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Real-time
A Time of

Research:

Big (Collaborative) Growth!

Why is the recent Al/ML revolution a key
opportunity for real-time computing?
> We specialize in managing bottleneck computing

resources.

- Al/ML is creating the world’s largest computing bottleneck!
> We specialize in embedded computing
- Embodied Al is embedded Al

Al + RT/Embedded collaborations could bring a wealth of
new perspectives and applications
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Challenge Set #1.

Al + Managing Bottleneck
Resources




Challenge:

Al and Time

Constraints Exploit latency/quality trade-offs in

Al to meet time constraints




[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeeploT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In

Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017.
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[1] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher, "DeeploT: Compressing Deep Neural Network Structures for Sensing Systems with a Compressor-Critic Framework," In
Proc. 15th ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), Delft, The Netherlands, November 2017.
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[2] Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong Liu, Tianshi Wang, Jinyang Li and Tarek Abdelzaher, “Scheduling Real-time Deep Learning Services as Imprecise
Computations,” In Proc. IEEE International Conference on Embedded and Real-time Computing Systems and Applications (RTCSA), South Korea, August 2020

Real-time Scheduling of Inference Tasks as
“Imprecise Computations”

Trained with Confidence Calibration
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Real-time Model “Caching”
(An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)

N -
-
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!

Al models of different quality and different computational complexity

What is the optimal sequence of models to try in order to minimize average latency to successful decision?
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Real-time Model “Caching”
(An idea by Sanjoy Baruah, Alan Burns, and Rob Davis)

Failure ~__
Correlations

~

Al models of different quality and different computational complexity

What is the optimal sequence of models to try in order to minimize average latency to successful decision?



[3] Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns, Robert |. Davis, Zhishan Guo, Yigong Hu, “Scheduling IDK Classifiers with Arbitrary Dependences to Minimize the Expected Time to
Successful Classification,” Journal of Real-time Systems, March 2023.

Multimodal Classifier Cascades and
-xecution Ordering
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Challenge:

Attention
Management
(Prioritization)

Attend to more relevant parts of the

III' data first




Attention-based Resource Allocation at
the Edge

Input
Frames

ey

" Neural Network
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Results




[4] Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Rohan Tabish, Simon Yu, Ayoosh Bansal, Heechul Yun, Lui Sha and Tarek Abdelzaher, “On Removing Algorithmic Priority Inversion from Mission-
critical Machine Inference Pipelines,” In Proc. IEEE Real-time Systems Symposium (RTSS), Houston, TX (Online), December 2020. Best Paper Award
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Attention Cueing: Decide What Data Are More
Important

* Purpose of cueing:
* Decide where to look (i.e., where to allocate computational attention)
* Decide on (scene segment) prioritization and processing quality




Attention Cueing: Decide What Data Are More
Important

* Purpose of cueing:
e Decide where to look (i.e., where to allocate computational attention)
* Decide on (scene segment) prioritization and processing quality




[5] Yigong Hu, Shengzhong Liu, Tarek Abdelzaher, Maggie Wigness, Philip David, “On Exploring Image Resizing for Optimizing Criticality-based Machine Perception,” Journal of Real-time Systems,

"~ Give More Important Data Better Service
(e.g., Differentiated Perception)

Idea: To save on less
important segments,
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[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, “Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine
Perception,” In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award

Attention (Self-)Cueing

* Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement
between objects and the observer.
e Cue attention to regions of larger change.

Previous Frame Optical Flow Map New Frame



[6] Shengzhong Liu, Xinzhe Fu, Maggie Wigness, Philip David, Shuochao Yao, Lui Sha, Tarek Abdelzaher, “Self-Cueing Real-Time Attention Scheduling in Criticality-Driven Visual Machine
Perception,” In Proc. 28th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Milano, Italy, May 2022. Best Paper Award

Attention (Self-)Cueing

* Optical flow: Pixel-level motion vectors between two frames, caused by the relative movement
between objects and the observer.
* Cue attention to regions of larger change.
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Attention Management Extends Beyond
the Embedded Device!

Attention is a key concept in Al and a key bottleneck

There is significant room for innovation in prioritizing attention to
different data regions to meet deadlines and derive the
corresponding (machine) cognitive capacity! constraints.

'As humans, we often do not fall “behind” real-time (in perception/reasoning) but rather limit
our attention and ignore progressively more extraneous stimuli.



xample: Maintaining Temporal Knowledge
raphs

Movies Ki led h i Movies
(have watched) nowie: ge grap | (may like)
: ) Farm
: Worker mmary: A Politician
directed attacked the state government
02/24/15 on various fronts such as fertilizer
- crunch and land acquisition act.
Nolan include Negotiation

starred Interstellar

Criticize
Citizen

|
/ | .

| Agr a0

g i Ministry 02727715 o2r26/1s
ke | :
or I T / starred
The Dark Knight | Leonardo | H H
| goure Aﬁ 3 ing O “ o I— o |
collaborate 1 . ’

o3|

44 L directed I p iy 02|
d-rmed | b 01| Lawyer
ATetar & : Titanic Actors
Cameron '
L] Ll o
Recommendation? Social Event Forecasting?
.
Drug Analytics3
" bromers e 7 — ClueWeb09 Category A English
Actlon/Advenmre Film” -
N
Text-based Knowledge-based I . l ' I .I . I l - v q( Type ‘"‘"e el . . RELALEN
(IR/0DQA) (kBQA) WIKIDATA . . —— ,d e
» > . P ther Movies
“In what city was Angela Merkel born?": o e Ll o 2 Scushing s gilam ) i
- A.x.bi thPlac.e (Anqela Merkel) A isCity(x) DBmdla ~ Freebase D|rect!d bv Durected _by he Shners_grimm et o ) Vi e ok
- SELECT ? WHE . Sk R » SR e Tor il e
thPlace ?cit ) e = - s
Macmnﬁa '\Name» v
} ® “Terry Gilliam”
07hsd + LAKTCINENALia Pain s Caont.
L] L] L3 L3
Question Answering?* Information Retrieval®

[1] Personalized recommendation system based on knowledge embedding and historical behavior; [2] Dynamic Knowledge Graph based Multi-Event Forecasting, in KDD 2020; [3] Xiangxiang Zeng et al. Repurpose open data to
discover therapeutics for COVID-19 using deep learning. Journal of proteome research 2020; [4] https://towardsdatascience.com/the-new-benchmark-for-question-answering-over-knowledge-qraphs-qald-9-plus-da37b227¢995;

[5] http://www.cs.cmu.edu/~callan/Projects/IIS-1422676/



https://towardsdatascience.com/the-new-benchmark-for-question-answering-over-knowledge-graphs-qald-9-plus-da37b227c995

New Entities Continuously Join Temporal
Knowledge Graphs

* New entities continuously join graphs:
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Attention Prioritization: What Data Are More
Important (in Temporal Graph Learning)?

How best to Compute Embeddings of New Nodes and Update Old Nodes Given New Observations?

The solution learns the functions that compute/update the embeddings of new nodes given their
(most important) interactions/relations with other nodes (neighbors).

The attention management contribution lies in a novel attention framework that prioritizes the
neighbors to infer new embeddings from; updates are based on important neighbors only.
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[7] Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher, “Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graph,” In Proc.
36th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, LA, November 2022

Overall Performance

 Observation:

o The approach improves accuracy given the same latency

A A A 4 4

YAGO WIKI ICEWSI18
Models 1-shot 2-shot 1-shot 2-shot 1-shot 2-shot

MRR H@l0 MRR H@10 | MRR H@l0 MRR H@10 | MRR H@l0 MRR H@10

TranskE 0.183 0.268 0.193 0.304 0.144 0.186  0.146 0.213 0.049 0.077  0.058 0.086
TransR 0.189 0.270  0.198 0.312 0.160 0.183  0.160 0.225 0.050 0.080  0.060 0.090
RotatE 0.215 0.280 0.210 0.359 0.175 0.190 0.201 0.268 0.068 0.098 0.070 0.091
RE-NET 0.221 0.304 0.233 0.390 0.212 0.259 0.239 0.294 0.185 0.250  0.200 0.341
LAN 0.196 0.269  0.200 0.310 0.174 0275 0.162 0.273 0.170 0.301 0.188 0.317
I-GEN 0.238 0.321 0.237 0.402 0.181 0.241 0.223 0.287 0.199 0.320 0.177 0.337
T-GEN 0.247 0.331 0.260 0.379 0.202 0.245  0.240 0.319 0.131 0.262 0.161 0.259
MetaDyGNN | 0.269 0396 0.316 0.496 0.241 0.371 0.271 0.390 0.249 0.420 0.269 0.441
MetaTKGR | 0.294* 0.428* 0.356* 0.526* | 0.277* 0.419* 0.309* 0.441% | 0.295*% 0.496* 0.301* 0.500%
Gains (%) 9.43 8.04 12.69 6.14 14.64 12.93  14.04 13.20 18.45 17.87  11.47 13.39




Challenge:

Attention

Management
(Scheduling)

Consolidate attention foci for efficient
processing within time constraints




[8] Yigong Hu, lla Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.
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[8] Yigong Hu, lla Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.

A Spatial-temporal Scheduling Problem and
Spatial-temporal “Perception Schedulability”
Bounc
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[8] Yigong Hu, lla Gokarn, Shengzhong Liu, Archan Misra, Tarek Abdelzaher, “Algorithms for Canvas-based Attention Scheduling with Resizing,” In Proc. IEEE RTAS, May 2024.

A Spatial-temporal Scheduling Problem and
Spatial-temporal “Perception Schedulability”

Bouna

Under EDF, a GPU that can process a volume of input data, V;py, per
frame, will always meet all inspection deadlines if the sum of object
volumes (each normalized by its relative inspection deadline, counted

in the number of frame periods) does not exceed:
1
EVGPU — Umax>
where v,,,,, IS the largest object size.

V; 1
E L. g _VGPU — Umax
D 2
OZEO(k) v




Evaluation Results

Canvas-EDF: canvas-based attention scheduling with EDF policy
Canvas-switch: canvas-based attention scheduling with task switching policy
Batching: attention scheduling with batching-based neural network execution

DS: downsize the entire frame to fit the frame rate

100

Deadline miss rate (%)

80 - Accuracy Deadline misses
70 1 80 4
60 4
& 50 1 60 1
T 40 .
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Algorithm Algorithm



Challenge:

Latency/Quality
Trade-offs in Data

Communication (for
Downstream Al)

[tk

Learn compressed data
representations that improve
latency/quality trade-offs



[9] Shengzhong Liu, Tianshi Wang, Jinyang Li, Dachun Sun, Mani Srivastava, and Tarek Abdelzaher, “AdaMask: Enabling Machine-Centric Video Streaming with Adaptive Frame Masking for DNN
Inference Offloading,” In Proc. ACM Multimedia, Lisbon, Portugal, October 2022.

Pareto Boundaries and MPEG Encoding
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[10] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, Tarek Abdelzaher, “Deep Compressive Offloading: Speeding Up Neural Network Inference by Trading Edge
Computation for Network Latency,” In Proc. 18th ACM Conference on Embedded Networked Sensor Systems (SenSys), Japan (Online), November 2020.

Compressive Data Offloading
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Challenge:

Embedded Real-
time Al and Thermal
Constraints Latency/Quality Trade-offs and

Temperature




Thermal Effects of an Al Module (on a
Raspberry Pi)

The need to perform DVPS on the board creates latency/quality/temperature tradeoffs

80 -
g / Passive cooldown g
g— 70- Training stopped / CE)'
] - ] )
= el =70 —— avg:w/o scheduler
® o0 \ S | —— avg:w/ scheduler
60 - ---- threshold
3500 4000 4500 5000 5500 6000 0 2000 4000 6000 8000
Time (s) Time (s)
Overheating may trigger an emergency shutdown Temperature control prevents shutdown but

increases latency, offering a novel trade-off space



Challenge Set #2:
Al + Embedded Computing




Intelligent Embedded Sensing (or “Edge Al”)

Growth Exceeding Expectations

Edge Al Market Global Edge Artificial Intelligence Market
Market forecast to grow at a CAGR of 19.3% Market forecast to grow at a CAGR of 26.0%
USD 1,954.24 million USD 61.63 Billion

USD 24.48 Billien
USD 569.19 million

2019 2026 2024 2028

RESEARCH AIND MARKETS RESEARCH AND MARKETS

THE WORLD'S LARGEST MARKET RESEARCH STORE https://www.researchandmarkets.com/reports/5948723 THE WORLD'S LARGEST MARKET RESEARCH STORE

2021 Report: $1.95B by 2026 2024 Report: $61.6B by 2028

https.//www.researchandmarkets.com/reports/5308892




Challenge: Data Labeling for Al Training
(to Support Embedded/loT Applications)

= Labeled Data Scarcity: Difficulties finding sufficient labeled training data for loT sensors
= Can’t use standard (after-the-fact) labeling approaches due to lack of data interpretability
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= Diversity of Signatures: 0T sensor time-series conflate “foreground” and “background” influences
leading to an exponential explosion of different sensory signatures for the same phenomenon

= Example: Acoustic and vibration sensors will be impacted by both the foreground activities and background
noise (superimposed together), making it harder to isolate activity signature

= Example: The sound of a moving car will depend not only on the car but also on the type of road/terrain,
creating different signatures in different environments.



mplications of Labeled Data Scarcity and
Diversity of Signatures: Potential Overfitting!

Lack of sufficient labeled training data prevents the use of
modern Al models (they have too many parameters to train,
thus requiring a lot of labeled samples)

A A

Data points = number of
model parameters 2>
overfitting noisy data;
poor generalization

Data points >> number of
model parameters 2>
better robustness to noise,
improved generalization @

o
|
: Incorrect IL|ker Better
Perfect match  Extrapolation Less accurate match |Extrapolat|on
to training data : (Generalization) to training data |(Generallzat|on)
> >




[11] Tianshi Wang, Denizhan Kara, Jinyang Li, Shengzhong Liu, Tarek Abdelzaher, Brian Jalaian, “The Methodological Pitfall of Dataset-Driven Research on Deep Learning: An loT Example,” In Proc.
Military Communications Conference (MILCOM), loT-AE Workshop, Rockville, MD, December 2022.

Overfitting Experiment: A Tale of Two Classifiers

Audio Data, shape = (1, 16000) Seismic Data, shape = (1, 200)
+ ¥ . _ .. _
Acoustic Convolutional Layer 1 Seismic Convolutional Layer 1 Audio Data, shape = (1, 16000) Seismic Data, shape = (1, 200)
Kernel=(1, 3), Stride=(1, 80), out_dim=256 Kernel=(1, 3), Stride=(1, 1), out_dim=256
v v
Acoustic Convolutional Layer 2 Seismic Convolutional Layer 2 v _ v
Kernel=(1, 3), Stride=(1, 1), out_dim=256 Kernel=(1, 3), Stride=(1, 1), out dim=256 Power Spectral Density Features Time Series Features
v v Qe _ i
Acoustic Convolutional Layer 3 Seismic Convolutional Layer 3 BinSize = 8 Hz Outlier Detectors
Kernel=(1, 3), Stride=(1, 1), out dim=256 Kernel=(1, 3), Stride=(1, 1), out dim=256 Bins up to 2%5
v - L2 3*F/4 Features
| Mean fusion | L 7 v v
v | Feature Concatenation |
Fusion Convolutional Layer 1
Kernel=(1, 3), Stride=(1, 1), out_dim=32 . .
¥ Gradient Boosting
Fusion Convolutional Layer 2 Weak Learners Weak Learners Weak Learners

Kernel=(1, 3), Stride=(1, 1), out_dim=32
v

Fusion Convolutional Layer 3 ﬁé é%l ﬁ[ggj Eg% ﬁl ﬁ%&l
Kernel=(1, 3), Stride=(1, 1), Out_dim=32 | [ | ‘
v v

GI;U 1 #
Out_dim=32 Weighted Majority Voting
GRU 2
Out_dim=32 l
2 y 070,098 Oufzt'.’m3=32 Output Layer 44,680
parameters Faly-Connected Layer _ Q=2 parameters
Out_dim=512 DeepSense Simple Model: XGBoost
Output Layer p
Out_dim=2 (Neural Network) (Decision-tree Classifier)




Overfitting Experiment: A Tale of Two Classifiers

« We collected seismic and acoustic data from multiple moving No Domain Shift
vehicles in multiple environments to train a classifier to 10{ 095 . 092 0.980.99 .95, 9,
determine vehicle type from its acoustic/seismic signature 0.8 '

» Separated the data into training, validation, and testing sets 0.61 L
(80%, 10%, 10%). 02 —&&-

* Trained the classifier to detect a specific type of vehicle; tuned 0.0 N cracy precision  Recall R

hyper-parameters with validation set
e Testing results:

Small Domain Shift

EEl Deepsense

* The larger classifier (DeepSense) is better in the absence of m=m SimpleModel
domain shift (on same roads, in the same environmental 1.0 0.94 0.96 0.57 0%’
conditions) ol

* Upon a small domain shift (testing in a new location not in 22

training data), the smaller (simple) classifier is significantly — ,.
better 0.0

Accuracy Precision Recall F1



Today’s Academic Literature Greatly Underestimates
the Brittleness of Embedded Al

Overfitting!

“Bad test results? Let me fix this and try again!”

Improved model structure

Model Development | [ > oy | feepammeler | o)
Tuning
Training Dataset Validation dataset Testing dataset
Dataset Separation

See:
https://sigbed.org/2022/11/22/the-methodological-pitfall-of-dataset-driven-research-on-deep-learning-in-the-iot-space/



Solution

Can we use unlabeled data to train the Al instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved
screen monitor), we are able to identify this type of objects thereafter without
additional “labeled data”. Why?



Solution

Can we use unlabeled data to train the Al instead of labeled data?

(Hint: the answer is yes)

Intuition: When we see a new type of object for the first time (e.g., a curved
screen monitor), we are able to identify this type of objects thereafter without
additional “labeled data”. Why?

Because we learned to pay attention to “discriminative features” that help us
distinguish different objects. These features can be learned without knowing
object labels.



Supervised versus Self-Supervised
Learning: A Difference in Objective

Supervised (Task-specific): The objective is to learn to associate
data with particular object labels (specific to the classification task).

Self-supervised (Task-independent): The objective is to better
represent notions of similarity in input data in order to help
distinguish similar versus dissimilar objects (in multiple dimensions
of similarity) and/or to predict “missing parts” of objects/contexts.

Foundation models: Self-supervised (task-independent) training at scale
to extract representations of data that facilitate many downstream tasks



Challenge:

Foundation Models
for Embedded

Systems Adapt self-supervised training to

embedded application needs




Foundation Model Pre-training Encodes Inputs into

a High-Dimensional Semantic Similarity Space; Fine-
tuning Maps them to the Task

Downstream Tasks

Semantic encoding Age classifier

Pretraining in a sufficiently
high-dimensional

Space - Genre classifier
>

Language classifier

Finetuning




Towards Foundation Models for Embedded Systems:
Design the “Right” Self-supervised Pretraining

Semantic encoding
in a sufficiently
high-dimensional
space

Pretraining

>




Common Selt-Supervised Pretraining Approaches
1. Contrastive Learning: “Teach” Similarity

, ________________________________________ . . . .
I 1. Self-supervised Conggastive Pre-Training o | Similarity-preserving
I Projection head I Augmentation

| | .

| Large unlabeled |

| dataset 5 P() ¢ Z; I G b

| = |

I S i I J

1 8 g Contrastive Loss | Y

I P 5 j l Similar Pair

! I

: < P() |_J'> z , Random
I I Item

| i |

| ntations I

N e e e e e e e e e e e e e e e e e = = L e e e e e e e e e e - =~

—————————————————————— + —_
2. Downstream Task Freezing the encoder |

Small labeled
sensing dataset

[ | D -

[ : N\

I I o

: I

I —>QAM16 I . .

| \%&9 QAM16 ¢ |f|>|:| |_J'> - apsk : Dissimilar Pair
|

I “be |

| I

I




Common Self-Supervised Pretraining Approaches
1. CO ntra Stlve I_ea rnl ’*g Issue: Requires Augmentation Design;

Introduces Inductive Bias

Similarity-preserving
Augmentation

Projection head

| |
| |
| |
| Large unlabeled \ |
| dataset 8 y ¢ P() ¢ Z; |
| = = I
| = X; ; \ I J
| g Contrastive Loss | o Y )
l @® j | Similar Pair
[ X 2 I
I i&g P() LJ'> z I Random
| > I ltem
I X; |
| Representations |
S
2. Downstream Task Freezing the encoder |

Small labeled Classifier

I

|

| I

I sensing dataset I

[ —>QAM16
: QAM16 |f,> ¢ |$ — 8PSK

: X Label —> QPSK

|

Dissimilar Pair

n Em o o E e - e o -




Common Selt-Supervised Pretraining Approaches
2. Masked Autoencoders

> Error?

Masking “Encoder” Decoder

(Dimensionality (Reconstruction)
Reduction)

4 Semantic encoding
in a sufficiently
high-dimensional
space

Representation
in a Latent Space

Observation Validation




Challenge:

Contrastive
Learning from

Embedded
Systems Data




[12] Dongxin Liu, Tianshi Wang, Shengzhong Liu, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher, “Contrastive Self-Supervised Representation Learning for Sensing Signals from the Time-
Frequency Perspective,” In Proc. 30th International Conference on Computer Communications and Networks (ICCCN), Athens, Greece, July 2021

Contrastive Learning from Embedded Sensing:
Time versus Freqguency Domain

(. T ®
i 1. Self-supervised Contrastive Pre-Training |
I Encoder Projection head I
I
: g ‘ |
| Largeunlabeled
| dataset = |:> |:> E() ¢ ¢ ¢ Z; I
= l
l =~ — I
I ¢ L X; T I
I O o .
() = Contrastive Loss I
L x g /] |
< E(- |
. S e I |y |
l — l
' Xj g |
I Representations |
- _ - - - - - --Je M M L L -\ QL A

Data augmentation in time-domain
or frequency domain?

Encoder for Frequency Domain Data?




Contrastive Learning from Embedded Sensing:
Ime versus Frequency Domain

Time domain

* In loT, sensing data measure physical : | | ‘
phenomena -SI

acceleration, vibration, or wireless signal
propagation
0 1

* Underlying processes are fundamentally
a function of signal frequencies Ss , s Frequency domain

* loT signals have a sparser and more
compact representations in the
frequency domain.

Amplitude (a.u.)




[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing:
Multimodal Data

Question #1: What is a notion of similarity between two different sensor time-series?

Seismic
30000 ~ |\
|| : .
200001 .ﬁ.»’v’ﬂ’u"\""’“‘v‘w"’l”fu““ﬁ”ﬂ. | ”\HUI” d“ {J \rﬂ|“|“”t|ll|r'r||h I ||||f|'|||h'| JI|||1PIHI1i|"'| “'1"14'flﬂih]u\"ifrr]ﬁ"’H‘“#'
10000 - il
Acoustic
10000 ~
-
—10000 -
Physical Event/Activity Multi-sensory Signature of Physical Event/Activity



[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing:
Multimodal Data

e Suggestion: Similarity based on signature co-occurrence?

Seismic
30000 + \
Zgong :.r"f‘"b"r'ﬂ.!”ﬁ""\"*"lr'-'""u‘\-r'I" fl"-wlﬁ" ! W ” l " | ‘Jlll ﬂll” | l' ‘m |1 l “"nll| Ili".'Iw “" h |" M
10000 - et “L"| | I’|I HH"“” |'f J l|' HJ'.P il ”U i
Acoustic * ‘\\
10000 4 7
0 R R
—10000 -
Physical Event/Activity Multi-sensory,/Signature of Physical Event/Activity
Same time interval = similar Different intervals = dissimilar



[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing:
Multimodal Data

Question #2: How to capture the additional information visible to individual
modalities only?

Seismic
30000 - Seismic-only ﬂ ‘ ‘
| feature 1N f |
20000 A Ry 1 I ” ‘J Il | | I l' | H 1 r4||1 IR |'|| 'f‘ |
10000 - T ’ lt' m‘ll ||i| |i"r I’|I “ ” \f M‘h] I il Ir ll m ‘J I,'J"' Wi ’un rﬂ']ulwr |J|J"m
Acoustic N ‘\\
10000 4 7
0 ity
PR only feature
Physical Event/Activity Multi-sensory,/Signature of Physical Event/Activity
Same time interval = similar Different intervals = dissimilar



[13] Shengzhong Liu, Tomoyoshi Kimura, Dongxin Liu, Ruijie Wang, Jinyang Li, Suhas Diggavi, Mani Srivastava, and Tarek Abdelzaher, “FOCAL: Contrastive Learning for Multimodal Time-Series
Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing:
Multimodal Data

* Suggestion: Shared versus private latent subspaces

A
Seismic o
300004 Seismic-only : ‘ \ E
i feature | || | ' | &
aoon]  fezture LA m T AR 2
20000: P " Imll |i| i"f I'll | \ l}’J’h]Hhi' Wi Jl A r"i]'ll\fvu';m n
ACOUSTIC ‘1\ . Shared
10000 - a &’0
0 — VS'O
T only feature

Latent Representation
Space

Multi-sensory/Signature of Physical Event/Activity

Different intervals = dissimilar

Same time interval = similar
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Contrastive Learning from Embedded Sensing:
Multimodal Data

Question #3: How to ensure a parsimonious (non-redundant) representation?

A
Seismic o
30000 4 Seismic-only ﬂ ‘ ‘ \ E
feature ! I| ! f 7))
Xt & fean iy nA | I||” ‘J ” ll I l | |H‘ Nl 1' r Wl ‘o
10000 - e "Lt'm'll || i"r |'|I “ \ W ll lﬁl|ri| ' ll m ﬂ'Jl'llr' YN A” ||’M| v
ACOUSTIC ‘T\\ . Shared
10000 - > &’0
0 rivmead i VS'O
100007 only feature
Multi-sensory,/Signature of Physical Event/Activity Latent Representation
Space
Same time interval = similar Different intervals = dissimilar
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Sensing Signals in Factorized Orthogonal Latent Space,” In Proc. 37th Conference on Neural Information Processing Systems (NeurlPS), New Orleans, Louisiana, December 2023.

Contrastive Learning from Embedded Sensing:
Multimodal Data

* Suggestion: Enforce orthogonality among shared and private latent subspaces

A
Seismic
300004 Seismic-only ﬂ ‘ ‘ \ Enforce Orthogonality
feature W | f
200007 esos a L d | | | M A i
el Sl N\
ACOUSTIC A Shared
>y O
10000 - 7 &’0
0 ; : rivmead i vs,o
By only feature
Multi-sensory,Signature of Physical Event/Activity Latent Representation
Space
Same time interval = similar Different intervals = dissimilar
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FOCAL: A Miniature “Vibrometry” Foundation
Model (Using Multimodal Contrastive Learning)

* Extract both shared and private information from multi-modal sensing signals in

self-supervised manner.

* Appropriately address the information temporal locality within time series data.

Multimodal Time Series

Orthogonality Loss

Mod-1
re
/|
V\
e
/1

Mod-2

Rand
Aug-1

MLP Projector

Rand
Aug-2

Time-Freq Encoder

Time

Positive Pair  «--» Negative Pair

(Cioss
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Orthogonal
Latent Space

, Contrastive
A Loss

Shared

/

Sample-i Mod-1
Shared Feature
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\
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1
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1
Sample-i" Mod-1 i
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I
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\
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FOCAL: A Miniature “Vibrometry” Foundation
Model (Using Multimodal Contrastive Learning)

(1) New Input N E
&63( i\\oo(‘; 3‘0\(\
)

-~

Self-supervised
Pretraining

Semantic encoding in a Fine-tuning: insert a few
sufficiently high- labeled points to map
dimensional space space regions to labels




Evaluation

Downstream Performance
with a Linear Classifier

Table 1: Finetune Results with Linear Classifier

Our method consistently outperforms SOTA
time-series contrastive frameworks (TS2Vec,
TNC, and GMC), \visual contrastive
frameworks (SimCLR, MoCo, CMC), and
multi-modal contrastive frameworks (CMC,
Cosmo, Cocoa, GMC).

MOD: Self-collected data using seismic/acoustic
signals to classify moving vehicle types.

vehicle types.

RealWorld-HAR: Use acc/gyro/mag/light signals to
recognize human activities.

Datasets

PAMAP2: Use acc/gyro/mag signals to recognize
human activities.

Dataset | MOD | ACIDS | RealWorld-HAR |  PAMAP2
Encoder | Framework | Acc F1 | Acc F1 | Acc F1 | Acc F1
| Supervised | 0.9404 0.9399 | 0.9566 0.8407 | 0.9348 0.9388 | 0.8849 0.8761
SimCLR | 0.8855 0.8855 | 0.7438 0.6101 | 0.7138 0.6841 | 0.6802 0.6583
MoCo 0.8808 0.8812 | 0.7717 0.6205 | 0.7859 0.7708 | 0.7559 0.7387
CMC 09196 0.9186 | 0.8443 0.7244 | 0.7975 0.8116 | 0.7906 0.7706
MAE 0.5981 0.5993 | 0.6644 0.5618 | 0.7565 0.7515 | 0.7114 0.6158
Cosmo | 0.8989 0.8998 | 0.8511 0.6929 | 0.8956 0.8888 | 0.8356 0.8135
DeepSense Cocoa 0.8774 0.8764 | 0.6644 0.5359 | 0.8465 0.8488 | 0.7603 0.7187
MTSS 0.4153 0.3582 | 04352 0.2441 | 0.2989 0.1405 | 0.3541 0.1795
TS2Vec | 0.7669 0.7648 | 0.5224 0.3587 | 0.6595 0.5984 | 0.5729 0.4715
GMC 0.9257 0.9267 | 0.9096 0.7929 | 0.8869 0.8948 | 0.8119 0.7860
TNC 0.9518 0.9528 | 0.8237 0.6936 | 0.8892 0.8971 | 0.8387 0.8143
TS-TCC | 0.8707 0.8735 | 0.7667 0.6164 | 0.8073 0.8010 | 0.7776 0.7250

SW-T

ACIDS: Seismic/acoustic signals to classify military swin-Transformerv2

09732 0.9729 | 0.9516 0.8580 | 0.9382 0.9290 | 0.8588 0.8463

Our Method | I

| Supervised | 0.8948 0.8931 | 0.9137 0.7770 | 0.9313 0.9278 | 0.8612 0.8384

SimCLR
MoCo
CMC
MAE
Cosmo
Cocoa
MTSS
TS2Vec
GMC
TNC
TS-TCC

0.9250 0.9247
0.9390 0.9384
09129 0.9105
0.7803 0.7772
0.3429 0.3378
0.7040 0.7038
0.4206 0.4163
0.7254 0.7174
0.8640 0.8611
0.8533 0.8539
0.8734 0.8735

0.9128 0.8144
09174 0.8100
0.8128 0.6857
0.8516 0.7023
0.7110 0.6086
0.7096 0.5794
0.3429  0.2250
0.7183 0.5748
0.9402 0.7766
0.8352 0.7372
0.9041 0.7547

0.7046  0.7220
0.7813  0.8024
0.8840 0.8955
0.8829 0.8813
0.8604 0.8169
0.8892 0.8861
0.5136 0.4370
0.6151 0.5955
0.9319 0.9379
0.8817 0.8784
0.8731 0.8454

0.7705 0.7424
0.7717 0.7313
0.8080 0.7901
0.7910 0.7606
0.7741 0.7366
0.7689 0.7317
0.2847 0.1714
0.6195 0.5426
0.8312 0.8083
0.8013 0.7506
0.7997 0.7260

Our Method | 0.9805 0.9800 | 0.9489 0.8262 | 0.9451

0.9503 |

0.83580 0.8401




Results: Downstream Performance on Multiple Tasks
with K-Nearest-Neighbor Classifier (K=5)

SiImCLR ® MoCo CMC m MAE Cosmo B Cocoa MTSS m TS2Vec GMC m TNC TS-TCC m FOCAL

1.0 1.0
0.8 0.8
9 2
o S
50.6 H0.6
Z v
| | | | | 11 IR
0.2 I 0.2 1
MOD ACIDS RealWorld-HAR ~ PAMAP2 MOD ACIDS RealWorld-HAR ~ PAMAP2
SImMCLR © CMC = Cosmo © MTSS GMC  TSTCC
1.O|V|OCO B MAE B Cocoa B TS2Vec M TNC W FOCAL CIassify by
' target speed
Classify by 08 Other
target type So6 Downstream
o
3 Tasks
: <
Classify by 0.4 I I I I I
target distance 0.9
Distance Classification Speed Classification
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the Efficiency and Robustness of Vibration-based Foundation Models for 10T Sensing: A Case Study,” In Proc. FM-Sys, May 2024.

Evaluation of Robustness

How much fine-tuning (with labeled data) is needed to adapt a pre-trained
model to a domam shift (new environment or new target)?

I Supervised @ Supervised-Finetune @ FOCAL

e
)

e

wn
o
S

1.0 Accuracy by Label Ratio and DeepSense Accuracy by Label Ratio and SW-T
. 1.0
L) 0.9
E 0.9 )
&

0.8 1
o 0.8
2

0.7 |
5 g o7 2
= 8 o
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2
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e
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e
w

Polaris Warthog Civilian Husky

e
w

100% 50% . 10% 1% 100% 50% . 10%
Test Confusion Matrix fror Different Targets Label Ratio Label Ratio
(Husky not seen during pre-training) Fine-tuning performance at deployment for different labeled data sizes
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Learning Speed

Accuracy curves of Supervised Traming versus Fine-tuning (FOCAL)

- Supervised FOCAL - Supervised FOCAL
1.0 1.0
3\0.8 3-0.8-
c c
= 0.6 = 0.6
@ (@
@ ] @)
< 0.4 0.4
0.275 25 50 75 100 %20 25 50 75 100
Epochs Epochs

(a) DeepSense (b) SW-T
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Resource Overhead

Inference Time (from 1 second of data) on

. . Raspberry PiDevice
Small enough to run fine-tuning and inference _ —
Edee devi b hak Encoder | Size (MB) | Parameters (M) | Infer Speed (s)
on ge devices (C.g., Rasp CITy Sha C) DeepSense 25.27 6.6220 0.1011
Lo . SWIN-Transformer 44.955 11.7725 0.1841
Much faster than training a supervised model TSMixer 7.463 1.9523 0.0709
with the same amount ofdata
Model Framework B=1 B=2 B=4 B=8 B=16 B=32 B=64  B=128 Average
Improvement
DeenSense Supervised 0.6499 0.8850 1.2151 1.9488 3.4106 69621 133596 29.6567 28,499
P FOCAL - Finetuned | 0.1052 0.1374 0.1724 02452 0.3481 05901  1.0795  2.0166 AT
SWT Supervised 1.2364 1.5483 22258 3.5723 6.1268 11.2664 21.5920 42.6260 64.847%
FOCAL - Finetuned | 0.2639 0.4035 0.6932 12597 24553 45907 92683  18.6447 o7
TSMixer Supervised 0.3526 0.5386 0.8981 1.5925 3.0116 5.8583 11.5925 24.8614 54.949
FOCAL - Finetuned | 0.1215 0.2092 0.3825 0.7470 14690 28076  5.6527  12.9797 S

Training Time on Raspberry PiDevice



Challenge:

WENE

Auto-Encoders for
Embedded
Computing




Masked Autoencoders

> Error?

Masking “Encoder” Decoder

(Dimensionality ‘ (Reconstruction)
Reduction)

>

Semantic encoding
in a sufficiently
high-dimensional
space

| .
|

Representation
in a Latent Space

Observation Validation




[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal IoT Sensing,” In Proc. The Web Conference (WWW), May 2024.

Challenges

i i 0 @y o
1. No Scale and Shift Invariance Fhgtiik £ e
@ Position and scale shifts in spectrogram imply - jw o i u J o
semantic differences. R 1)\ o B DO (17, TPY wgvietricroiisti
[ il ﬂmyﬁﬁ Ay & i Lo Lﬂﬁ F e

2. Multi-Modal Fusion is Essential

Each sensor modality offers unique insights, and their ;17" ISR, | SN Lk .
. . . o ! I
fusion leads to a richer understanding. e T e e e
a) Moving Vemacle 2t &= T seconds ) Moving Velcle at &= T+1 seconds

Audio FFT signatures for a moving vehicle. ) The
3. Varied Information Density across Spectrum presence of characteristic peaks in localized regions needs

S; | and noise h diff td ities in diff N local harmonic associations and shift-sensitive representa-
9 Ignal and NOISE have different aensities in dirreren tions. @) Higher frequency regions mostly contain noise.
parts of the spectrum.
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Modal loT Sensing,” In Proc. The Web Conference (WWW), May 2024.

FregMAE

1. Timeseries Spectrogram (TS) Transformer: Transformer incorporating localized attention with a spectrogram-
compatible shifting mechanism.

2. Factorized Modality Fusion: Learns private embeddings for modality-specific information and shared embeddings for
cross-modal representations.

3. Weighted Loss Function: Emphasizes lower frequency within samples, and higher energy samples across datasets for
efficient self-supervised pretraining.
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Modal loT Sensing,” In Proc. The Web Conference (WWW), May 2024.

Evaluation

Datasets: Four different public datasets from two application domains
> Vehicle Classification (VC): ACIDS and MOD
> Human Activity Recognition(HAR): PAMAP2 and RealWorld-HAR

Preprocessing: Create spectrograms via FFT after splitting time-series to evenly sized
sample windows

Training: Divide dataset runs to train-validation-test sets (roughly 8:1:1)
Table 1: Dataset Summary

Dataset # Classes Modalities® # Samples Application
MOD 7 MP, S 39,609 VC
ACIDS 9 MP, S 27,597 VC
RealWorld-HAR 8 A G ML 12,887 HAR
PAMAP2 18 A, G,M 9,611 HAR




[15] Denizhan Kara, Shengzhong Liu, Jinyang Li, Dongxin Liu, Tianshi Wang, Ruijie Wang, Yizhuo Chen, Yigong Hu, Tarek Abdelzaher, “FreqMAE: Frequency-Aware Masked Autoencoder for Multi-
Modal loT Sensing,” In Proc. The Web Conference (WWW), May 2024.

Evaluation

* Improved classification accuracy compared to other approaches (especially
when the amount of labeled data (for training and/or fine-tuning) is low

* Reduced need for labeled samples

—— Supervised ——CMC -—— Cosmo SimCLR ——T52Vec ——TS-TCC —— Vanilla MAE LIMU-BERT —=— FreqMAE
1.0 1.0 1.0 1.0
08} 08} 0.6 — 08
E{]_E - E{]_E : gu_ﬁ S - gu_ﬁ -
=] 3 3 3
ﬁﬂ_d- ﬁﬂ_d- §[]_4- §[}_4-
02F 0D2F 02 02r
00 —00% 10% % %0 oo% 10% 1% 20 0% 10% 1% 90 005 10% 1%
Labeling rate Labeling rate Labeling rate Labeling rate
(a) ACIDS (b) MOD (c) RealWorld-HAR (d) PAMAP2
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Masking Strategies

PAMAP RWHAR ACIDS

Metric Acc Fl Acc Fl Acc Fl
CMC 0.7571 0.7223 0.8211 0.8384 | 0.7836  0.6452
Cosmo 0.7910  0.7469 0.8529  0.7968 0.8776  0.7298
S1ImCLR 0.7346  0.6635 0.7830  0.7181 0.5658  0.4879
TS2Vec 0.5706  0.4942 0.6117 0.5002 | 0.6539 04913
TS-TCC 0.7871 0.7107 0.8684  0.8227 0.8758  0.7400
Vanilla MAE | 0.7382  0.6999 0.8638  0.8700 | 0.8521 0.6908
LIMU-BERT | 0.7847 0.7612 0.7946  0.7261 0.5023  0.3171
AudioMAE 0.7808  0.7478 0.8163  0.7437 0.7845  0.6120
PhyMask 0.8056 0.7719 | 0.9059 0.9137 | 0.9265 0.8044

Tables show
improved
performance
with a new
masking
strategy
(PhyMask)
that prefers
masking
semantically
significant
regions



Deployment Experiments

— 20m —

I MOD-A I I MOD-B I I MOD-C I
| [l Sensor Locations : =

4— 120m —P» +—

110m —» <4+—— 0m —»

MOD-A MOD-B MOD-C

Metric Acc F1 Acc F1 Acc F1
CMC 0.7415  0.7390 0.5760 0.4983 0.6412 0.5691
Cosmo 0.4205  0.3059 0.5816 0.5214 0.5496 0.2376
SimCLR 0.6733 0.6685 0.5377 0.3922 0.6107  0.3730
TS2Vec 0.6563  0.6439 0.5260 0.3521 0.5725  0.4487
TS-TCC 0.6051 0.5910 0.5012 0.1720 0.5802  0.4099
Vanilla MAE | 0.8580 0.8602 0.6626 0.6347 0.6794  0.6326
LIMU-BERT | 0.5000 0.1667 0.4233 0.1983 0.5649  0.2407
CAV-MAE 0.4801 0.4431 | 0.50309 0.21076 | 0.5419 0.3409
AudioMAE 0.5113 0.4981 0.4839 0.3475 0.4961 0.4571
FreqMAE 0.8750 0.8766 | 0.6885 0.6622 | 0.7710 0.7340

Testing in three locations: A, B, and C.




Conclusions

The recent Al/ML revolution is a key opportunity for reaktime
computing!
> We specialize in managing bottleneck computing resources.

— Al/ML is creating the world’s largest computing bottleneck!
= Exploit latency/quality tradeoffs in computing and communication
= Prioritize data processing (i.e., attention scheduling) to meet latency constraints
= Derive spatial-temporal real-time attention bounds
= Explore the impact of thermal control, DVFS, etc.

o We specialize in embedded computing
- Embodied Al is embedded Al

Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, ...)

Al + RT/Embedded collaborations could bring a wealth of new perspectives
and applications



Al is Creating the World’s Largest Computing
Bottleneck

Moore’s Law: Capacity doubles every 18 months.

Al model size doubles approximately every 3.4 months.
https://www.computerweekly.com/news/252475371/StanfordUniversity-finds-that-Al-is-outpacing-Moores-Law
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Emerging Applications in Human Interactions

Creating new interaction spaces (between humans and the environment),
not natively supported by the underlying physical objects.
Virtual Reality: Manipulate human perception Ubiquitous Computing (loT): Embed computation into

to create (virtual) spaces that allow novel the environment to create (smart) spaces that allow
computationally-enabled interactions novel computationally enabled interactions

Virtual Physical

Virtual Reality 0 Embodied Virtuality ,"}
T (Ubiguitous Computing) ""J“

B "

Mark Weiser’s cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)



Emerging Applications in H:iman Interactions

Login

Creating new ir*~
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Carnegie Mellon University

Newsroom

PRESS RELEASE
10 June 2024

visionOS 2 brings new spatial
computing experiences to
Apple Vision Pro

Powerful new capabilities come to Apple Vision Pro just
months after its U.S. release, including a new way to turn
favorite photos into spatial photos, new gestures for
navigating visionOS, and more ways for developers to take
advantage of spatial computing

Extended Reality Technology Center
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International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, June 2023.

Why Now?

Virtual reality and ubiquitous computing visions have existed for over 40
years. Why an emerging application now?

Virtual Physical

Virtual Reality o Embaodied Virtuality ,"}

Mark Weiser’s cartoons about Ubiquitous Computing vs. Virtual Reality (late 80s)



How Do Content-

Centric Applications
Rise?




How Do Content-Centric
Applications Rise?

Hint: When the cost of content creation is lowered

* YouTube? (2005)

* Promoted by the proliferation of
camera phones




How Do Content-Centric
Applications Rise?

Hint: When the cost of content creation is lowered

 Instagram? (2010)

* Promoted by the proliferation of
digital photography




How Do Content-Centric
Applications Rise?

Hint: When the cost of content creation is lowered

* Internet of Things? (~ 2010)

* Promoted by the
proliferation of cheap
sensor data (and
connectivity)



What about
Immersive
Computing?




What about Immersive
Computing? (~ now)

Hint: When the cost of content creation is lowered

* 360 cameras (Content Capture)

e Generative Al (Creative
Authorship)



Cultural

- o ) Preservation
300 VI: ;
etaverse \ I ,. T. o ?IH/[”W
dbo eiCl s L : B
—= Art and Culture
Media and
, Entertainment
VR Gaming _
Ap p| ications e e =
HIS 7| HA e o
= ~Live | ] "
é § Sports Services

o o (Metaverse Seoul) |

eeeeeeeeee

Training and Simulation

Digital Twins/Design Teleconferencing/Workspace



Immersive Computing:
A Computing Services Perspective
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Application:

Observational Science at Scale
From Millions of Observations to Compact Models of Phenomena

M Observations

Laws of

Gravity?

~  Validation




Towards a Science of

Observational Social-Information Dynamics

In the 17t Century

A new observational
instrument (Galileo’s
Telescope)

&

A new latent state
representation
(discovery of gravity)

A science of the motion of '

object positions in physical
space

Newton’s Laws
of Mechanics

-, wp a e

A science of the motion of
human positions (beliefs)
in ideological space

A new observational
instrument (Online
Social Media)

&

A new latent state
representation
(network embedding)

¥

Observational Social-
Information Dynamics
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Learning with Information-Theoretic Variational Graph Auto-Encoders,” In Proc. SIGIR, Madrid, Spain, July 2022.

|deological (Belief) Embedding

(i) Dimensions represent different views Infer those:
(i) Nodes move depending on their view adoption Said What T Ny
(iii) The original is “neutral” @QQPC&E D eologies A
? % ° of belief @QQP@D
Version 1.0: Non-negative o & Matrix ® o|[1 e e o
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(Predict Escalation/Radicalization/Reconciliation)

[18] Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy,
Christian Lebiere, and Boleslaw Szymanski, “The Paradox of Information Access: On Modeling
Polarization in the Age of Information,” IEEE Transactions on Control of Network Systems, Accepted
in 2023.

plication: Social Dynamics Forecasting

The dynamic trajectories of beliefs predict future
population opinion distribution

Predicting (and defending against) the potential
impact of adversarial manipulations in the
information space

Ideological polarization in the US congress

The Paradox of Information Access: On § s - .
Modeling Polarization in the Age of Information 3, -

Chao Xu, Jinyang Li, Dachun Sun, Jinning Li, Tarek Abdelzaher, Jesse Graham, Michael Macy,
Christian Lebiere, and Boleslaw Szymanski

Abstract— The paper derives a new nonlinear stochastic
model of evolution of human beliefs that demonstrates
how an increase in democratized information production
and sharing, combined with consumers’ confirmation bias
and natural bias for outlying content, result in increased
polarization. The model shows that the evolution of human
beliefs can be approximated by a nonlinear diffusion-drift

random factors and influences contribute to diffusion. The
diffusion-drift equation predicts a steady-state belief distri-
bution in which increased access to information production
and sharing contributes to increased levels of polarization.
The extent of this effect depends on the relative strength of
drift versus diffusion terms. Anecdotal empirical evidence is

equation in which systematic psychological | con-
tribute to drift, whereas other random influences contribute
to diffusion. The nonlinear formulation predicts a growth
in polarization that is attributable to increasing information
production and sharing. While the core contribution is an-
alytical, an anecdotal model parameter fitting to empirical
data is also presented. Specifically, we show that our model
closely predicts the changing and increasingly polarized
distribution of ideology of members of the US Congress
over the last quarter-century (taken as an approximate
proxy for shifts in the US population ideology), when we
take the mobile phone penetration curve as a proxy for de-
mocratization of information access. The model suggests
that escaping the polarizing forces in the age of information
access may be an uphill battle.

Index Terms— Social networks; dynamic models; polar-
ization; paradox of information access.

I. INTRODUCTION
In this paper, we ask the question: how do increasing
information production and sharing relate to societal polar-
ization? A model is derived that shows that human beliefs
follow a diffusion-drift equation in which ingrained systematic
psychological biases contribute to belief drift, whereas other

presented that at least some societies may indeed be operating
in a regime consistent with a non-trivial information-access-
facilitated polarization growth. Specifically, for the US, the
model accurately predicts the growing polarization of the US
Congress, taking as input the technology penetration curve
for mobile phones (as a proxy for democratized information
access and sharing) in the last 25 years.

The work is motivated by the historic change in information
access patterns in the 21st century. Over the course of most of
human history, information breadcast has been prohibitively
expensive. It required significant investments (e.g., having a
radio station or a publishing house). With the invention of the
Internet, the barrier to making content available for potentially
global consumption was significantly reduced. We say that
“information broadcast™ (both access and sharing) has become
democratized. While the benefits of democratizing information
broadcast are undeniable, it is interesting to model the impact
of this change on societal polarization (as such models are a
prerequisite to the design of proper mitigation policies for any
undesirable side effects).

The idea that increased access can facilitate polarization is
not new. For example, evidence suggests that the interstate

hiolitiratr ovetosr dm the [TQ myatr Featre I T R

Understanding impact of messages on beliefs:
Message > Message Embedding
Message Embedding (of consumed messages)
- Actor Embedding
Actor Embedding (+ Interactions)
- Next step Actor Embedding




Application:

Influence Pathway Discovery

[19] Xinyi Liu, Ruijie Wang, Dachun Sun, Jinning Li, Christina Youn, You Lyu, Jianyuan Zhan, Dayou Wu, Xinhe Xu, Mingjun Liu,
Xinshuo Lei, Zhihao Xu, Yutong Zhang, Zehao Li, Qikai Yang and Tarek Abdelzaher, “Influence Mapping on Social Media
based on Interpretable Ideological Embedding,” In Proc. 9th International Conference on Collaboration and Internet
Computing (IEEE CIC), Atlanta, GA, Nov 2023.
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-\ objects, and actions)

Model
Parameter
Estimation

> & S "apo R

© TN

3 %

Qﬁ
\ Simulation
Sengy mmmm) | and Prediction
Plego,,e? | Semantic precictve | Capabilities

Categories Simulation

Embedding

Exogenous
data

Exogenous —
Influence

sz zsllia

SE

-

=
Gy VA

DARPA INCAS DARPA SocialSim

* Characterize population
response to information
campaigns

* Multiscale modeling and
simulation techniques for online
information propagation and belief

* Segment populations by dynamics

observed response to
persuasion, and correlate
persuasion tactics with
population segment attributes

* Decoupling of macroscopic and
microscopic models (e.g., detailed
cascade models versus aggregate
trends)

Find (Community) 5 Identify 3 Construct , Distil
Nodes
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"~ Community Detection

DARPA MIPs

* Develop a toolkit for the
discovery, visualization, and
analysis of influence
pathways in the information
space.

* Develop “what-if”
capabilities for intervention
modeling



Conclusions

The recent Al/ML revolution is a key opportunity for reaktime
computing!
> We specialize in managing bottleneck computing resources.

— Al/ML is creating the world’s largest computing bottleneck!
= Exploit latency/quality tradeoffs in computing and communication
= Prioritize data processing (i.e., attention scheduling) to meet latency constraints
= Derive spatial-temporal real-time attention bounds
= Explore the impact of thermal control, DVFS, etc.

o We specialize in embedded computing
- Embodied Al is embedded Al

Learning from Sensor Data (in frequency domain, multimodal, harmonic structure, ...)

Al + RT/Embedded collaborations could bring a wealth of new perspectives
and applications
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