

SDN-BASED CONFIGURATION SOLUTION FOR IEEE 802.1 TIME SENSITIVE NETWORKING (TSN) SIWAR BEN HADJ SAID, QUANG HUY TRUONG, AND MICHAEL BOC

RTN 2018, 03 July 2018, Barcelone | Michael BOC

• Switch to IEEE standard Ethernet in Industrial and automotive domains

- Killer applications (or at least advanced prototype of)
 - Autonomous driving, Artificial intelligence, Cloud, 3D reconstruction, augmented reality
 - Monitoring for zero-defect manufacturing, learning robots
- High bandwidth (100Mbit/s, 1Gbit/s, 10Gbit/s ...)
 - Compared to LIN/CAN
- → Requirement: protect existing assets traffics from new peripherals traffics
- Potential solution: IEEE 802.1 Time-Sensitive Networks
 - Layer-2 mechanisms to segregate traffics and to manage their latency
 - Time synchronization (AS), Traffic shaping (Qav), scheduling (Qbv), Frame Preemption (Qbu) to name a few
 - Different levels of traffic forwarding management according to the priority level
 - Latency protection services for "critical" flows, best effort for other flows
 - Can provide performance guarantee

We have a winner! nuh?

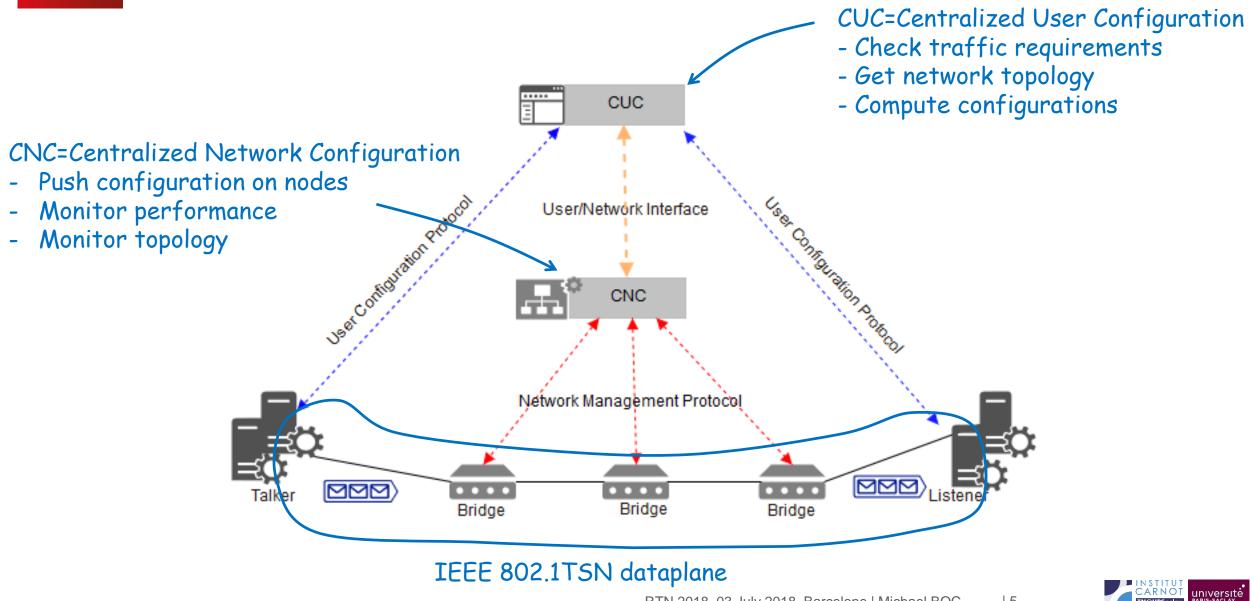
CHALLENGES

Network engineering & Configuration

- Performance guarantee implies constraints on the topology, PHY and MAC
 - E.g., up to 7 hops deep, symmetric propagation delay, full-duplex, etc.
- Deep knowledge on characteristics of traffics
 - To setup guard bands (max packet size), shaping parameters, gates cycle, etc.

• Traffic Engineering

- Shift of paradigm: the packet must arrive before the deadline and not as fast as possible
- Best effort (BE) traffic may not be as BE as one think
 - Video traffic (not critical) may be useless if too much latency
 - File transfer (not critical, e.g., firmware update) may have some restrictions on the minimum bandwidth
- "Critical" flows may support high latency


CONFIGURATION PROCESS

- TSN network configuration
 - Simulator/Emulator/Network calculus to find the right configurations
 - Time-consuming, run each time a new traffic is proposed
 - Manual configuration
 - SSH/FTP/SD Card to each node to update firmware
 - Slow process that may prevent dynamism in network topology/evolution
 - OPC-UA
 - How to learn/adapt traffic patterns to fit in the budget
 - Pertinent on endpoints but not on bridges
- Automation of network configuration
 - Ongoing standardization efforts to define the building blocks
 - IEEE P802.1Qcc (Stream reservation (SR) protocol and enhancements)
 - The fully centralized architecture has some tractions
 - IETF Deterministic Networks (DetNet) Working Group
 - The fully centralized architecture is preferred

QCC/DETNET FULLY CENTRALIZED ARCHITECTURE

SOFTWARE-DEFINED NETWORKING FOR TSN NETWORKS CONFIGURATION

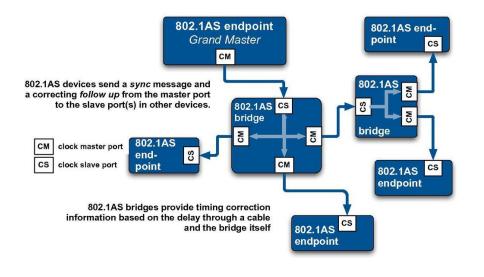
• SDN maps with the fully centralized IEEE 802.1Qcc model

- SDN Controller ↔ Centralized Network Configuration (CNC) entity
 - Support a plurality of network management protocols (SNMP, NETCONF, etc.)
 - Network topology discovery embedded
- Management the network configuration and forwarding of all nodes
 - VLANs, redirection, queues, shaping, ports configuration, etc.
- Is pertinent for critical environment
 - Active monitoring to detect deviations and recovery mechanisms to protect "critical" flows

• Support of SDN "services" to push configuration on network nodes

- Processing of traffic characteristics and requirements to configure the network

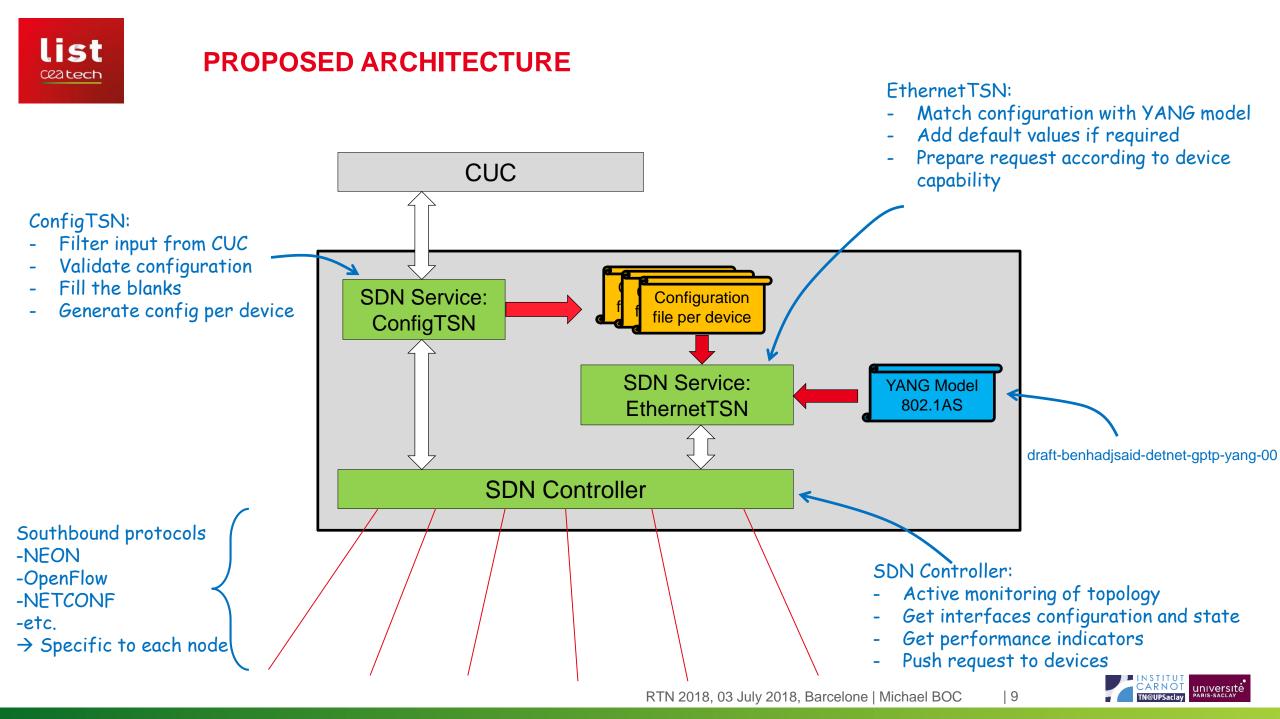
 > Equivalent to a Centralized User Configuration (CUC) entity
- Packet interception/injection mechanisms
 - Change protocols behavior without modifying their implementation


OK so lets focus on one standard: Time Synchronization (802.1AS)

IEEE 802.1AS – TIME SYNCHRONIZATION

- Time Synchronization (IEEE 802.1AS)
 - Required for Traffic Shaping, Gates scheduling, and application-level clock reconstruction
 - Distribute a clock to all switches and end-points in the domain
 - AS assumes 1 domain; AS-Rev will support more domains
 - Best Master Clock Algorithm (BMCA) to elect the Grand Master
 - Construction of a « clock spanning tree » from a « Grand Master » to slaves
 - Guarantee on end-to-end max latency is dependent of:
 - Number of hops
 - Reliability and accuracy of residence time computation
 - Accuracy of link propagation delay

ON THE FIELD CHALLENGES


• Its not always possible to use BMCA (AVnu)

- Convergence time too slow (in the automotive domain)
- How to manage system reliability and security?
- Without BMCA → Configure all parameters manually more than 15 parameters per bridge
 - Priority1, Priority2
 - PortRole (Master/Slave)
 - DelayAsymmetry
 - Sync messages frequency shall be the same on all nodes
 - ...

• Adding a new device may increase the number of hops beyond what can be guaranteed

- Network engineering to rebalance the tree
- Change of traffic shaping and scheduling to cope with this new topology



EXAMPLE

CUC	ConfigTSN	EthernetTSN	SDN Controller
AS Grand Master is Node 1	-Get optimal clock tree -Get internal nodes lds Per device configuration: isGM=1 Master port=1 PortRole1=Master Priority1=147 Priority2=250	-Match configuration file with YANG model -Fill the configuration blanks Per device request: { Method: TTTechConfigAS isGM: 1 Port1: { Role: Master DelayAsymmetry: 3ns } Port2: { Role: Master DelayAsymmetry:1ns } Priority1: 147 Priority2: 250 InitialLogPdelayReqInterval: 125us	<text><text><text><text><text></text></text></text></text></text>

SUMMARY AND ON-GOING WORK

• Why SDN is pertinent to handle and manage TSN mechanisms

- Huge number of parameters
- Reliability of implementations in questions
- (Temporary) Safety and recovery mechanisms
- Building blocks to handle Time Synchronization at the CNC level
 - Set of SDN services to ensure correct configuration
 - YANG Model to be pertinent per device manufacturer

• Find a most suitable TSN switch

- HTML is not efficient/reliable enough
- Some manufacturers proposed to send configuration by email to generate a new firmware
- Closing the implementation of ConfigTSN
 - Generate new configuration if topology change
 - Computation of a new clock tree and synchronized reconfiguration of the infrastructure
 - Find the right data model for communication with the CUC
- Detect deviations
 - Safety requires to be able to detect problems

Thank You

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019