
Towards a Self-Reconfigurable 
Infrastructure for Critical Adaptive 
Distributed Embedded Systems

Alberto Ballesteros

Julián Proenza

Manuel Barranco

Luís Almeida

Pere Palmer

3th of July 2018Universitat de les Illes Balears



Introduction

Distributed Embedded Systems typically have stringent 

real-time and dependability requirements.

When they have to operate under dynamic environments, 

they must also be flexible to be able to adapt to the 

changing operational requirements and conditions.

1 / 50



Introduction

Adaptive Distributed Embedded Systems (ADES) can 

rearrange themselves autonomously and dynamically

2 / 50



Introduction

Adaptive Distributed Embedded Systems (ADES) can 

rearrange themselves autonomously and dynamically

Adaptivity is and interesting feature in terms of:

• Functionality → Change the behaviour

• Efficiency → Load the necessary functionalities

• Dependability → Adaptive fault tolerance

3 / 50



Introduction

4 / 50

To properly implement an ADES it must be provided

with the appropriate architecture and mechanisms, that 

make it possible to fulfil its real-time, dependability and 

adaptivity requirements

The DFT4FTT project



To properly implement an ADES it must be provided

with the appropriate architecture and mechanisms, that 

make it possible to fulfil its real-time, dependability and 

adaptivity requirements

The DFT4FTT project

Introduction

5 / 50

Flexible Time-Triggered (FTT)

communication paradigm
• Real-time

• Flexibility

FTT Replicated Star (FTTRS)
• Reliability



To properly implement an ADES it must be provided

with the appropriate architecture and mechanisms, that 

make it possible to fulfil its real-time, dependability and 

adaptivity requirements

The DFT4FTT project

Introduction

6 / 50

Dynamic task allocation
• Flexibility

• Real-time

Active replication with

majority voting
• Reliability



Introduction

At the node level, the DFT4FTT architecture

is composed of various components

7 / 50



At the node level, the DFT4FTT architecture

is composed of various components

8 / 50

Introduction



At the node level, the DFT4FTT architecture

is composed of various components

9 / 50

Introduction



At the node level, the DFT4FTT architecture

is composed of various components

10 / 50

Introduction



At the node level, the DFT4FTT architecture

is composed of various components

11 / 50

• Monitor

• Detect

• Configuration

change

Introduction



Outline

12 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



Outline

13 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



Functionality

14 / 50

Task Model



Functionality

15 / 50

Task Model



Functionality → Application

Application: Set of distributed and interconnected tasks
that are executed in a sequential or parallel manner

16 / 50

Task Model



Functionality → Application

Application: Set of distributed and interconnected tasks
that are executed in a sequential or parallel manner

Task Model

17 / 50



Functionality → Application

Application: Set of distributed and interconnected tasks
that are executed in a sequential or parallel manner

Determine a sequence of task executions and message 
transmissions that allow to meet the deadlines

• Critical tasks are replicated

• Message replicas pro-actively transmitted

Task Model

18 / 50



Outline

19 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



The Self-Reconfiguration
Introduction

20 / 50

At the node level, the DFT4FTT architecture

is composed of various components



The Self-Reconfiguration
Introduction

21 / 50

At the node level, the DFT4FTT architecture

is composed of various components



The Self-Reconfiguration
Introduction

22 / 50



Outline

23 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



The Self-Reconfiguration
Introduction

24 / 50



The Self-Reconfiguration
Monitoring Process

25 / 50



The Self-Reconfiguration
Monitoring Process

26 / 50

Monitor the environment and the system itself

Obtain the system status:

• Status of the architecture → Port Guardians (PGs)

• Failure Rate and Bit Error Rate → FR model, PGs and sensors

• Status of the execution → Messages sent by applications

• Status of the resources → Amount of application resources



The Self-Reconfiguration
Monitoring Process

27 / 50



The Self-Reconfiguration
Monitoring Process

28 / 50



Outline

29 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



The Self-Reconfiguration
Decision Process

30 / 50



The Self-Reconfiguration
Decision Process

31 / 50

System requirements

List of applications, together with their real-time and 

reliability requirements, that have to be executed

• Phase-related applications

Indispensable applications needed to fulfil the functional 

requirements of a given phase of the mission. Maintained by the KE.

• On-demand-related applications

Indispensable and non-indispensable applications started as a result 

of a new functional requirement, not related to the phase of the 

mission. Maintained by the tasks.



The Self-Reconfiguration
Decision Process

32 / 50

Knowledge Entity

The KE determines when a new phase starts and updates

the system requirements accordingly.

The KE constantly consults the system state and checks 

if the conditions associated to any of the phases are met



The Self-Reconfiguration
Decision Process

33 / 50

Tasks

Tasks are the only system modules that know the dynamic 

operational requirements derived from human 

commands or the tasks themselves.

Start and stop applications, as well as to modify their 

real-time and reliability requirements.

Dependability issues:

• Use highly-reliable CN

• Replicate decision tasks and vote 



The Self-Reconfiguration
Decision Process

34 / 50



The KE constantly verifies that the system reqs are 

fulfilled

35 / 50

System

state

System

reqs
Fulfilment?

Change

configuration

List of tasks

RT requirements

R(t) requirements

• Faulty CNs

• Tasks executed

• Falure rates

• …

The Self-Reconfiguration
Decision Process



The Self-Reconfiguration
Decision Process

36 / 50

If the system requirements are not fulfilled, the KE 

decides on the new configuration to apply

Finding a new proper configuration can take a lot of time:

• Provide asap a good configuration for critical apps

• Provide asap a good configuration for non-critical apps

• Provide, while the system is running, a better configuration, i.e. good 

and optimal according to some specific policy

o For instance: energy consumption, network performance, QoS, …

o System designers specify the relevant policies

o Score each configuration



Branch and bound with a greedy algorithm

The Self-Reconfiguration
Decision Process

37 / 50

curr
conf



Branch and bound with a greedy algorithm

The Self-Reconfiguration
Decision Process

38 / 50

curr
conf



Branch and bound with a greedy algorithm

The Self-Reconfiguration
Decision Process

39 / 50

curr
conf



The Self-Reconfiguration
Decision Process

40 / 50

Validate functional requirements

• Check that all the tasks are in the configuration

Validate non-functional requirements

• Check that the real-time and reliability requirements are met



Outline

41 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



The Self-Reconfiguration
Configuration Change Process

42 / 50



The Self-Reconfiguration
Configuration Change Process

43 / 50

Liberate the computational and communication resources 

of the applications that are no longer required

• Take into account the interdependencies

• Take into account the termination condition

Reserve the computational and communication resources

of the new required applications

Triggers the execution of the tasks and the transmission

of messages in the appropriate order



Outline

44 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



The self-reconfiguration capabilities of this infrastructure

make it possible to change the set of applications being

executed in the system, in response to changes in the

system state or in the system requirements

45 / 50

Reconfiguration for Reliability

System

state

System

reqs
Fulfilment?

Change

configuration

List of tasks

RT requirements

R(t) requirements

• Faulty CNs

• Tasks executed

• Falure rates

• …



Efficient use of the resources

Redundancy is a typical mechanism used to tolerate faults

• Is expensive

• Static redundancy suffers from redundancy attrition

The level of task replication is managed automatically

46 / 50

Reconfiguration for Reliability



Recovering of tasks

Reallocate the tasks being executed in one CN to another,

when the first one suffers a permanent failure.

Non-critical tasks

• The service is restored after some downtime

Critical (replicated) tasks

• We have redundancy preservation

• Equivalent to N-Modular Redundancy scheme with spares

47 / 50

Reconfiguration for Reliability



Outline

48 / 50

1. The task model

2. The Self-Reconfiguration

2.1 Monitoring Process

2.2 Decision Process

2.3 Configuration Change Process

3. Reconfiguration for Reliability

4. Conclusions and On-going Work



We described the on-going work we are carrying out to construct a

self-reconfigurable infrastructure for systems with real-time,

reliability and adaptivity requirements.

It allows to dynamically modify the allocation of tasks in response to

a changes in the system requirements or in the system state.

• Real-time requirements

• Reliability requirements

This is particularly interesting for systems that use redundancy

• Efficient use of the resources

• Better recovering

49 / 50

Conclusions



• Replicate the Node Manager

• Characterize the self-reconfiguration time

o Detect the need for reconfiguration

o Determine a valid new configuration

o Apply said configuration

• Construct a prototype to prove its feasibility

• Evaluate the feasibility of dynamically changing the

replication scheme

50 / 50

On-going Work



Towards a Self-Reconfigurable 
Infrastructure for Critical Adaptive 
Distributed Embedded Systems

Alberto Ballesteros

Julián Proenza

Manuel Barranco

Luís Almeida

Pere Palmer

3th of July 2018Universitat de les Illes Balears


