

Performance Enhancement of Extended AFDX via Bandwidth Reservation for TSN/BLS Shapers

Anaïs Finzi, Ahlem Mifdaoui et al.

July 3, 2018, RTN'18

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

System Model

Bandwidth Reservation Method

Performance Evaluation

Conclusion 000

Context and Objectives $0 \bullet 0000$

<□> < @ > < E > < E > E のQ @ 3/27

Context and Objectives

Current Avionics Communication Architecture limitations

- Heterogeneity: high complexity, delays and costs
- One criticality level: backbone supports only essential traffic
- Unfair service policy: strong impact of high priorities

Context and Objectives $0 \bullet 0000$

Context and Objectives

Current Avionics Communication Architecture limitations

- Heterogeneity: high complexity, delays and costs
- One criticality level: backbone supports only essential traffic
- Unfair service policy: strong impact of high priorities

Main Objective

Homogenize avionics communication architecture

→ Extend the backbone network to support **Safety-Critical** and **Best-Effort** Traffics

System Model

Bandwidth Reservation Methods

Performance Evaluation

◆□ → < □ → < Ξ → < Ξ → Ξ → ○ < ○ 4/27</p>

Conclusion

Avionics Requirements and Challenges

Requirements

- **Predictability** : guaranteeing schedulability constraints, i.e. bounded delays respecting deadlines
- Modularity : minimizing the (re)configuration effort

Avionics Requirements and Challenges

Requirements

- **Predictability** : guaranteeing schedulability constraints, i.e. bounded delays respecting deadlines
- Modularity : minimizing the (re)configuration effort

Challenges

- Complexity : Reduce the implementation and configuration effort
- **Fairness** : Limit the impact of high priorities on lower ones

Solutions	TTE ¹	TAS ²	PS ³	UBS ⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	X	X	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$
Predictability	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Х	$\checkmark\checkmark$
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark

Existing solutions vs avionics requirements and challenges

 $\sqrt{\sqrt{2}}$ (=) $\sqrt{2}$ (=) (=) (=)

◆□ → < □ → < Ξ → < Ξ → Ξ < の < 0 < 5/27</p>

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion
000000				

Promising Solution

Schedulers

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 5/27

Solutions	TTE1	TAS ²	PS ³	UBS⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Predictability	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	✓	$\checkmark\checkmark$	$\checkmark\checkmark$
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Х	$\checkmark\checkmark$
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark

Existing solutions vs avionics requirements and challenges

 $\sqrt{1}$ (\Box) $\sqrt{1}$ (\Box) (\Box) $(X: \Box)$

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000

Promising Solution

TTTEch

Schedulers

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 5/27

Solutions	TTE ¹	TAS ²	PS ³	UBS ⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Predictability	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	 ✓ 	$\checkmark\checkmark$	$\checkmark\checkmark$
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Х	$\checkmark\checkmark$
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark

Existing solutions vs avionics requirements and challenges

 $\sqrt{1}$ (\Box) $\sqrt{1}$ (\Box) (\Box) $(X: \Box)$

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Promising Se	olution			

IEEE Time Sensitive Networking

 $\sqrt{1}$ (\bigcirc) $\sqrt{1}$ (\bigcirc) $\sqrt{1}$ (\bigcirc) (\bigcirc)

Schedulers

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 5/27

Solutions	TTE1	TAS ²	PS ³	UBS⁴	BLS⁵	CBS⁰	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Predictability	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Х	$\checkmark\checkmark$
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark

Existing solutions vs avionics requirements and challenges

¹Time Triggered Ethernet
²Time Aware Shaper
³Peristaltic Shaper
⁴Urgency Based Scheduler
⁵Burst Limiting Shaper
⁶Credit-based Shaper
⁷Non-preemptive Static Priority
⁸Deficit Round Robin

TTTEch

Context a 000●00	nd Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
D	• • •	1.1.1			

		\sim	
Drai	micine		lution
	IIISIIIE	່ວບ	
		$\sim \sim$	

Solutions	TTE ¹	TAS ²	PS ³	UBS ⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark
Predictability	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fairness	Х	Х	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	Х	\checkmark
Complexity	Х	Х	Х	Х	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark

Existing solutions vs avionics requirements and challenges

 $\sqrt{\sqrt{2}}$ (=) $\sqrt{2}$ (=) (=) (=)

◆□ → < □ → < Ξ → < Ξ → Ξ < の < 0 < 5/27</p>

Context ar 000●00	nd Objective	S	Systen	n Model	Bandwid	th Reservatior	Methods	Perf	ormance I		Conclusion 000
_		~									

		\mathbf{c}	
L	romicing	Sol	lution
	TOTHER		

Solutions	TTE ¹	TAS ²	PS ³	UBS ⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$
Predictability	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	√	\checkmark	\checkmark
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Х	\checkmark
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark

Existing solutions vs avionics requirements and challenges

 $\sqrt{\sqrt{2}} \oplus \sqrt{\sqrt{2}} = \sqrt{2}$

Context an 000€00	nd Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
D	• • •	1.1.1.1			

Promising Solution

Solutions	TTE ¹	TAS ²	PS ³	UBS ⁴	BLS⁵	CBS ⁶	NP-SP ⁷	DRR ⁸
Modularity	Х	Х	Х	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$
Predictability	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark
Fairness	Х	Х	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	Х	\checkmark
Complexity	Х	Х	Х	Х	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark

Existing solutions vs avionics requirements and challenges

\rightarrow the Burst Limiting Shaper is the most promising solution

◆□ → < □ → < Ξ → < Ξ → Ξ < つ < ☉ /27</p>

Specification of an Extended AFDX

→ Low complexity and few hardware/software modifications^a

^a[ERTS2-18] Finzi, A., Mifdaoui et al., "Mixed-Criticality on the AFDX Network: Challenges and Potential Solutions", ERTS 2018

◆□ → < @ → < 差 → < 差 → 差 の Q ↔ 6/27</p>

Followed Methodology

Specification of an Extended AFDX

 \rightarrow Low complexity and few hardware/software modifications^a

^a[ERTS2-18] Finzi, A., Mifdaoui et al., "Mixed-Criticality on the AFDX Network: Challenges and Potential Solutions", ERTS 2018

Formal timing analysis

 \rightarrow New Network Calculus model with good tightness ^a

^a[WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed- Criticality Applications: Model and Timing Analysis", WFCS 2018

Specification of an Extended AFDX

 \rightarrow Low complexity and few hardware/software modifications^a

^a[ERTS2-18] Finzi, A., Mifdaoui et al., "Mixed-Criticality on the AFDX Network: Challenges and Potential Solutions", ERTS 2018

Formal timing analysis

 \rightarrow New Network Calculus model with good tightness ^a

^a[WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed- Criticality Applications: Model and Timing Analysis", WFCS 2018

Performance Enhancement

 \rightarrow Bandwidth Reservation methods for TSN/BLS to enhance system schedulability

Context and Objectives 00000●	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Outline				

< □ ▶ < ■ ▶ < ≧ ▶ < ≧ ▶ Ξ のへで 7/27

- 2 Bandwidth Reservation Methods
- ③ Performance Evaluation
- 4 Conclusion and perspectives

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion
Outline				

2 Bandwidth Reservation Methods

③ Performance Evaluation

4 Conclusion and perspectives

< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ ♡ & @ 8/27

We consider 3 types of traffics: Safety Critical Traffic (SCT), Rate Constrained (RC), and Best-Effort (BE).

Proposed switch architecture

We consider 3 types of traffics: Safety Critical Traffic (SCT), Rate Constrained (RC), and Best-Effort (BE).

Proposed switch architecture

3-classes example: high BLS priority

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = 三 の Q ℃ 10/27

<ロ > < 母 > < 茎 > < 茎 > = の < で 11/27

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 12/27

Burst Limiting Shaper Parameters

Each BLS credit has 3 parameters:

- Maximum Level (L_M)
- Resume Level (L_R)
- Reserved Bandwidth (BW)

 BW is used with the output link capacity C to compute the credit slopes as follows:

- ullet the sending slope, $\mathit{I_{send}} = (1 \mathit{BW}) \cdot \mathit{C}$
- the idle slope, $I_{idle} = BW \cdot C$

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

Burst Limiting Shaper credit evolution Bursty traffic

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 13/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

Burst Limiting Shaper credit evolution Bursty traffic

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の へ ? 13/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion

Burst Limiting Shaper credit evolution Bursty traffic

<ロト < 回 > < 目 > < 目 > < 目 > うへで 13/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

Burst Limiting Shaper credit evolution Bursty traffic

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の へ ? 13/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

Burst Limiting Shaper credit evolution Bursty traffic

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = りへで 13/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion

Burst Limiting Shaper credit evolution Bursty traffic

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の へ ? 13/27

Network calculus

Characteristics of an aggregate traffic of class k crossing the node n

$$f \oslash g(t) = \sup_{s \ge 0} \{f(t+s) - g(s)\}$$

$$f \otimes g(t) = \inf_{0 \le s \le t} \{f(t-s) + g(s)\}$$

Network calculus

Characteristics of an aggregate traffic of class k crossing the node n

$$f \oslash g(t) = \sup_{s \ge 0} \{f(t+s) - g(s)\}$$

$$f \otimes g(t) = \inf_{0 \le s \le t} \{f(t-s) + g(s)\}$$

Network calculus

Characteristics of an aggregate traffic of class k crossing the node n

$$f \oslash g(t) = \sup_{s \ge 0} \{f(t+s) - g(s)\}$$

$$f \bigotimes g(t) = \inf_{0 \le s \le t} \{f(t-s) + g(s)\}$$

Context and Objectives System Model Bandwidth Reservation Methods Performance Evaluation Conclusion ooo
Traffic and Network Model

Traffic modelisation: leaky buckets

The Network Calculus model has been proved in previous work^a

 $^a[WFCS-18]$ Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

Context and Objectives System Model Bandwidth Reservation Methods Performance Evaluation Conclusion 000
Traffic and Network Model

Traffic modelisation: leaky buckets Node modelisation: rate-latency

The Network Calculus model has been proved in previous work^a

^a[WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

The Network Calculus model has been proved in previous work^a

^a[WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

The Network Calculus model has been proved in previous work^a

 a [WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

The Network Calculus model has been proved in previous work^a

 a [WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

Context and Objectives System Model Bandwidth Reservation Methods Performance Evaluation

Traffic and Network Model

The Network Calculus model has been proved in previous work^a

^a[WFCS-18] Finzi, A., Mifdaoui et al., "Incorporating TSN/BLS in AFDX for Mixed-Criticality Applications: Model and Timing Analysis", WFCS 2018

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion
Outline				

2 Bandwidth Reservation Methods

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで 16/27

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Problem Ove	erview			

Objective

Find the reserved BLS bandwidth **minimizing RC delay bounds** for each **flow** along its **path**

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Problem Ou	orviow			

Objective

Find the reserved BLS bandwidth **minimizing RC delay bounds** for each **flow** along its **path**

Constraints

- **Class rate constraint**: in each output port, the class rate is lower than the guaranteed service rate
- Aggregate rate constraint: the total load of an output port is lower than the total capacity *C*
- **Deadline constraints**: the delay bound of each traffic class is lower than its deadline

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion 000

Problem Formulation

 $\forall f \in RC, \forall mux \in path_f,$ $\underset{L_{M}^{mux}, L_{R}^{mux}, BW^{mux}}{minimize} EED_{RC, f}(L_{M}^{mux}, L_{R}^{mux}, BW^{mux})$ s.t. $\forall f \text{ in } i \in \{SCT, RC\}, \forall mux \in path_f :$ $R_j^{mux} \ge \sum r_f$ $f \in F_i^{mux}$ $\sum r_g + \sum r_f \leqslant C$ $g \in F_{SCT}^{mux}$ $f \in F_{PC}^{mux}$ $DI_f \ge EED_{i,f}(L_M^{mux}, L_R^{mux}, BW^{mux})$

< □ > < @ > < E > < E > E の < ○ 18/27

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion

Problem Formulation

A complexity of $O(I^m \cdot N^{3 \cdot m})$ for *m* ports and *I* flows.

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Problem Solv	ving			

Relaxed Objective

Find the reserved BLS bandwidth **minimizing RC delay bounds** for each **class** within each **output** port

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 19/27

- \rightarrow Reducing the complexity down to $O(m \cdot N^3)$
- \rightarrow Need to define a local Deadline within each output port

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion
Problem Solv	/ing			

Relaxed Objective

Find the reserved BLS bandwidth **minimizing RC delay bounds** for each **class** within each **output** port

- \rightarrow Reducing the complexity down to $O(m \cdot N^3)$
- \rightarrow Need to define a **local Deadline** within each output port

Solving the problem based on Heuristics

- The optimisation problem is a non-linear problem
- Take advantage of conducted **sensitivity analysis** of the analytical model to deduce **heuristics**

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 19/27

Problem Solving

Relaxed Objective

Find the reserved BLS bandwidth **minimizing RC delay bounds** for each **class** within each **output** port

- \rightarrow Reducing the complexity down to $O(m \cdot N^3)$
- \rightarrow Need to define a local Deadline within each output port

Solving the problem based on Heuristics

- The optimisation problem is a **non-linear** problem
- Take advantage of conducted **sensitivity analysis** of the analytical model to deduce **heuristics**

Two proposed methods to compute the local deadlines

- Heuristic Deadline: defined proportionally to the port load
- Dichotomous Deadline: defined accurately in each port

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000
Outline				

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ 少へ ? 20/27

1 System Model

- 2 Bandwidth Reservation Methods
- ③ Performance Evaluation
- 4 Conclusion and perspectives

System Model

Bandwidth Reservation Methods

Performance Evaluation

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ? 21/27

Conclusion

1-Gigabit Avionics Case study

Figure: Multi-hop network and traffic communication pattern

System Model

Bandwidth Reservation Methods

Performance Evaluation

Conclusion

1-Gigabit Avionics Case study

Figure: Multi-hop network and traffic communication pattern

Priority	Traffic type	MFS	BAG	deadline	jitter
		(Bytes)	(ms)	(ms)	(ms)
0/2	SCT	64	2	2	0
1	RC	320	2	2	0
3	BE	1024	8	none	0.5

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ? 21/27

Numerical results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$

 UR_k^{bn} : bottleneck utilisation rate of class k $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Numerical results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{SCT} = $(UR_{SCT}^{bn} \in [0.4:80], UR_{RC}^{bn} = 20)$

Context and Objectives System Model Bandwidth Reservation Methods Performance Evaluation Conclusion

Numerical results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{SCT} = $(UR_{SCT}^{bn} \in [0.4:80], UR_{RC}^{bn} = 20)$

 UR_k^{bn} : bottleneck utilisation rate of class k $\langle \Box \rangle \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle \langle \overline{\Xi} \rangle$

Numerical results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{SCT} = $(UR_{SCT}^{bn} \in [0.4:80], UR_{RC}^{bn} = 20)$

\rightarrow SCT schedulability is increased by up to 31% under Dichotomous Deadline method

Numerical D				
Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{RC} = $(UR_{SCT}^{bn} = 20, UR_{RC}^{bn} \in [0.4 : 80])$

Numerical Results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{RC} = $(UR_{SCT}^{bn} = 20, UR_{RC}^{bn} \in [0.4 : 80])$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 23/27

Numerical Results

Intuitive parameters: $BW = UR_{SCT}^{bn}$, $L_R = MFS_{RC} \cdot BW$ and $L_M = 80 \cdot (1 - BW) \cdot MFS_{SCT}$ Scenario_{RC} = $(UR_{SCT}^{bn} = 20, UR_{RC}^{bn} \in [0.4 : 80])$

 \rightarrow RC delay bounds decreased by up to 50% under Dichotomous Deadline method

Context and Objectives System Model Bandwidth Reservation Methods Performance Evaluation Conclusion

Numerical Results

		improvement compared to SP(%)					computation times	
maximum RC delay		RC delay at	maxir	maximum (s)		of Scenario		
		$UR_{SCT}^{bn} = 33\%$	$UR_{RC}^{bn} = 28\%$	UR ^{bn}	UR_{RC}^{bn}	SCT	RC	
HD	BLS	18	22	33	21	57	9	
DD	BLS	77	55	52	24	117	233	

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ 少へ ? 24/27

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 000

Numerical Results

		improvement compared to SP(%)				compu	itation times	
	maximum RC delay at		RC delay at	maxii	maximum		(s) of Scenario	
		$UR_{SCT}^{bn} = 33\%$	$UR_{RC}^{bn} = 28\%$	UR ^{bn}	UR_{RC}^{bn}	SCT	RC	
HD	BLS	18	22	33	21	57	9	
DD	BLS	77	55	52	24	117	233	

 \rightarrow Higher Complexity for Dichotomous Deadline method

<□▶ < □▶ < □▶ < ■▶ < ■▶ < ■▶ E の Q @ 24/27

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion •oo
Outline				

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 25/27

1 System Model

- 2 Bandwidth Reservation Methods
- 3 Performance Evaluation
- 4 Conclusion and perspectives

Conclusion and prespectives

Two optimized bandwidth reservation methods for TSN/BLS

- \rightarrow Heuristic Deadline: simple but average performances
- \rightarrow Dichotomous Deadline: complex but good performances

Conducted Performance evaluation on a realistic avionics case study

- \rightarrow Enhanced SCT schedulability (up to 31%) under DD
- \rightarrow Enhanced RC delay bounds (up to to 50%) under DD

< □ ▶ < @ ▶ < \ > ▲ \ > ↓ \ = り < \ > 26/27

Conclusion and prespectives

Two optimized bandwidth reservation methods for TSN/BLS

- \rightarrow Heuristic Deadline: simple but average performances
- \rightarrow Dichotomous Deadline: complex but good performances

Conducted Performance evaluation on a realistic avionics case study

- \rightarrow Enhanced SCT schedulability (up to 31%) under DD
- \rightarrow Enhanced RC delay bounds (up to to 50%) under DD

Approach Generalization to multiple TSN/BLS classes

 \rightarrow Offer higher configuration flexibility

Context and Objectives	System Model	Bandwidth Reservation Methods	Performance Evaluation	Conclusion 00●
Q&A				

Thank you for your attention

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ → ♡ < ♡ 27/27