
Self-Suspension Strikes Back
Jian-Jia Chen

Department of Computer Science
TU Dortmund University, Germany

jian-jia.chen@tu-dortmund.de

Mario Günzel
Department of Computer Science

TU Dortmund University, Germany
mario.guenzel@tu-dortmund.de

Georg von der Brüggen
Department of Computer Science

TU Dortmund University, Germany
georg.von-der-brueggen@tu-dortmund.de

I. INTRODUCTION

Self-suspension is when a task pauses its execution voluntarily, e.g., when offloading to another device or waiting for a shared
resource, and has been an activate research area from 1988. The review paper by Chen et al. [1] in 2019 shows that several of
these results have been flawed. In the last five years, new analytical results have mostly been limited to periodic tasks under
segmented self-suspension [2], [3], and sporadic tasks under dynamic self-suspension [4]–[6]. Furthermore, the generalization
of self-suspension results into different scenarios has been analyzed [7]–[9]. However, considering different release constraints
(frame-based, periodic harmonic, periodic arbitrary, and sporadic) and suspension models (segmented self-suspension, and
dynamic self-suspension), there have been almost no significant advancements for the most fundamental questions: (i) What
is the computational complexity of scheduling self-suspending task sets? (ii) When are self-suspending task sets schedulable?

More specifically, besides exploiting periodic releases to tighten suspension-oblivious analysis for dynamic self-suspending
tasks under Earliest-Deadline-First (EDF) [6], any extension of computational complexity results towards more general solutions
or exploiting additional information that comes from refined models either failed under several attempts from the authors or
resulted in only incomplete results. In this work, we discuss current solutions for (i) and (ii), and how they are limited to their
task model. It is surprising that even a minor modification of the task model is such a challenging endeavor.

II. TASK MODELS

We assume a set T = {τ1, . . . , τn} of n recurrent real-time tasks, which releases an infinite number of task instances
(called jobs). Each task τi = (Ci, Ti, Di) is specified by its worst-case execution time (WCET) Ci, its minimum inter-arrival
time or period Ti, and its relative deadline Di. The utilization of τi is Ui =

Ci

Ti
.

The period Ti is the minimum inter-arrival time between any two consecutive job releases of τi. A task is called (strictly)
periodic if any two subsequent job releases are always separated by Ti, while for sporadic tasks two subsequent releases are
always separated by at least Ti. A periodic task is further described by a phase parameter ϕi which indicates the time the
first instance of the job is released. We assume this parameter to be 0 for all tasks and omit it for convenience. For periodic
tasks, we consider two restricted, simpler scenarios. A task set is called a harmonic if for any two periods in the system, one
is an integer multiple of the other. A task set is called frame-based if all tasks have the same period. A task set has implicit
deadlines if Di = Ti ∀τi ∈ T, constrained deadlines if Di ≤ Ti ∀τi ∈ T, and arbitrary deadlines otherwise.

Two self-suspension models are primarily studied in the literature [1], [10]. The dynamic self-suspension task model specifies
a task τi as an ordinary periodic or sporadic task with an addition maximum total self-suspension time parameter Si, and task
τi may suspend itself at any moment before it finishes and infinitely often as long as the maximum self-suspension time Si is
not violated. The segmented self-suspension task model specifies tasks by an array (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi , Ci,mi+1) of
mi+1 computation segments separated by mi suspension intervals, where Ci,j is the worst-case execution time of a computation
segment and Si,j is the maximum length of a self-suspension interval. The hybrid self-suspension model [11] allows tradeoffs
between the restrictive segmented and the flexible dynamic model but is not covered in the following discussion.

III. COMPUTATIONAL COMPLEXITY OF EXACT SOLUTIONS

There are two correlated problems for task models with self-suspension. One is to design scheduling policies to generate
schedules and another is to design schedulability tests to validate whether there is no deadline miss of real-time tasks.
For computational complexity studies, the former one is to validate whether there exists a feasible schedule to meet all
timing constraints (denoted as the feasibility problem by Chen et al. [1]) and the latter one is to validate whether there is a
polynomial-time algorithm (denoted as a schedulability test) to validate whether all timing constraints are met for a specific
scheduling policy. Chen et al. [1] summarized, as recapped in Table I, the computational complexity classes of the feasibility
and schedulability problems to deal with self-suspension.

We note that the results in Table I consider sporadic real-time tasks with implicit deadlines. We now take a closer look
for frame-based, periodic (harmonic), periodic (arbitrary), and sporadic tasks. For frame-based real-time tasks with segmented
self-suspension, Chen et al. [17] showed that the feasibility problem is NP-hard in the strong sense even when there is one
suspension interval and the two computation segments are with unit execution time. This means that the other more general
task models with different recurrent behavior are all NP-hard in the strong sense.



Table I: The computational complexity classes of scheduling and schedulability analysis for sporadic self-suspending tasks
with implicit deadlines, from [1].

Task Model Feasibility Schedulability
Fixed-Priority Scheduling Dynamic-Priority Scheduling

Constrained Deadlines Implicit Deadlines

segmented self-suspension NP-hard in the
strong sense [12], [13]

coNP-hard in the
strong sense [14], [15]

coNP-hard in the
strong sense [15]

coNP-hard in the
strong sense [15]

dynamic self-suspension unknown (at least) NP-hard
in the weak sense [16]

coNP-hard in the
strong sense [15] unknown

Table II: Computational complexity for different task models for the feasibility problem.

Release Model Segmented Self-Suspension Dynamic Self-Suspension
Implicit Constrained Arbitrary

frame-based NP-hard in the strong sense [17] polynomial-time unknown unknown
periodic harmonic NP-hard in the strong sense, generalized from [17] unknown unknown unknown
periodic arbitrary NP-hard in the strong sense, generalized from [17] unknown unknown unknown

sporadic NP-hard in the strong sense [12], [13] unknown unknown unknown

Table III: Computational complexity for different task models for the schedulability test problem under fixed-priority scheduling.

Release Model Segmented Self-Suspension Dynamic Self-Suspension
Implicit Constrained Arbitrary

frame-based unknown polynomial-time polynomial-time unknown
periodic harmonic unknown unknown unknown unknown
periodic arbitrary unknown unknown unknown unknown

sporadic coNP-hard in the strong sense [14], [15] (at least) NP-hard in the weak sense [16]

For frame-based real-time tasks with dynamic self-suspension, the scheduling problem can resolved in polynomial time by
always prioritizing the task with the longer T − Si the higher priority, where T is the common period of the tasks. However,
all the other cases are unknown and remain open, even for frame-based real-time tasks with constrained deadlines. Table II
summarizes the computational complexity for the feasibility problem to deal with self-suspension tasks.

For the computational complexity for the schedulability test problem under task-level fixed-priority scheduling, there has
been no new result since the review paper [1] was published in 2019. Still, although schedulability tests for dynamic self-
suspension frame-based real-time tasks have not been studied, it is easy to see that this schedulability test problem can be
resolved in polynomial time for implicit deadlines or constrained deadlines. More specifically, the worst case for a job of τk is
achieved if all higher priority tasks τi execute for Ci time units without being suspended. Therefore, Ck +Sk +

∑
τi∈hp(τk)

Ci

is an exact upper bound on the worst-case response time of a task τk, where hp(τk) is the set of higher-priority tasks of τk.
However, all the other cases for periodic tasks remain open, as summarized in Table III.

IV. SUFFICIENT SCHEDULABILITY TESTS

In the previous section, we have discussed the computational complexity of determining the exact schedulability. jj:???As
a generalization of testing the exact schedulability, we consider sufficient schedulability tests in this section. Sufficient
schedulability tests, summarized in Table IV, use over-approximation, resulting in usually more pessimistic analyses with
less computational complexity. We observe that most analytical bounds are for the scenarios (i) periodic tasks with segmented
self-suspension, and (ii) sporadic tasks with dynamic self-suspension. The remaining scenarios are only sparsely examined. In
the following we first detail scenarios (i) and (ii), and then discuss the sparse literature for the remaining scenarios.

For scenario (i), i.e., periodic tasks with segmented self-suspension behavior, results usually convert self-suspending jobs
into a sequence of non-self-suspending jobs. The non-self-suspending jobs can for example be aggregated to be modeled

Table IV: Sufficient schedulability tests for different task models. Novel approaches in the recent five years are marked red.

Release Model Segmented Self-Suspension Dynamic Self-Suspension
frame-based – –

periodic harmonic – [18]
periodic arbitrary [19]; [20]4; new: [2], [3] new: [6]

sporadic [21]; [22]2 [23]–[25]; [26]1; [27]1; [28]3; new: [4]–[6]
1 Although the schedulability test is stated for periodic tasks, the proof in [23] shows the formula is applicable to sporadic tasks.
2 A fix for Section VI has been provided in [29].
3 A fix this test has been provided in [30].
4 Although the maximum number of execution segments is upper bounded, we classify this paper as dynamic self-suspension since there is no upper bound

on individual execution and suspension segments.



as non-self-suspending tasks as done by Palencia and Harbour [19]. Alternatively, exhaustive approaches are pursued, e.g.,
by examining possible schedules over one hyperperiod as done by Yalcinkaya et al. [2] using UPPAAL. To the best of our
knowledge, all results for non-preemptive scheduling are limited to the segmented self-suspension model. That is, there has
been no successful effort to analyze non-preemptive tasks under dynamic self-suspension.

For scenario (ii), i.e., sporadic tasks with dynamic self-suspension behavior, results typically apply the following analytical
approaches, as detailed in the review on self-suspending tasks [1]:

• Modelling the interfered task as suspension oblivious: The suspension of the interfered task is converted into additional
execution time.

• Modelling the suspension of the interfering task as carry-in, release jitter, or blocking: The maximum number of interfering
jobs is determined, and a carry-in job, release jitter or blocking term is added to account for the self-suspending behavior.

All results for scenario (ii) are designed for the preemptive task model.
Since 2019, there has only been one new analysis approach apart from scenarios (i) and (ii). Specifically, in [6] we are the

first to tighten the suspension-oblivious utilization-based test under EDF by exploiting the strict periodicity of job releases.
That is, besides scenarios (i) and (ii), to date there are only four results. Furthermore, it is unclear if those analyses indeed are
not applicable to sporadic tasks with dynamic self-suspension or if the categorization is only due to limitations of the existing
proof strategies. We conclude the following open questions:

• How can we exploit additional information that comes from a refined release model or suspension model? Especially,
how can we derive tighter analytical results for frame-based and periodic harmonic task sets?

• Are the analyses apart from scenarios (i) and (ii) using information of their respective task model or is their categorization
in the task model only due to a lack of more general proof?

• How can we design schedulability tests for dynamic self-suspending tasks under non-preemptive scheduling?

ACKNOWLEDGMENT

This result is part of a project (PropRT) that has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 865170).

REFERENCES

[1] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard, F. Ridouard, Neil, Audsley, R. Rajkumar, D. de Niz,
and G. von der Brüggen, “Many suspensions, many problems: A review of self-suspending tasks in real-time systems,” Real-Time Systems, 2018,
https://link.springer.com/article/10.1007/s11241-018-9316-9.

[2] B. Yalcinkaya, M. Nasri, and B. B. Brandenburg, “An exact schedulability test for non-preemptive self-suspending real-time tasks,” in DATE. IEEE,
2019, pp. 1228–1233.

[3] D. Casini, P. Pazzaglia, A. Biondi, and M. D. Natale, “Optimized partitioning and priority assignment of real-time applications on heterogeneous platforms
with hardware acceleration,” J. Syst. Archit., vol. 124, p. 102416, 2022.

[4] M. Günzel, G. von der Brüggen, K. Chen, and J. Chen, “Edf-like scheduling for self-suspending real-time tasks,” in RTSS. IEEE, 2022, pp. 172–184.
[5] M. Günzel, N. Ueter, and J. Chen, “Suspension-aware fixed-priority schedulability test with arbitrary deadlines and arrival curves,” in RTSS. IEEE,

2021, pp. 418–430.
[6] M. Günzel, G. von der Brüggen, and J. Chen, “Suspension-aware earliest-deadline-first scheduling analysis,” IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst., vol. 39, no. 11, pp. 4205–4216, 2020.
[7] F. Aromolo, A. Biondi, G. Nelissen, and G. C. Buttazzo, “Event-driven delay-induced tasks: Model, analysis, and applications,” in RTAS. IEEE, 2021,

pp. 53–65.
[8] K. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J. Chen, “Unikernel-based real-time virtualization under deferrable servers: Analysis and

realization (artifact),” Dagstuhl Artifacts Ser., vol. 8, no. 1, pp. 02:1–02:2, 2022.
[9] N. Ueter, M. Günzel, G. von der Brüggen, and J. Chen, “Hard real-time stationary gang-scheduling,” in ECRTS, ser. LIPIcs, vol. 196. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2021, pp. 10:1–10:19.
[10] J. Chen, G. von der Brüggen, W. Huang, and C. Liu, “State of the art for scheduling and analyzing self-suspending sporadic real-time tasks,” in 23rd

IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2017, Hsinchu, Taiwan, August 16-18,
2017. IEEE Computer Society, 2017, pp. 1–10. [Online]. Available: https://doi.org/10.1109/RTCSA.2017.8046321

[11] G. von der Brüggen, W.-H. Huang, and J.-J. Chen, “Hybrid self-suspension models in real-time embedded systems,” in International Conference on
Real-Time Computing Systems and Applications (RTCSA), 2017.

[12] P. Richard, “On the complexity of scheduling real-time tasks with self-suspensions on one processor,” in Proceedings. 15th Euromicro Conference
onReal-Time Systems, (ECRTS), July 2003, pp. 187–194.

[13] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling independent hard real-time tasks with self-suspensions,” in RTSS, 2004, pp.
47–56.

[14] M. Mohaqeqi, P. Ekberg, and W. Yi, “On fixed-priority schedulability analysis of sporadic tasks with self-suspension,” in Proceedings of the 24th
International Conference on Real-Time Networks and Systems, RTNS, 2016, pp. 109–118.

[15] J.-J. Chen, “Computational complexity and speedup factors analyses for self-suspending tasks,” in Real-Time Systems Symposium (RTSS), 2016, pp.
327–338.

[16] P. Ekberg and W. Yi, “Fixed-priority schedulability of sporadic tasks on uniprocessors is np-hard,” in 2017 IEEE Real-Time Systems Symposium, RTSS
2017, Paris, France, December 5-8, 2017, 2017, pp. 139–146. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/RTSS.2017.00020

[17] J. Chen, T. Hahn, R. Hoeksma, N. Megow, and G. von der Brüggen, “Scheduling self-suspending tasks: New and old results,” in 31st Euromicro Conference
on Real-Time Systems, ECRTS, S. Quinton, Ed., vol. 133, 2019, pp. 16:1–16:23. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECRTS.2019.16

[18] C. Liu, J.-J. Chen, L. He, and Y. Gu, “Analysis techniques for supporting harmonic real-time tasks with suspensions,” in 26th Euromicro Conference on
Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014, 2014, pp. 201–210.

https://link.springer.com/article/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTCSA.2017.8046321
http://doi.ieeecomputersociety.org/10.1109/RTSS.2017.00020
https://doi.org/10.4230/LIPIcs.ECRTS.2019.16


[19] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks with static and dynamic offsets,” in Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS), 1998, pp. 26–37.

[20] Z. Dong, C. Liu, S. Bateni, K. Chen, J. Chen, G. von der Brüggen, and J. Shi, “Shared-resource-centric limited preemptive scheduling: A comprehensive
study of suspension-based partitioning approaches,” in RTAS. IEEE Computer Society, 2018, pp. 164–176.

[21] D. Casini, A. Biondi, G. Nelissen, and G. C. Buttazzo, “Partitioned fixed-priority scheduling of parallel tasks without preemptions,” in RTSS. IEEE
Computer Society, 2018, pp. 421–433.

[22] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis, “Timing Analysis of Fixed Priority Self-Suspending Sporadic Tasks,” in Euromicro Conference on
Real-Time Systems (ECRTS), 2015, pp. 80–89.

[23] J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response time analysis framework for dynamic self-suspending tasks,” in Euromicro Conference
on Real-Time Systems (ECRTS), 2016.

[24] C. Liu and J. Chen, “Bursty-interference analysis techniques for analyzing complex real-time task models,” in Real-Time Systems Symposium (RTSS),
2014, pp. 173–183.

[25] J.-J. Chen, W.-H. Huang, and C. Liu, “k2U: A general framework from k-point effective schedulability analysis to utilization-based tests,” in Real-Time
Systems Symposium (RTSS), 2015, pp. 107–118.

[26] J. W. S. Liu, Real-Time Systems, 1st ed. Prentice Hall PTR, 2000.
[27] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu, “PASS: Priority assignment of real-time tasks with dynamic suspending behavior under fixed-priority

scheduling,” in Proceedings of the 52nd Annual Design Automation Conference (DAC), 2015, pp. 154:1–154:6.
[28] C. Liu and J. H. Anderson, “Suspension-aware analysis for hard real-time multiprocessor scheduling,” in ECRTS. IEEE Computer Society, 2013, pp.

271–281.
[29] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis, “Errata: Timing analysis of fixed priority self-suspending sporadic tasks,” CISTER-Research Centre in

Realtime and Embedded Computing Systems, Tech. Rep., 2017.
[30] C. Liu and J. H. Anderson, “Erratum to “suspension-aware analysis for hard real-time multiprocessor scheduling”,” 2015, https://cs.unc.edu/~anderson/

papers/ecrts13e_erratum.pdf.

https://cs.unc.edu/~anderson/papers/ecrts13e_erratum.pdf
https://cs.unc.edu/~anderson/papers/ecrts13e_erratum.pdf

	Introduction
	Task Models
	Computational Complexity of Exact Solutions
	Sufficient Schedulability Tests
	References

