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Abstract—The aim of this work was to test if WebAssembly
universal byte-code and wireless 5G technology, together with
edge computing, is suitable in the context of offloading real-time
control applications. To test these tools a dynamic offloading
strategy was implemented and tested on an inverted Furuta
pendulum, an inherently unstable and time-critical process, using
an edge node as the offloading target. The implementation is
considered dynamic because: 1) The local device which interacts
with the I/O of the process dynamically also sends the code of
the offloaded control application to the edge node. 2) The local
device dynamically decides on which controller should control
the process, either the local fallback Linear Quadratic Regulator
(LQR) or the remote Model Predictive Control (MPC) solver
compiled into Ahead-of-Time (AOT) WebAssembly (Wasm) for-
mat. The work concluded that Wasm run in interpreted form
was too slow to control the process, while AOT compiled Wasm
worked well with an execution time close to the native speed.
It was also concluded that data transfer using 5G technology
without URLCC was fast enough to balance the pendulum and
is suitable for offloading, other communication techniques were
also tested in this work including WiFi and wired Ethernet. In
the study we also developed a simple control quality measure
for decision making on when to use the offloaded controller and
when to use the local controller.

Index Terms—Dynamic Offloading, Edge Computing, 5G Net-
work, WebAssembly, MPC, CVXGEN

I. INTRODUCTION

There are many reasons for executing an application or parts
of it in the cloud or at the edge. The most obvious one is the
access to the compute power that the cloud provides.

More compute power means that it is possible to solve
larger control problems or solve the same problem more often
and/or faster. The controller type that is considered here is
Model-Predictive Control (MPC), where a quadratic optimiza-
tion problem is solved every sampling period. This can be
quite time-consuming if a standard off-the-shelf optimization
solver is used. Moreover, the amount of time it takes varies
from sample to sample. An assumption that one, sometimes
implicitly, make then is that it is simply not possible to
execute the controller in the local device, at least not at the
desired frequency. This may be true if one uses a small micro-
controller as local device. However, in our case the local device
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is a modern Linux laptop which has almost the same capacity
as the servers in the edge node. Hence, although it would be
possible to execute the MPC at this particular local device, we
pretend here that we have a much less powerful local device.
Offloading a controller can potentially give better control
performance due to the increased compute power. However,
this may be counteracted by the increased latency caused by
the communication between the local device and the cloud or
edge. Hence, there is often a sweet spot where the control
performance is maximized. Offloading the controller to a
potentially very powerful cloud data center that is far away
will decrease the performance and executing the controller
in the local device, if at all possible, will also decrease the
performance compared to the performance at the sweet spot.
The sweet spot can in many cases be the edge node.
Whenever a controller is offloaded there is always the risk
that no control action is returned to the local device. There are
several reasons for this. An optimization-based controller may
fail to obtain a feasible solution, i.e., a solution that meets the
optimization constraints. A wireless connection link can lose
the packet being transmitted. Hence, there is a need to have
a fallback controller in the local device to switch to if the
control signal is not returned within a certain deadline. In the
paper the fallback controller is a LQR controller, i.e., a state
feedback controller that only requires a few multiplications
and additions to implement, and which without any problem
can execute also on a very resource-constrained local device.

A. Research Questions

This work aims to explore dynamically offloading parts of a
control algorithm compiled to Ahead-of-Time WebAssembly
to an edge node and testing different communication technolo-
gies such as 5G, WiFi, and wired Ethernet by controlling a
Furuta pendulum in the upward position. More concretely, this
work aims to address the following research questions:

o How would a dynamic offloading strategy utilizing We-
bAssembly look like?

o What are the expected delays and control qualities of the
different communication mediums?

« How to evaluate different controllers during runtime?



B. Papers Outline

Section I introduces the paper and Section II presents an
overview of relevant topics used in this work. The offloading
implementation is presented in Section III and in Section IV
the obtained results are presented and discussed. Finally the
paper is concluded in Section V

C. Related Work

There has been extensive research conducted on various
aspects of offloading. Some researchers have concentrated
on implementing offloading techniques to conserve energy
and/or computational power [14][5][4]. Others have focused
on achieving code portability and migration between differ-
ent computing systems and architectures [13][21][11]. Some
have delved into the decision-making process of offloading,
determining when to offload [11][3], while others have sought
formal proofs of stability for different offloading aspects
[32][29]. The networking and infrastructure enabling offload-
ing have also been extensively studied, with some researchers
examining existing infrastructure while others aim to formalize
proposed networks for offloading [12] [25]. Given the breadth
of research on offloading, some scholars have focused on
summarizing the field through surveys. These surveys may
be specific to particular areas or more general in nature [19]
(1] [26] [31].

II. BACKGROUND
A. Furuta Pendulum

The Furuta pendulum is a two-link system, as can be
seen in Figure 1, where one controls the base in order to
balance the pendulum attached to it [9]. It is characterized
by the angles, 6, and ¢, representing the pendulum angle
and base angle, respectively. The angular velocities associated
with these angles are denoted as € and ¢ respectively, which
collectively are the states of the process, x.

Fig. 1. The process used in this work was a desktop Furuta pendulum, where
the angle between the pendulum and the normal is denoted 6 while the angle
of the base is denoted ¢.

In this paper, only control in the upward position, i.e., the
balancing, is considered. It is assumed that a human user

holds the pendulum in the correct upward position when the
controller is started.

The theoretical model of the Furuta pendulum used here was
derived by Gifvert, [10], using Euler-Lagrange equations.

B. MPC and LOR

Model Predictive Control (MPC) is a control strategy which
solves an online optimization problem every control instance
to obtain a control signal. This control signal both respects
constraints on the process states and the control signal; and
minimizes the cost defined by the problem formulation [28].

The MPC solver used in this paper was CVXGEN, [23].
CVXGEN automatically generates a solver written in C given
a small QP problem formulation.

The Linear Quadratic Regulator (LQR) is also an optimal
controller [20]. The main difference between it and the MPC
controller is that LQR has an analytic solution obtained using
the discrete-time (algebraic) Riccati equation, i.e., it does not
require solving an online optimization problem every control
instance, which reduces the computation time significantly.
This makes it suitable as a fallback controller in the local
device. The drawback with LQR is that the states and control
signals cannot be constrained.

The LQR solver used in this work was the d1gr function
provided by Matlab. d1gr returns the state feedback law for
the infinite horizon problem,[22].

C. WebAssembly

WebAssembly (Wasm) is a binary-code format executed
by a stack-based virtual machine [36]. Wasm was initially
developed for modern web browsers, but is now increasingly
used in cloud contexts. WebAssembly byte code is obtained by
coding in languages such as C, C++, or Rust and then compile
the code to Wasm [24]. The resulting binary code can then be
executed by a Wasm runtime such as WasmEdge.

WasmEdge can be used for executing Wasm code in cloud-
native environments, edge applications or integrated into pro-
grams written in languages such as C, Rust, or Go. WasmEdge
runs Wasm code in a sandbox environment to ensure a
secure execution environment independent of the underlying
operating system [35].

In addition, WasmEdge features a compiler that translates
WebAssembly into native machine code. This capability en-
ables WasmEdge to operate in Ahead-of-Time (AOT) mode,
leading to improved execution speed [34].

D. 5G and Edge Technology

5G is the fifth generation of cellular networks which is
said to be up to 100 times faster than 4G, have low latency
and greater throughput capacity than 4G [7] . 5G wireless
communication system is expected to support a broad range
of emerging applications, especially since the ultra-reliable
and low-latency communication mode (URLLC) is being
introduced. URLLC is one of the standout features of 5G tech-
nology and is designed to ensure ultra-reliable and low-latency
communication, especially crucial for mission-critical appli-
cations. URLLC guarantees good quality of service (QoS),



offering low radio latency of 1 millisecond (ms) along with
high reliability [16]. URLLC was, however, not used in this
work since wireless 5G routers with URLLC support are rare
and expensive.

Edge computing is a distributed framework which brings
processing and storage resources for applications closer to
where data is generated and/or consumed, in this paper at
the 5G base station. It opens up the opportunity for cloud
applications to be more responsive and faster to response. This
can make it possible to control mission-critical systems which
requires fast sampling [8].

E. Containers and Kubernetes

Since bother containers and Kubernetes where used in this
work they are presented here for completion.

Containers are a virtualization technology that can encap-
sulates all necessary software and dependencies required to
execute a program. Each container possesses its own file
system, process space, and network stacks, which are isolated
from the hosting operating system [15].

Kubernetes (K8s) is a container orchestration platform that
automates the deployment, scaling, and management of con-
tainerized applications, by abstracting the underlying infras-
tructure, making it easier to manage complex, multi-container
applications, [17][18].

III. IMPLEMENTATION

This section contains an overview of how the experimental
setup looked like, a conceptual overview of how the imple-
mentation works, and a detailed description of the four major
components in the implementation: Control Quality Measure,
CVXGEN, Local Device, and Remote Solver.

A. Experimental Setup

The devices used in the experiments presented in this work
are:

Furuta Pendulum: The Furuta pendulum is a mechanical
process developed by Ben Katz and modified by the Depart-
ment of Automatic Control at Lund University [27]. To interact
with the process the Moberg API was used, wish is an /O
interface for communicating with various lab processes in the
Department [2].

Local device (Host): The local device, also referred to as
the host, is the computer that is connected to the pendulum.
In this paper it was a Lenovo T15 laptop with an Intel Core
i7-10510U CPU @ 1.80GHz with a RAM of 16GB, running
Fedora Linux 38.

Remote solver: The remote system, i.e, the offloading target,
is a bare-metal Kubernetes edge node with seven servers
connected to the 5G base station using local IP breakout.
It is located in the Department of Electrical and Information
Technology at Lund University. The hardware information is
given in Table I.

5G router: The 5G router used to communicate with the
edge from the local device was an Askey 5G Sub6 with model
name NDQ1300-RoHS dongle.

TABLE I
EDGE NODE HARDWARE INFORMATION

Node CPU # CPUs RAM
1 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
2 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
3 Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz 20 15.8G
4 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
5 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
6 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G
7 Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz 16 15.8G

WiFi router: For the evaluations of WiFi and wired Ethernet
the WiFi router used to communicate with the edge was an
Archer Ax72 AX5400 Wi-Fi 6 Router.

B. Conceptual overview

To understand how the offloaded implementation works an
overview of how it runs is presented. The details are omitted
to make the basic idea clear. The details are presented in the
subsections that follow.

Upon start the remote solver does not have the MPC
algorithm needed to perform the MPC control. hence, it
simply waits for the local device to send the application.
The local device sends the MPC code to the remote solver
while controlling the Furuta using its local LQR controller
as illustrated in Figure 2. When the remote solver receives
the control application, it becomes ready to receive offloading
requests from the local device.

CVXGEN.wasm
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Remote solver
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Process

Fig. 2. When the local device starts it controls the process using its local
controller while sending the control application to the remote solver. In the
figure the LQR is the local controller and the CVXGEN.wasm is the control
application.

After sending the application the local device will monitor
the control quality of the pendulum. If the control quality
is deemed low, the local device will onload, i.e, control the
process using its local LQR controller to ensure stability.
Otherwise, if the control quality is deemed good the local
device will offload. When the remote solver receives an
offloading request it uses the MPC code to calculate a control
signal and sends it back to the local device.

If the response from the remote solver is revived by the
local device within a predefined time, the local device will
actuate the process with that control signal as illustrated in
Figure 3. Otherwise, if the deadline is missed the local device
will default to the local LQR controller as illustrated in Figure
4. This offloading logic is then repeated until the program is
terminated.



Local device (Host)

,—">—x——>((

Remote solver

CVXGEN.wasm

Process

Fig. 3. When the local device chooses to offload it wait for the remote solver
to return a control signal, if the remote solver returns a control signal within
a predefined deadline it will use that control signal to actuate the process.
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Fig. 4. When the local device chooses to offload but does not get any control
signal in time it will onload the control task and control the process using the
local LQR.

C. CVXGEN

The control application used in this paper is the CVXGEN
MPC solver.

Every time the CVXGEN solver is invoked, one must first
define a parameter list consisting of the states of the process,
the state matrix, the input matrix, and the MPC parameters,
such as the cost on the states, the cost on the control signal, the
maximum and minimum value of the control signal, and the
maximum rate change of the control signal. Since the process
and the MPC parameters remain unchanged in our case, they
are stored in a list and are reused every time the CVXGEN
solver is called along with the new states.

1) Wasm & WasmEdge: The CVXGEN solver is compiled
to Wasm and WasmEdge runtime is used to run it. To interact
with the code in Wasm format, a file named bridge.c was
implemented. This addition acts as a bridge to the CVXGEN
solver. It defines the global structures and creates an interface
between the CVXGEN solver and the program that interacts
with it. Subsequently, the source code of the solver and the
complementary bridge.c where compiled to Wasm using
Emcc, which is a compiler toolchain that compiles C, or other
programming languages that uses LLVM, to WebAssembly
[6]. When testing the Wasm CVXGEN controller on the
process it was observed that Wasm in interpreted form was
too slow for our use case. Therefore the CVXGEN Wasm
file was further compiled to AOT compiled Wasm using the
WasmEdge compiler [34].

D. Control Quality

In order to make an informed decision on when to offload,
it is important to determine the control quality of the process.
The underlying logic follows a straightforward principle: If
the cost, a measure of the control quality, is lower than a

predefined threshold the local device will offload the control
task to the remote solver. Otherwise, if the cost is higher
than the threshold, the local device will use the local fallback
controller to control the process and guarantee stability.

Various measures already exist to quantify the control
quality of a controller, such as Integral Square Error (ISE)
and Integral Time Square Error (ITSE) [30]. While these
control quality measures are widely used, they suffer from
a limitation relevant for offloading: they integrate the error
over the entire time span. Implementing this approach would
lead to a monotonically increasing cost which will eventually
causing the remote controller to be unused.

To address this limitation, we wrote our own simple control
quality cost function, represented mathematically as:

J(k) = 0.5(0% + 0% + ¢* + 6*) +05J(k —1). (1)

This cost consists of two components. Firstly, it incorporates
the squared deviation of the four states from their reference
value (which is zero). Secondly, it includes a fraction of
the cost from the previous time step. This dual-component
structure ensures the cost function’s responsiveness to dynamic
adjustments while maintaining a degree of stability for noise.

The scaling of the states in Equation 1 is 1, meaning that
the deviation of any of the states from zero contribute equally
to the control quality measure.

In the control quality measure presented, the control signal
is excluded to have similar structure as the already existing
control quality measures presented in [30].

E. Local device (Host)

The local device has four functions to perform:

« Sending the control application to the remote solver.

o Monitoring the control quality of the process.

o Deciding to either offload or onload.

o Preforming the offloading or controlling the process using
the local controller.

This is realized by four Posix threads (pthreads): Application
Sender, Control Quality Monitor, Controller, and Main. Every
shared resource between the different threads are protected by
semaphores to ensure mutual execution.

1) Application Sender: When the program is started one
thread called sender_thread is created. This thread does
the following tasks and terminates:

o Establishes a TCP connection with the remote solver.

¢ Sends the control application, which in this case is a AOT
Wasm compiled CVXGEN solver, to the remote solver.

e Sends the constant parameters that are needed by the
CVXGEN solver to the remote solver.

o When receiving a confirmation from the remote solver it
notifies the rest of the program to indicate that the remote
solver is ready to receive offloading requests.



2) Control Quality Monitor: The quality control monitor-
ing is implemented in control_quality_thread. This
thread performs the following tasks at a frequency of 1000
Hz. This frequency is larger than the frequency of the con-
troller, the rationale for sampling the control quality monitor
faster than the controller is to capture disturbances that occur
between the control samples.

o The states of the process are sampled.

o The measured states and the old control quality measure
are used to calculate the new control quality measure
using Equation 1.

3) Controller: The controller is implemented in the
regul_thread thread. This thread does the following tasks
with a frequency of 66.67 Hz.

o Actuate the process with the previously calculated control
signal.

o Samples the states of the process.

« If the control application and the model parameters are
sent to the remote solver and the control quality is good
the thread will offload the control task to the remote
solver using a UDP socket. Otherwise, the thread will
onload the control task.

o If the thread chooses to offload it waits for the response
from the remote solver. If the thread receives a response
within 14 ms it will use the control signal in its next
actuation. If the deadline is missed the thread will use
the local controller to control the process.

The reason behind offloading when the control quality is
already high is that the process is robust enough and can
afford to offload without risking its stability due to sub optimal
control signals from, e.g., bit flips.

To clarify the timing, two diagrams showing the two pos-
sible outcomes that could happen when the regul_thread
decides to offload are presented. In Figure 5 the remote solver
returns a control signal before the timeout deadline of 14 ms
while Figure 6 shows the timing when that deadline is missed.
The blocks in the time line are not drawn to scale and not all
details of the program are presented in the figures.

Timing diagram when the response deadline is not missed
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Fig. 5. The timing diagram of the local device when it decided to offload
and get a control signal within its timeout deadline of 14 ms.

Timing diagram when the response deadline is missed
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Fig. 6. The timing diagram of the local device when it decided to offload
and does not get a control signal within its timeout deadline of 14 ms.

4) Main: The main thread starts up the other threads upon
launch and remains inactive until the end of the execution of
the program.

FE. Remote Solver

The remote solver is the offloading target for the local
device and has two functionalities:

« Receive the control application from the local device
using a TCP connection.

o When a request is received, it uses the control application
to calculate the control signal and sends it back to the
local device using an UDP socket.

The remote solver is implemented using three pthreads.

1) The application receiver: When the remote solver pro-
gram is started a thread called receiver_thread is cre-
ated. This thread blocks the rest of the program until the
control application is received. The AOT-compiled Wasm
file is then saved locally while the parameters are stored in
program memory.

2) The offloading request handler: When the remote solver
program saves the control application it starts two threads:
intermediary_thread and solver_thread, which
together handle offloading requests.

e solver_thread. This thread invokes the control ap-
plication and returns the control signal to the requester. It
does it by using the WasmEdge runtime to run the AOT
Wasm compiled solver.

e intermediary_thread. This thread acts as the in-
termediary between the local device and the CVXGEN
solver. It opens a UDP socket and starts listening for
incoming requests from the local device. When a request
from the local device is received it forwards it to the
solver_thread using UNIX sockets. The thread also
forwards the response from solver_thread thread
to the local device. This structure was chosen to asyn-
chronously stop the execution of the solver inside of
solver_thread when a new request is revived from
the local device, since the execution of the solver is
blocking.

Ideally, one would compile all the remote solver code to

WebAssembly and use WasmEdge to run it as Wasm container
[33]. The reason behind using Wasm is that the remote solver



and the control algorithm should be as platform agnostic as
possible since the offloading target might not be known in ad-
vance. However, this approach was not implemented because
WasmEdge currently lacks support for threads and UDP/TCP
sockets. Instead, the entire remote solver is encapsulated in a
container along with the WasmEdge SDK and library to allow
some flexibility in where the code could be run even though
the introduction of containers introduces a bit of overhead.

IV. RESULTS

Different types of experiments were conducted to explore
different aspects of the offloading strategy. The results of these
experiments are divided into four sections: Round-Trip Time
(RTT) delays for the control signal request, Timing of File
Sending, Control Quality, and Demonstration.

o RTT delays for the control signal request. The total
time it took from sending a control request, calculate a
control signal, and sending back the control signal to the
requester is presented for various configurations.

o Time for sending the solver file. The time it took to
send the solver file to the remote solver in different
configurations is presented.

o Control Quality. A presentation of how the different
configurations affected the control quality of the process.

o Demonstration. The pendulum angle, the control quality
measure and which controller is used are presented for
when the remote solver is deployed in an edge node and
the communication medium is the 5G network.

A. Timing for the Control Signal

Controlling an unstable system, such as the Furuta pendu-
lum, usually requires short delays. This Subsection presents
the delays across different configurations, classifying them into
two categories: Integrated control and Kubernetes control.

« Integrated control. All controllers tested in this Subsec-
tion are implemented in the local device without offload-
ing. This forms a baseline for how fast the controllers
are.

o Kubernetes control. In this Subsection the results of the
implementation written about in section III are presented.
The offloading implementation composed of the host and
a remote solver is tested. In this Subsection the remote
solver is the edge which is made up out of a Kubernetes
cluster.

In the Kubernetes control Section the RTT delay time is
the duration from when the local device request a control
signal from the remote solver until the local device received
a control signal as illustrated in Figure 3. In the Integrated
control Section the RTT delay time is simply the execution
time of the code since no offloading is performed.

1) Integrated Control: Integrated control refers to the sce-
nario where the pendulum is controlled by the host computer
without any offloading. In this Subsection four controllers
are presented: LQR, CVXGEN MPC written in C, Wasm
CVXGEN MPC and AOT Wasm CVXGEN MPC.

The time presented here is simple the execution time of the
control algorithms. The time measurements were done using
clock_gettime with the CLOCK_MONOTONIC clock. On
the hardware used, the smallest measurable time difference
was, on average, 20 ns.

LQR. LQR is the local controller, and having a fast fallback
controller is essential to ensure stability when a control signal
is needed in a short period of time.
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Fig. 7. Execution time histogram for the LQR controller in nanoseconds

As can be seen in Figure 7 the LQR controller is fast, with
an average execution time of around 120 ns. This performance
is expected, given the simplicity of the controller.

MPC C-code. The CVXGEN MPC controller, written in
C, is tested to determine the best-case scenario for the MPC
solver’s execution time. The average execution time is 1.3 ms,
i.e., much longer than for the LQR controller. This difference
can be attributed to the fact that the MPC controller must
perform an optimization to determine the control signal every
time step while LQR is given by a constant control law. The
length of the horizon plays a crucial role for the execution
time. In this work a horizon of 60 samples was used, which
is the number of steps the MPC formulation looks into the
future and optimize the states and the control signal subject to
the constrains. If the horizon were shorter the execution time
would decrease. Although some experiments were conducted
with controllers with shorter horizons, they proved to be
unreliable and no further experiments were done.

MPC Wasm. The execution time of the WASM CVXGEN
solver in interpreted form is notably slow, averaging 219 ms,
as presented in Figure 8. While it might be possible to stabilize
the pendulum by using a better model and/or a shorter horizon,
it would be challenging. For context, the longest period found
where it was possible to stabilize the Furuta pendulum was 50
ms using LQR while for MPC the longest period was 25 ms.
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MPC AOT Wasm. Interpreting Wasm is too slow to
stabilise the pendulum. Therefore, Ahead-of-Time (AOT) com-
pilation of Wasm was tested. The data presented in Figure 9 il-
lustrates a notable speed improvement compared to interpreted
Wasm.
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Fig. 9. Execution time histogram for MPC controller executed as AOT Wasm
in miliseconds

This efficiency gain comes at the cost of increased file size.
The AOT code gets integrated into the Wasm file, allowing it
to be executed either as interpreted Wasm or AOT-compiled
code. The initial size of the Wasm solver is 666 KB, while the
AOT Wasm file has a size of 1.3 MB, approximately twice as
large. This have two implications. 1) If the local device has
limited memory the solver might be too large to be stored
locally, and 2) It will take longer time to send the code to
the remote solver. It takes on average 1.8s sending the AOT-
compiled Wasm solver to the edge node using the 5G network.

2) Kubernetes Control: The edge node is a bare-metal
Kubernetes cluster connected to the network. The hardware
of the edge node used in this work is presented in Table 1. To
deploy the remote solver the container had to be run inside of
the Kubernetes cluster, hence Kubernetes control.

Since the only remote solver was the edge node, different
communication technologies where tested: 5G, WiFi, and
wired Ethernet. The connection to the edge was routed through
the Archer router for both the WiFi communication and the
wired Ethernet communication and through the 5G antennas
and the core network, i.e., with no direct connection between
the local device and the edge. Another detail to mention is
that we did not specify on which server in the edge node
that the remote solver was deployed. It was assumed that all
servers where equally fast. The collected data using the edge
as the remote solver and testing the different communication
technologies is presented in Figure 10 together with the
deadline of 14 ms mentioned in Section III-E.
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deployment inside of a Kubernetes cluster with the predefined deadline of
14 ms.

5G Communication. As shown in Figure 10, the majority
of the RTT delay time falls within the deadline defined, making
it possible for the local device to get back the majority of sent
offloading requests in a timely fashion. On average the RTT
delay for the 5G network was 11.6 ms. In this work standard
5G was used, rather than the URLLC 5G. This is because
we did not not have access to URLLC. This work, however,
demonstrates that a regular 5G network could be leveraged for
offloading.

WiFi Communication In this work WiFi 6 with a band-
width of 1Gbps was also investigated for offloading, since
WiFi is prevalent and accessible. In the experimental setup,
WiFi 6 had lower latency compared to 5G with an average of
4.8 ms.

Wired Ethernet Communication While wired Ethernet
offers high data transfer rates of 1Gbps, the trade-off is a
limitation on the flexibility of the local device and the process
due to the constraints imposed by the physical cable. Wired
Ethernet is the fastest communication technology with the
edge node with an average delay of 3.7 ms.

3) Overview: The different configurations presented above
are summarized in Table II.

Table III presents the average and worst-case execution
times for the different configurations. As can be seen the
worst-case time of the LQR execution is not visible in Figure



TABLE II
TECHNOLOGY USED IN THE DIFFERENT CONFIGURATIONS.
Name Remote Solver Com. Technology Controller
LQR none - LQR
MPC C-code none - MPC C-code
‘Wasm none - Wasm MPC
AOT Wasm none - AOT Wasm MPC
5G Edge node (K8s) 5G network AOT Wasm MPC
Wifi Edge node (K8s) Wi-Fi 6 AOT Wasm MPC
Wired Ethernet | Edge node (K8s) Wired Ethernet AOT Wasm MPC

7, this is because it was excluded since it was an outlier which
made the time resolution bad.

TABLE III
AVERAGE AND WORST-CASE EXECUTION OR RTT DELAY TIMES

Scenario Average Time (ms) Worst-case Time (ms)
LQR 0.00012 0.032

MPC C-code 1.3 6.4

Wasm 219 424

AOT Wasm 1.5 5.7

5G 11.6 15.8

WiFi 4.8 142
Ethernet 3.7 8.7

B. Timing of the File Sending

As mentioned in Section III-B, the solver file is sent to the
remote solver to achieve flexibility in choosing which control
application to use when offloading. In this implementation the
control application is sent once when the system is started
and does not change throughout the experiments duration,
we also assumed that the edge node has enough storage
capabilities to store the control application. No assumption
about the network stability and bandwidth availability where
made. The implementation does not preform any offloading
until the control application is sent to the remote solver and
the remote solver verifies receiving the file and parameters.

In Figure 11, the distribution on how long it took to send
the solver file to the remote solver are shown without the
outlier points. For each plotbox in the Figure we collected
around 10,000 data points. An exception was made for the
5G network where only 1300 data points where collected. It
is evident from the plot that sending the file to the edge using
the 5G network is the slowest. This has to do with the fact that
the network was configured to provide faster communication
time where some of the URLLC setting where enabled at the
expense of the throughput. The average and worst-case times
in milliseconds are presented in Table IV.

Boxplot for the time it takes to send the solver-file to the remote solver
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Fig. 11. The time it took to send the the AOT-Wasm file to the remote solver
in milliseconds for the different configurations, the Worst-case points were
excluded in this figure for all configurations.

In this implementation, the solver was sent using default
TCP sockets (the TCP_NODELAY flag was activated), no
encryption was added to have a secure data transmission. This
is sub-optimal since protocols for sending files securely and
reliably already exist.

TABLE IV
AVERAGE AND WORST-CASE TIMES OF SENDING THE AOT-WASM FILE
FOR THE DIFFERENT CONFIGURATIONS

Scenario Average Time (ms)  Worst-case Time (ms)
5G 1791 2336

WiFi 16 94

Wired Ethernet 12 265

C. Control Quality

Table V presents the control quality of the different config-
urations and the fraction of times the remote solver controls
the process, following the same naming as in Table II. For
each average value, we have collected 10,000 data points.

One can see from Table V that the control quality measure
seems to fluctuate even if the fraction of offloading is the
same and the same controller is deployed in the remote
solver, indicating that the control quality measure used is
too simplistic. Two possible reasons for that are the equal
weighting of the states and the exclusion of the control signal
from the control quality measure presented in Equation 1. The
equal weighting might be seen as a crude simplification since
the deviation of 6 is more severe and should result in a worse
control quality compared to the deviation of ¢. Using the same
weights as in the MPC and the LQR would probably provide a
better control quality measure. Including the control signal in
the cost would also result in a better control quality measure
since a large control signal usually which affects the control
quality.

D. Demonstration

In Figure 12, we illustrate the pendulum angle, 6, during
the dynamic offloading of the pendulum, using 5G to com-
municate with the edge node. Notably, the pendulum assumes
the upright position, as indicated by 6 being close to zero.
From the figure in the middle, it can be seen which controller
is used. Initially, the LQR controller controls the pendulum
while the solver file is being sent to the edge. The third graph
shows the control quality measure over time. The red dashed



TABLE V
AVERAGE VALUES OF THE CUSTOM COST FUNCTION FOR THE DIFFERENT
CONFIGURATIONS

Scenario Avg. Control Quality Measure  Frac. offloaded
LQR 43 0%

5G 2.67 91.05%
WiFi 6.41 97.95%
Wired Ethernet 2.03 97.55%

line represents the threshold used to decide if the remote or
the local LQR controls the pendulum. This threshold was
determined through experimentation. It can be observed that
the threshold is violated sometimes, causing the LQR to take
over the control. It is also interesting to note two things. First,
the control quality is more oscillatory with more spikes when
the LQR controller is controlling the pendulum, indicating
that we achieve better control when offloading, compared to
controlling it locally. Second, it is evident from the pendulum
angle, 6, that the pendulum fluctuates more when controlled
using the local LQR compared to the remote MPC which
means that the system is controlled better using the edge node
compared to the local control.
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Fig. 12. The first graph shows the pendulum angle, 6, the second graph shows
which controller is used to control the pendulum, and the third graph shows
the control quality and the threshold used.

V. CONCLUSION

As can be seen from the results, the offloading implemen-
tation did work for a different number of configurations.

It was determined that WebAssembly in interpreted form
was too slow to control a process with fast dynamics such
as the Furuta pendulum, but that AOT-compiled Wasm made
it more suitable for this use-case. The paper also found that,
although WiFi and Wired Ethernet were faster, the delays of
offloading to an edge node using a regular 5G network were
deemed short enough for offloading, as it could control the
pendulum. Finally, it was also noted that the control quality
measure used in this work could be improved by introducing
weights to the states and by including the control signal in the
control quality measure.

Notably the computational power of the host is sufficient for
both the MPC controller and the simple LQR controller. The
aim of this work was, however, not to control a system that
cannot be controlled by the host computer but to implement an
offloading strategy, develop a control quality measure, and to
demonstrate its capabilities by controlling a process with fast
dynamics. The strategy was tested on an older ES1-80 Lenovo
Laptop, which could not run the MPC controller locally at a
frequency of 66.67 Hz. It was found that offloading worked
effectively.

A. Future Work

The offloading strategy presented in this work can be
leveraged to explore additional offloading topics and future
work.

o In this paper, we assume that the resources at the edge
node are always sufficient for executing the MPC solver.
However, this is not always the case. The edge node may
be a shared resource used by several applications, raising
the issue of dynamic resource allocation.

o Another future topic to explore is the impact of network
latency when multiple devices are using the network.
It would also be valuable to experimentally test the
resilience of various communication technologies under
conditions where many devices are using the network
simultaneously.

« In this work, the offloading strategy was tested on a lab
process, and it proved to work well. To further demon-
strate the flexibility and usefulness of the implementation,
it would be beneficial to control a more practical process
using offloaded controllers.
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