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Abstract—A major challenge in Industry 4.0/5.0 is to meet
stringent real-time and dependability requirements for cloud-
native components, which are starting to be adopted to stream-
line the development, update, and reconfiguration of industrial
applications. This paper addresses this challenge by proposing
the notion of partitioned containers: virtual machines running
on partitioning hypervisors but seen as containers from the
orchestration perspective. Partitioning containers pave the way to
novel orchestration primitives that take advantage of the hetero-
geneity of industrial infrastructures and ease the management of
real-time critical applications. We implement a Jailhouse-based
framework to build and seamlessly deploy partitioned containers
across heterogeneous industrial platforms. We use a probabilistic
model to drive orchestration decisions by considering factors
such as fault tolerance, replication, and the unpredictability of
complex hardware. Preliminary experiments show the feasibility
of partitioned containers in industrial settings.

Index Terms—Industrial applications, Cloud, Orchestration,
Containers, Virtualization, Isolation

I. INTRODUCTION

The Industry 4.0/5.0 vision relies on the replacement of
hardware elements with cloud-native components to simplify
the development and management of industrial applications
and reach a sustainable, flexible, and resilient environment.

Traditional cloud-native applications use virtualization to
simplify the management of services and guarantee elasticity,
flexibility, resiliency, and cost-effective resource usage. Hence,
in cloud environments mainly used virtualization technologies
prioritize consolidation over isolation, like OS-level virtual-
ization (i.e., containers) integrated with orchestrators (e.g.,
Kubernetes). However, cloud-native components running in
containers and virtual machines (VM) [1] cannot yet guarantee
low and predictable response times, availability, and reliability
required by industrial settings.

Conversely, the recent adoption of virtualization for indus-
trial applications (e.g., automotive and avionic) is pushed by
the need to achieve isolation while consolidating systems to
meet Size, Weight, Power, and Cost (SWaP-C) requirements
[2]–[4]. Thus, simplicity is prioritized over features to cope
with certification (e.g., ARINC-653, DO-178C, ISO 26262).

Partitioning hypervisors are gaining the limelight in this
perspective. They are a small software layer that exploits
hardware-assisted virtualization (e.g., Intel VT-x, ARM VHE)
to statically allocate hardware resources to a reduced set
of VMs [5]–[9]. Such VMs generally include applications

compiled with minimal Real-Time Operating Systems (RTOS)
and run bare-metal on the resources allotted to them.

Nevertheless, partitioning hypervisors require a remarkable
manual configuration effort, and are not supported by cloud
orchestration tools modified to support real-time and critical
applications, like our previous proposal [10]. Hence, real-time
critical applications cannot benefit from easy and automated
management at a scale, which includes deployment, network-
ing, scaling, and migration. The complexity is exacerbated by
the heterogeneity of nodes in industrial edge settings, which
may span from low-end multi-core embedded boards (even
with asymmetric cores, such as application and real-time pro-
cessing units) to fully-fledged server machines. Currently, such
heterogeneity is seen as an obstacle for cloud technologies, as
the same application must be recompiled or rewritten for a
different operating system or instruction set architecture.

In this paper, we aim instead to take advantage of industrial
nodes’ heterogeneity by introducing the notion of partitioned
containers, as the convergence between container orchestrators
and partitioning hypervisors. A partitioned container is an ap-
plication running bare-metal in an isolated partition of a board
managed by a partitioning hypervisor, but seen and managed as
any other container by cloud orchestrators. Hence, partitioned
containers provide a way to pack industrial applications, which
can run on diverse platforms of a cluster featuring diverse
implementations.

The inherent diversity allows for meeting stringent depend-
ability requirements. In particular, we introduce unprecedented
orchestration primitives to leverage diversity, namely Diverse
Replication, Seamless Migration, and Diversified Rolling Up-
date. For instance, a controller can be replicated on a fully-
fledged edge cloud server and on an embedded board to
avoid common mode failures through the diversity of the
implementation and platform. If a replica fails, it could be
migrated to yet another different platform, seamlessly.

We design and implement a framework to build and deploy
partitioned containers. Furthermore, we design a probabilis-
tic model for real-time tasks run in standard or partitioned
containers deployed over a cluster of heterogeneous nodes.
The model unifies the management of fault tolerance and
timing unpredictability, and it can be used by the orchestration
system when applying our orchestration primitives to plan the
deployment of tasks implemented with diversity to meet the



required dependability level.
In summary, our contributions are: i) the introduction of par-

titioned containers and a set of novel orchestration primitives;
ii) a framework that implements partitioned containers; iii) a
probabilistic model that accounts for containers implemented
with diversity to drive orchestration decisions; iv) preliminary
experiments to show the feasibility of partitioned containers.

II. PARTITIONED CONTAINERS

Containers are commonly defined as a standard way of
packing applications together with their required libraries,
forming a container image [11]. Following this definition, a
real-time application (e.g., a periodic POSIX thread) could
be either compiled against Linux libraries to become a Linux
container or compiled against a library RTOS (e.g., Zephyr,
NuttX), to be packed as a (bare-metal) container.

In our vision, partitioned containers can be regarded as
single binary real-time applications, which include their library
RTOS (i.e., libOS + RTOS, the ancestors of modern unikernels
[12]) to run in an isolated VM on a partitioning hypervisor.
Cloud orchestrators can manage partitioned containers as any
other container.

Although the Open Container Initiative (OCI) specifies [13]
how to divide a container image into layers to reuse the
layers containing libraries, an image containing only a single
executable file is still compliant with the OCI specification.

We define a platform as the hardware/software determining
the binaries within a container image. Thus, different platforms
require different container images for the same application.

For standard containers, which are based on general-purpose
OSes (e.g., Linux Docker containers), the platform is com-
posed of the OS and the instruction set architecture (ISA).
For example, the same application must provide two different
container images for Linux x86-64 and ARM64 platforms.

On the other hand, partitioned containers use bare-metal
images, which assume direct hardware control without any
virtualization layer. Hence, the device drivers used are specific
to a class of hardware within nodes, and a different partitioned
container image must be provided for each platform willing to
host the partitioned container. Although an image works only
for a subset of nodes, the variety of boards in an environment
is usually limited.

The availability of the same container for multiple platforms
enables unseen orchestration primitives, particularly relevant
for industrial settings. Such primitives are defined as follows:

• Diverse Replication: When an application should be
replicated for either redundancy (often dictated by safety-
related standards) or scalability reasons, this primitive allows
generating replicas considering additional constraints. The two
main considered constraints are (i) criticality, indicating the
criticality of the replicas, and (ii) replication mode, indicat-
ing how to configure the replicas, e.g., in Triple Modular
Redundancy (TMR), 2-out-of-2 configuration using different
networks. Given the number and criticality of replicas, along
with the replication mode, the primitive enables easy deploy-
ment of diverse replicas by selecting the nodes to spawn the

containers to comply with the constraints. For example, an
orchestrator can spawn a Linux container plus two partitioned
containers across three different platforms for an application
requiring three replicas. Diversity is guaranteed thanks to the
different container images used.
• Seamless Migration: This primitive allows the seamless

migration of containers between potentially heterogeneous
platforms while accounting for the isolation guarantees pro-
vided by the nodes. When a migration is required (e.g., upon
a node failure), the primitive allows respawning a container
onto a different platform with the same isolation guarantees
of the previous one. For example, the primitive transparently
migrates a container from a Xenomai-based node (popular
co-kernel for real-time) to another real-time Linux-based one
to achieve similar timing guarantees. If no node providing
comparable isolation guarantees is available, the primitive can
select a node with lower guarantees to provide a possibly
degraded service. For instance, a complex controller runs on a
powerful Linux-based edge server to leverage large computing
resources. Upon a failure, the controller can be migrated as a
partitioned container to a different platform to run a simpler
implementation, which can only provide minimal functionality
or bring the system to a safe state
• Diversified Rolling Update: Rolling updates gradually

replace the running application containers with updated ones,
guaranteeing a minimum number of running containers to
avoid downtime. In this regard, the primitive allows perform-
ing a diversified rolling update, where the containers to update
for each round are selected according to the platform. The
idea is to always keep diverse containers running on different
platforms to prevent common mode failures due to regression
faults affecting the same platform. Thus, during the update, the
primitive selects a number of diverse (if possible) containers
to stop, starts their updated version, and when the spawned
containers are ready a new update round starts.

III. PROPOSED FRAMEWORK

In the proposed framework, as in standard orchestration
systems, the user defines the desired state for a cluster of
nodes. The desired state includes not only information about
running containers, but also details about their requirements
in terms of isolation levels, physical resources, real-time
constraints, and other specific needs.

Each cluster node declares the maximum level of isolation
that can be provided to a container. While Linux-based (both
single and co-kernel architectures, see §VI) containers can
guarantee isolation only to a certain extent [10], a node
supporting partitioned containers can offer the maximum level
of isolation available.

The orchestration system assigns each container to a node
that can host it, i.e., the node i) has an image of the container
available (see §III-A), ii) provides an isolation level that
matches the container’s requirements, iii) has the necessary
resources available (see §III-B).



Fig. 1. Image building workflow for partitioned containers.

A. Partitioned Containers Image Building

To have an image available for a particular node, the
building process must integrate the creation of the images used
for partitioned containers.

Provided that a POSIX-compliant application must be pack-
aged in a container, the same source code can be used to build
both a standard Linux container and bare-metal images. The
image building process is depicted in Fig. 1.

When building for Linux, the application is compiled using
the application toolchain, and then an image containing both
the application and its required libraries is created. The OCI
specifies a standard for describing these images, which are
divided into layers that can be shared and reused by multiple
containers. For example, the base layer of an image might be
an Ubuntu image, containing Ubuntu libraries. A second layer
includes the libraries required by the application, and a third
layer contains the application binary. When the application
changes and a new image is built, only the last layer needs to
be modified and downloaded.

When building for a bare-metal image, a POSIX-compliant
RTOS or libOS (e.g., Zephyr, VxWorks, NuttX) can be used
to pack the application and a minimal OS into a single bare-
metal binary. In this context, the POSIX-compliant libOS
RTOS acts as a minimal bare-metal runtime that abstracts
hardware resources. The building process targets a specific
node/boards, and relies on the platform descriptor typically
shipped with the RTOS. During the building stage, in addition
to producing bare-metal binaries, the process outputs binary
runtime information files. These files contain the necessary
information for the hypervisor to start a partitioned container.
For example, the binary runtime information file may include
the address space layout of the bare-metal binary, including
the virtual start address of the binary, as described in §III-B2.

We evaluated other designs, such as compiling an appli-
cation to WebAssembly (WASM) code and running it on a
minimal WASM runtime. However, we found that support for
real-time applications in WASM is limited and immature at the
time of writing. Additionally, the technology readiness level
of bare-metal WASM runtimes is still in its early stages.

B. Partitioned Containers Execution

Here, we depict the node stack needed for implementing
partitioned containers, comparing it with the architecture of a
Linux container stack (see Fig. 2).

1) Standard Linux Container Stack: An orchestration agent
present on each node of the cluster interacts with the container
manager through the Container Runtime Interface (CRI) API.
This interface exposes functions to manage sandboxes (i.e.,
a group of application containers in an isolated environment
with resource constraints) and their respective containers. The
container manager tracks the state and lifecycle of containers,
downloads or updates the container images, and manages
virtual networks for the containers. Specifically, the container
manager selects a suitable image version to download, accord-
ing to the target OS and ISA. Next, the container manager
relies on a shim daemon (typically one per container) to
interact with the low-level container runtime and the container
itself. The shim layer abstracts low-level runtimes and it
exists as long as the controlled containers. The shim daemon
interacts with the low-level container runtime through an API
defined by the OCI standard, which mandates exposing at
least a minimal set of functions to create, start, kill, delete,
and get the status of a container. The low-level OCI runtime
performs the system calls to configure the required resources
for the container. For example, in the case of Linux containers,
the low-level runtime performs system calls to configure the
cgroup and namespaces for the container, creates the pro-
cesses, and moves them into the container. Once a process runs
in a container, its access to hardware resources is regulated by
the kernel.

2) Partitioned Containers Stack: In the partitioned con-
tainer architecture, the container manager is responsible for
downloading images suitable for the specific platform.

The core of our proposed framework is runPHI [14].
runPHI is a low-level OCI runtime, responsible for creating,
starting, killing, and deleting partitioned containers. Instead
of relying on the containerization subsystem of the kernel,
runPHI configures a static partitioning hypervisor to create a
sandbox for the containers.

The static partitioning hypervisor statically allocates re-
sources to VMs operating on application processing units
(APUs), with APUs referring to the cores within an MPSoC
equipped with MMUs for memory access protection. Our
vision extends to the utilization of an Omnivisor [15], which
expands upon the static partitioning hypervisor model. It
enables partitioning to encompass co-processors lacking MMU
protection, such as Real-Time Processing Units (RPUs) or
soft cores on FPGA. This capability is essential in critical
systems, where predictable cores, like RPUs, are required for
high-criticality tasks. For instance, the Omnivisor can establish
a partition featuring an RPU, a sensor, and an actuator,
while leveraging paravirtualization to facilitate the exchange
of network traffic through a management VM. Once the static
partitioning through the Omnivisor is configured and started,
runPHI relies on custom daemons to create a bridge with the
partitioned containers. In particular, the daemons are in charge
of maintaining the status consistency and the communication
channels concerning the partitioned containers. The current
network management in partitioning hypervisors lacks real-
time guarantees. However, several approaches can enhance this



Fig. 2. Linux container stack (on the left) vs. partitioned container stack (on the right).

aspect. One approach is to use a broker to manage the network
[16]. Another method involves using a board with multiple
network interfaces partitioned and assigned to different VMs
[17]. Additionally, hardware support such as SR-IOV with
real-time capabilities can be used [18].

In Fig. 3, a high-level architectural description of runPHI
internal is depicted. The topmost layer maintains compliance
with the OCI APIs. Below that, an intermediate layer addresses
the semantic mismatch between parameters and data structures
belonging to containers and concepts associated with VMs.
The intermediate layer relies on the bottom layer, which
is hypervisor-specific. This hypervisor-specific layer contains
commands to manage the partition lifecycle. Most partitioning
hypervisors, as well as Omnivisors, rely on a configuration
file to specify the resources assigned to a partition. Hence, a
component that automatically generates the configuration file
is necessary. This component must adhere to the indications of
a resource manager, which tracks available resources on nodes
over time. The output of the configuration generator is a file
containing all details for running partitioned containers on the
target platform. To achieve this, it relies on the information
provided in a binary runtime information file shipped with the
bare-metal image (see Fig. 1) and the container configuration.
For instance, the image description contains the virtual start
address where the binary must be loaded in memory, which is
utilized to program the virtual-to-physical address translation
provided by the Omnivisor. If necessary, the configuration
generator may fill the gaps with predicted values for missing
resources in the container description, according to requests
from the orchestration platforms and the current usage of
hardware.

IV. MODEL

We here introduce a model to show how the orchestration of
partitioned containers can be considered in the system design.
The main idea is to create a general framework that unifies the
management of fault-tolerance and non-deterministic timing
effects under a joint probabilistic model.

Fig. 3. High-level architectural description of runPHI, highlighting the
interactions of the configuration generator and partition management.

Indeed, on one hand, in a distributed edge system, nodes
have different hardware/software characteristics and hence
timing guarantees. In some cases, it is either barely impossible
or overly pessimistic to precisely define the Worst Case
Execution Time (WCET) [19]. For example, a real-time Linux-
based container running on complex Commercial Off-The-
Shelf (COTS) hardware presents fewer timing guarantees due
to interferences than industrial machinery equipped with a
minimal real-time system.

On the other hand, simplistic assumptions are often used
in fault tolerance techniques for real-time systems [20]. For
example, assumptions include a well-defined WCET , perfect
error detection, guaranteed time between faults/failures, lim-
ited fault/error model, etc. For example, in [20], the authors
acknowledge that dealing with permanent failures different
from total system failure is complex because they also include
fail-partial and fail-slow behaviors.

The timing nondeterminism (due to complex hardware)
and the fault tolerance are generally addressed separately.
With the proposed model, we aim to deal with different
node hardware/software determinism characteristics, sched-
ulers, and fault tolerance techniques, with the same theoretic
framework. This enables a holistic view of the system, in
which we only care about a task Worst Case Response Time



(WCRT). The WCRT hides the complexity of models and
assumptions local to a node, including failure behaviors, fault
tolerance techniques, and timing determinism.

To this aim, we use the probabilistic-WCET (pWCET
[21], [22]) random variable, to model both the inherent
hardware/software unpredictability and the possible longer
duration due to fault/failures handling or fail-slow behaviors.
In this sense, different errors like crashes, unexpected longer
executions, livelocks, and deadlocks, are all modeled like a
tail in the pWCET distribution.

Fig. 4. Example of combined WCRT . The fault-free execution has a
long tail due to interference caused by complex hardware. F1 and F2
are two different faults that cause a fail-slow behavior. For example,
F1 is a fault affecting the task itself, while F2 is a fault affecting a
higher priority task affecting the preemption time. A single task re-
execution may be accounted for in the WCET , assuming a single
transient fault. With a single WCRT we can account for all of this
weighted by its occurrence probability.

We model our edge cloud environment as composed of a
set of microservices Γg deployed across the cluster, which
provides functionalities to clients. A microservice is a set Λi

of k task replicas τi,j (with j ∈ [1, k]) deployed across one or
more nodes. Depending on the replication scheme, the replicas
can be either identical for load-balancing purposes, or diverse
for fault tolerance purposes.

Without a lack of generality, we assume a fixed-priority
periodic task model, but any other task model using pWCET
would work. A task is defined as τ = ( ⃗pWCET, T,D, p),
where ⃗pWCET is the vector of pWCET defined for the
cluster nodes that can host the task, T is the period, D is
the relative deadline, and p the priority level. A task τi is
assigned to only one cluster node. The pWCET depends on
the hardware/software characteristics of the node. In particular,
the assurance provided by the node in terms of resource
isolation, defined as A = f(α, β, γ) in [10], [23] determines
the skewness of the pWCET . In this sense, the pWCET
accounts for nondeterminism in hardware contention and
resource interference, but also fail-slow behavior, recovery
blocks, and forward error recovery.

Multiple tasks τi, ..., τk may be assigned to the same node,
competing for hardware resources and scheduled by the algo-
rithms characterizing a node. Thus, a stochastic response time
analysis determines how, from the task set on the node, a
pWCRT (probabilistic WCRT [24]) can be derived for each
task. We leave undefined the response time analysis formula
used because it could be different for each node. In this sense,
the pWCRT accounts for the scheduling algorithms along
with task re-execution, dropping, degradation, etc. that may
be implemented on the node. An example is shown in Fig. 4

A task fails if it is not able to respect its deadline (timing
failure) or it does not produce a correct output (including a
wrong result, or omission and crash failures). The failure prob-
ability of a task can thus be defined as shown in Equation 1,
where “correct val.” means that the task produces an output
and the output is correct. Note that the event that a task does
not produce a correct output can be modeled as an infinite
WCRT , lying in the pWCRT distribution.

P (Failureτi) = P (pWCRTτi > Dτi) =

= P (pWCRTτi > Dτi |τi correct val.)∗P (τi correct val.)+
+P (¬τi correct val.)

(1)

A platform guaranteeing a high degree of isolation therefore
has a lower failure probability compared to a platform that
prefers workload consolidation to isolation.

The task replicas composing a microservice may present
implementation diversity, and the nodes on which they are
deployed may have different assurance levels. This translates
to a deeply different pWCET , and consequently pWCRT ,
distribution for each task replica. Thus, each task τi,j ∈ Λi

(with j ∈ [0, k]) has its own P (Failureτi,j ).
The failure probability of a microservice depends on the

fault tolerance scheme adopted. For example, assuming that
the “at least one” scheme is adopted (i.e., the request is sent
to all the task replicas, and the first response is used), the
microservice fails to respond if all the task replicas in Λi

fail to respond, as expressed in Equation 2, which assumes
independent failures.

P (FailureΛi
) =

∏
j∈[1,k]

P (Failureτi,j ) =

=
∏

j∈[1,k]

P (pWCRTτi,j > Dτi)
(2)

We plan to extend the model to include applications repre-
sented by Direct Acyclic Graphs (DAG) of microservices and
consider the graph response time, similarly to [25].

V. PRELIMINARY EXPERIMENTS

We implemented a Jailhouse-based prototype of the pro-
posed framework to show the feasibility and potential of
partitioned containers. The runPHI implementation (see §3)
compiles the partition configuration file, loads the binary into
the partition, and finally starts it. We measured two metrics



commonly of interest for containers: boot times and isolation
from interference. We run the experiments on two ARM-based
boards commonly used in embedded edge computing scenarios
[26]: a Raspberry Pi 4B and a Xilinx Zynq UltraScale+
MPSoC ZCU104 (hereafter ZCU104).

The Raspberry Pi software setup included Docker v24.0.5
using runc v1.1.11, a Linux kernel v5.15 patched with
PREEMPT RT, and configured for real-time (debug options
disabled, no frequency scaling), CONFIG RT GROUP SCHED
enabled, and cgroups v1 configured. The Docker daemon was
configured to have all the cpu-rt-runtime available. Inside the
container, tasks run at 95 FIFO priority. The ZCU104 software
setup included the Jailhouse hypervisor v0.12 patched with
the Omnivisor extension [15] to run VMs on heterogeneous
cores. The privileged VM in Jailhouse (i.e., root-cell) runs
Linux kernel v5.15 patched with PREEMPT RT. In the RPUs,
Zephyr (a popular lib-OS RTOS) v3.22.1 runs as a VM.

To compare partitioned containers against Linux containers,
we utilized POSIX-compliant applications. We compiled the
same application source code twice: once for a Linux process
running within an Ubuntu Linux container, and once against
Zephyr to run bare-metal as a partitioned container. Note
that the code of the partitioned container is moved to the
Tightly Coupled Memory (TCM) (i.e., programmable on-chip
memories) of the RPU before running.

A. Boot Times
In each experiment, we measured boot times by sampling

the container creation timing. The start time was recorded
right before the execution of the low-level container runtime
(i.e., runc for Linux-based container, runPHI for partitioned
containers), while the end time was sampled as the first
instruction executed within the container. At the end of each
experiment, we cleaned the caches in both testbeds to avoid
dependencies. The image used in the experiment for the
Linux container is an Ubuntu image (76MB) containing our
executable file. The image used for the partitioned container
is a micro-ROS (16.8MB) compiled to run over an RPU of
the ZCU104.

Fig. 5. Cumulative distribution function of the boot times of the
solutions compared. The solutions show comparable boot times.

Fig. 5 shows the results. The time to boot a partitioned con-
tainer is comparable to a standard Linux container. Breaking
down its boot times, loading and starting the application on
the RPU takes 0.142 ± 0.001s. The rest of the time, which
contributes to almost the totality of the variability, is spent
compiling the Jailhouse partition configuration file.

As shown in [15], the application loading times with the
Omnivisor depend linearly on the image size. On the other
hand, Linux container boot times are comparable with the ones
measured in [27], where authors showed that multiple factors
can impact Linux containers’ boot times.

B. Isolation from Interference

We compared the isolation from interference between a
partitioned container and a Linux real-time container. The aim
is to show the potential of integrating the Omnivisor into
container orchestration, rather than evaluating the isolation
of partitioning hypervisor, already explored in-depth in [28].
This allows leveraging the flexibility provided by container
orchestration tools while keeping the isolation.

We compiled a periodic POSIX task performing matrix
calculations for both Linux and Zephyr OS (targeting the
ZCU104 RPU). We used the same compilation flags in both
building processes. In each experiment, we run the task
for 1000 iterations and measure the execution time of each
iteration. We run the experiments in varied stress conditions,
including an experiment with no co-located stress on the
node and experiments with co-located stress generated through
stress-ng. In particular, for each experiment, we apply one of
two stress types between memcpy and udp, and we repeat the
experiment with increasing stress intensities, i.e., 1, 2, 4, and 8
threads. These tests were chosen because they stress memory
and interrupt handling subsystems, known to be the two major
sources of interference, even in partitioning systems [28].

Fig. 6. Cumulative distribution function of the execution times in
varied stress conditions. Partitioned containers show constant times.

Fig. 6 shows the results. The partitioned container is about
3 times slower than the real-time Linux container: this is due
to the RPU clock frequency of the ZCU104, which is one-
third of the clock frequency of the Raspberry Pi. However,
the partitioned container outperforms the real-time Linux
container in terms of predictability. Despite the co-located
stress, the partitioned container exhibits the same execution
time (with a µs resolution) across all test repetitions. Indeed,
the code loaded in the TCM allows the application in the
partitioned container to avoid resource contention regarding
cache and RAM.



VI. RELATED WORK

A. Real-time Containers

Consolidated real-time operating systems like VxWorks
by WindRiver recently introduced the support of an OCI-
compliant container engine [29]. Besides industry products,
research studies also explored the use of containers to run
real-time tasks. Interesting surveys of those studies can be
found in [30], [31]. The most popular solutions include i) the
use of Linux with the PREEMPT RT patch [32], and a patched
real-time group scheduling (rt-cgroups) [33]; and ii) the use of
real-time Linux co-kernels, such as RTAI and Xenomai [34],
[35], and hierarchical schedulers or distributed monitors to
manage the hard real-time tasks belonging to containers.

The drawback of real-time containers proposed to date is
the bloated code base on which they rely, which prevents any
sound theoretical analysis and possible certification. Further-
more, Linux-based containers usually do not support advanced
isolation mechanisms (e.g., cache and bank partitioning, and
hardware virtualization support).

B. Hypervisor-based Containers

Sandboxed containers integrate the advantages of contain-
ers while inheriting hypervisor-based isolation. They allow
running the containerized applications inside minimal VMs
or unikernels in order to exhibit overhead and startup times
comparable to containers relying on OS-level virtualization.
IBM Nabla [36] and LightVM [37] build containers on top of
unikernels. Google gVisor [38] creates a dedicated guest kernel
for running containers. Amazon Firecracker is a hypervisor
designed to run miroVMs hosting sandboxed applications [39].
Kata Containers [40] are placed in a dedicated VM with a
prebuilt kernel optimized for orchestration. Xilinx proposed
RunX [41], which exploits Xen to run containers as VMs.

All the analyzed solutions are based on general-purpose
or type-2 hypervisors, which can provide isolation in terms
of security but do not guarantee a level of resource and
performance isolation suitable for hard real-time systems.
Finally, some proposals explored the use of paravirtualized
unikernels on top Xen for real-time contexts [42].

C. Partitioning Hypervisors

Partitioning hypervisors are designed specifically for indus-
trial environments, due to the high-level of resource isolation
and the reduced trusted code base, which enables certification.
An example is Jailhouse [43], a Linux-based partitioning
hypervisor developed by Siemens. Jailhouse enables asymmet-
ric multiprocessing to assign hardware resources to isolated
partitions at runtime. Bao [5] is a lightweight bare-metal
hypervisor for mixed-criticality IoT systems, providing strong
isolation, fault-containment, and real-time features. It does
not rely on Linux, but the partitions are statically defined
at boot time. Xtratum [44] is a paravirtualized partitioning
hypervisor providing strong temporal and memory isolation.
PikeOS [45] is a commercial hypervisor from SYSGO, used
in several industrial domains. It was proposed in conjunction
with an RTOS and Linux to consolidate both hard real-time

workloads and distributed processing scenarios [46]. In [15]
the authors propose the Omnivisor model. The model extends
the capability of static partitioning hypervisors to run VMs
on co-processors such as RPU or soft-cores while keeping the
partition isolated from a temporal and spatial point of view.
Partitioning hypervisors do not provide any means to automate
the application deployment, reconfiguration, orchestration of
partitions via cloud tools and DevOps workflows.

D. Fault-tolerance in Real-time Systems
In [20] common fault tolerance techniques in real-time

systems are surveyed, while in [24] methods for integrating
fault tolerance into probabilistic schedulability analyses are
surveyed. The surveyed papers are divided by fault tolerance
technique adopted: replicas/standby, re-execution, recovery
blocks, and checkpoint/restart. In some papers, like [47], a
combination of both spatial and temporal redundancy is used
for critical and non-critical code sections respectively. Those
papers have different assumptions/fault models. The assump-
tions include, for example, deterministic WCET , minimum
fault interarrival times, or maximum fault duration. In [24]
algorithms for probabilistic response time analysis are also
surveyed. They mainly rely on convolutions of probability
distributions. In [48] the pWCET is used to account for the
penalty caused by faulty cache banks, weighted for the fault
probability. The topic of fault tolerance for real-time tasks
in edge and cloud environments has been investigated [49],
[50]. In [25] the authors model an application as a graph of
microservice and determine the deployment that can guarantee
the response time while minimizing the number of replicated
tasks. In [51] authors proposed a scheduling for executing
cloud real-time applications that meet the reliability required.

These works mainly regard the scheduling of tasks and do
not consider tasks implemented with diversity as we do.

VII. CONCLUSION

We presented a novel framework for the orchestration of
partitioned containers, bridging the gap between partitioning
hypervisors and cloud orchestration systems. The framework
enables new orchestration primitives, i.e., diverse replication,
seamless migration, and diversified rolling update. Those prim-
itives mainly rely on the heterogeneity of architectures and
operating systems, typical of industrial scenarios. Additionally,
we proposed a probabilistic model of the system that uses
the primitives, jointly accounting for hardware nondetermin-
ism and faults/errors. Preliminary experiments demonstrated
the efficacy of our proposal. Partitioned containers exhibited
comparable boot times with regard to Linux containers, while
maintaining superior isolation, thereby reducing the likelihood
of deadline misses and system failures.
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“What really is pwcet? a rigorous axiomatic proposal,” in 2023 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 13–26.

[23] M. Barletta, M. Cinque, L. De Simone, and R. Della Corte, “Introducing
k4. 0s: a model for mixed-criticality container orchestration in industry
4.0,” in Proc. DASC/PiCom/CBDCom/CyberSciTech, 2022.

[24] R. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedulability
analysis techniques for hard real-time systems.” Leibniz Transactions on
Embedded Systems (LITES), 2019.

[25] L. Abeni, R. Andreoli, H. Gustafsson, R. Mini, and T. Cucinotta, “Fault
tolerance in real-time cloud computing,” in Proc. ISORC. IEEE, 2023,
pp. 170–175.

[26] A. Kalantar, Z. Zimmerman, and P. Brisk, “Fpga-based acceleration of
time series similarity prediction: From cloud to edge,” ACM TRETS,
vol. 16, no. 1, pp. 1–27, 2022.

[27] M. Straesser, A. Bauer, R. Leppich, N. Herbst, K. Chard, I. Foster, and
S. Kounev, “An empirical study of container image configurations and
their impact on start times,” in Proc. CCGrid. IEEE, 2023, pp. 94–105.

[28] J. Martins and S. Pinto, “Shedding light on static partitioning hypervisors
for arm-based mixed-criticality systems,” in Proc. RTAS. IEEE, 2023,
pp. 40–53.

[29] Windriver. Containers at the Intelligent Edge. https://www.windriver.
com/resource/containers-at-the-intelligent-edge. As of June 21, 2024.

[30] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-time
containers: A survey,” in Proc. Fog Computing and the IoT, 2020.

[31] R. Queiroz, T. Cruz, J. Mendes, P. Sousa, and P. Simões, “Container-
based virtualization for real-time industrial systems—a systematic re-
view,” ACM CSUR, vol. 56, no. 3, pp. 1–38, 2023.

[32] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on preempt rt,” ACM CSUR, 2019.

[33] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, 2019.

[34] M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia, “Rt-cases:
Container-based virtualization for temporally separated mixed-criticality
task sets,” in Proc. ECRTS, 2019.

[35] M. Barletta, M. Cinque, L. De Simone, and R. Della Corte, “Achieving
isolation in mixed-criticality industrial edge systems with real-time
containers,” in Proc. ECRTS. Schloss Dagstuhl - LZI, 2022.

[36] IBM. (2022) Nabla containers: a new approach to container isolation.
[Online]. Available: https://nabla-containers.github.io/

[37] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer)
than your container,” in Proc. SOSP, 2017.

[38] Google LLC. (2022) Google gVisor Homepage. [Online]. Available:
https://gvisor.dev/

[39] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in Proc. NSDI, 2020.

[40] Kata Containers. (2022) Kata Containers Homepage. [Online].
Available: https://katacontainers.io/

[41] Xilinx. (2022) RunX. [Online]. Available: https://github.com/Xilinx/runx
[42] K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen,

“Unikernel-based real-time virtualization under deferrable servers: Anal-
ysis and realization,” in Proc. ECRTS. Schloss Dagstuhl - LZI, 2022.

[43] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no
vm exits!(almost),” arXiv preprint arXiv:1705.06932, 2017.

[44] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded archi-
tecture based on hypervisor: The XtratuM approach,” in Proc. EDCC.
IEEE, 2010.

[45] SYSGO GmbH . PikeOS home page. [Online]. Available: https:
//www.sysgo.com/pikeos
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