: Emphasizes lower frequency within samples, and higher energy samples across datasets for 
efficient self-supervised pretraining. 
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FreqMAE

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.



Datasets: Four different public datasets from two application domains
◦ Vehicle Classification (VC): ACIDS and MOD
◦ Human Activity Recognition(HAR): PAMAP2 and RealWorld-HAR

Preprocessing: Create spectrograms via FFT after splitting time-series to evenly sized 
sample windows
Training: Divide dataset runs to train-validation-test sets (roughly 8:1:1)

Evaluation

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.



Evaluation
• Improved classification accuracy compared to other approaches (especially 

when the amount of labeled data (for training and/or fine-tuning) is low
• Reduced need for labeled samples

[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.



Masking Strategies

Tables show 
improved 
performance 
with a new 
masking 
strategy 
(PhyMask) 
that prefers 
masking 
semantically 
significant 
regions 
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[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.



Testing in three locations: A, B, and C.

Deployment Experiments



Conclusions
The recent AI/ML revolution is a key opportunity for real-time 
computing!
◦  We specialize in managing bottleneck computing resources.

 AI/ML is creating the world’s largest computing bottleneck!
 Exploit latency/quality tradeoffs in computing and communication
 Prioritize data processing (i.e., attention scheduling) to meet latency constraints 
 Derive spatial-temporal real-time attention bounds
 Explore the impact of thermal control, DVFS, etc.

◦  We specialize in embedded computing 
  Embodied AI is embedded AI

  Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, …)

AI + RT/Embedded collaborations could bring a wealth of new perspectives 
and applications



AI is Creating the World’s Largest Computing 
Bottleneck

Moore’s Law: Capacity doubles every 18 months.

AI Model Size

AI model size doubles approximately every 3.4 months.
https://www.computerweekly.com/news/252475371/Stanford-University-finds-that-AI-is-outpacing-Moores-Law



Emerging Applications in Human Interactions

Mark Weiser’s cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)

Virtual Reality: Manipulate human perception 
to create (virtual) spaces that allow novel 
computationally-enabled interactions

Creating new interaction spaces (between humans and the environment), 
not natively supported by the underlying physical objects. 

Ubiquitous Computing (IoT): Embed computation into 
the environment to create (smart) spaces that allow 

novel computationally enabled interactions

Virtual Physical
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Why Now?

Mark Weiser’s cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)

Virtual reality and ubiquitous computing visions have existed for over 40 
years. Why an emerging application now? 

Virtual Physical

[16] Tarek Abdelzaher, Matthew Caesar, Charith Mendis, Klara Nahrstedt, Mani Srivastava and Minlan Yu, “Challenges in Metaverse Research: An Internet of Things Perspective,” In Proc. 1st IEEE 
International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, June 2023.



How Do Content-
Centric Applications 

Rise?
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What about 
Immersive 

Computing?



What about Immersive 
Computing? (~ now)

Hint: When the cost of content creation is lowered



Applications
VR Gaming

Services 
(Metaverse Seoul)

Virtual Concerts

Training and Simulation

Digital Twins/Design Teleconferencing/Workspace

Media and 
Entertainment

Cultural 
Preservation

Art and Culture

Live 
Sports
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Immersive Computing:
A Computing Services Perspective

Front End

Back End

Image source: https://www.digitaljournal.com/
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Laws of 
Gravity?

Observations

Validation

Application: 
Observational Science at Scale 
From Millions of Observations to Compact Models of Phenomena



Towards a Science of 
Observational Social-Information Dynamics
In the 17th Century

A new observational 
instrument (Galileo’s 
Telescope)

A new latent state 
representation 
(discovery of gravity)

&

Newton’s Laws 
of Mechanics

Today

A new observational 
instrument (Online 
Social Media)

&
A new latent state 
representation 
(network embedding)

Observational Social- 
Information Dynamics

A science of the motion of 
object positions in physical 
space

A science of the motion of 
human positions (beliefs) 
in ideological space



Version 1.0: Non-negative 
matrix factorization. (Linear 
“encoding” and “decoding”.) 

Version 2.0: Graph Auto-
Encoder [1]. Non-linear (Graph 
Convolutional) “encoding” and 
linear “decoding” (taking both link 
and node attributed into account)

Ideological (Belief) Embedding

[17] Jinning Li, Huajie Shao, Dachun Sun, Ruijie Wang, Yuchen Yan, Jinyang Li, Shengzhong Liu, Hanghang Tong, Tarek Abdelzaher, “Unsupervised Belief Representation 
Learning with Information-Theoretic Variational Graph Auto-Encoders,” In Proc. SIGIR, Madrid, Spain, July 2022.

(i)  Dimensions represent different views
(ii) Nodes move depending on their view adoption 
(iii) The original is “neutral”
 

Pro-Ukraine

Pro-Russia

Example Output

Input: 
Raw social media posts



Application: Social Dynamics Forecasting 
(Predict Escalation/Radicalization/Reconciliation)

Ideological polarization in the US congress
• The dynamic trajectories of beliefs predict future 

population opinion distribution
• Predicting (and defending against) the potential 

impact of adversarial manipulations in the 
information space

Understanding impact of messages on beliefs: 
Message  Message Embedding
Message Embedding (of consumed messages)
  Actor Embedding
Actor Embedding (+ Interactions)
  Next step Actor Embedding

[18] Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy, 
Christian Lebiere, and Boleslaw Szymanski, “The Paradox of Information Access: On Modeling 
Polarization in the Age of Information,” IEEE Transactions on Control of Network Systems, Accepted 
in 2023.
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Application: 
Influence Pathway Discovery 

… …

entity 1

entity 3

entity 2

Entity-assertion graph
Ideological dynamics

Ideological derivative 
correlation timeseires

[19] Xinyi Liu, Ruijie Wang, Dachun Sun, Jinning Li, Christina Youn, You Lyu, Jianyuan Zhan, Dayou Wu, Xinhe Xu, Mingjun Liu, 
Xinshuo Lei, Zhihao Xu, Yutong Zhang, Zehao Li, Qikai Yang and Tarek Abdelzaher, “Influence Mapping on Social Media 
based on Interpretable Ideological Embedding,” In Proc. 9th International Conference on Collaboration and Internet 
Computing (IEEE CIC), Atlanta, GA, Nov 2023.



Interactions with Other Projects (DARPA)

DARPA INCAS DARPA SocialSim DARPA MIPs
• Multiscale modeling and 

simulation techniques for online 
information propagation and belief 
dynamics

• Decoupling of macroscopic and 
microscopic models (e.g., detailed 
cascade models versus aggregate 
trends)

• Characterize population 
response to information 
campaigns

• Segment populations by 
observed response to 
persuasion, and correlate 
persuasion tactics with 
population segment attributes 

• Develop a toolkit for the 
discovery, visualization, and 
analysis of influence 
pathways in the information 
space. 

• Develop “what-if” 
capabilities for intervention 
modeling



Conclusions
The recent AI/ML revolution is a key opportunity for real-time 
computing!
◦  We specialize in managing bottleneck computing resources.

 AI/ML is creating the world’s largest computing bottleneck!
 Exploit latency/quality tradeoffs in computing and communication
 Prioritize data processing (i.e., attention scheduling) to meet latency constraints 
 Derive spatial-temporal real-time attention bounds
 Explore the impact of thermal control, DVFS, etc.

◦  We specialize in embedded computing 
  Embodied AI is embedded AI

  Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, …)

AI + RT/Embedded collaborations could bring a wealth of new perspectives 
and applications
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