TTConf Tool for the Analysis and Configuration of TSN

Paul Pop, Voica Gavriluț, Luxi Zhao Bahram Zarrin

Technical University of Denmark (DTU) DTU Compute Kongens Lyngby, Denmark

Kongens Lyngby, Denmark (paupo—voga—lu×zha—baza)@dtu.dk

July 3rd 2018

Methods Implemented by TTConf

Topology and Routing Optimization (TRO)

- Determines a fault-tolerant TSN topology
- Presented in [2]

AVB-aware Scheduling for TSN (AaS-TSN)

- Determines the Gate Control Lists (GCLs), the schedule tables for Time-Triggered (TT) streams, such that both TT and AVB streams are schedulable
- Presented in [1]

Schedulability Analysis for AVB (SA-AVB)

- Computes the worst-case end-to-end delay for AVB streams in the presence of TT traffic
- Presented in [3]

Topology and Routing Optimization

Method:

 Metaheuristic approach based on greedy randomized adaptive search procedure(GRASP)

Input:

- Components library and sets of end systems and streams
- For each stream: source, destination(s), size, period, deadline and redundancy level

Output:

- Network topology: number of network switches and physical links and how they are interconnected
- Routes of all streams incl. their redundant copies

Assumptions:

- Based on Urgency-Based Shaper (UBS) traffic type
- Mathematical model tailored to network switches built-in end systems
- Used at design time

AVB-aware Scheduling for TSN

Method:

- Metaheuristic approaches based on GRASP; used objectives:
 - > TT latency: minimization of overall latency of TT streams
 - TT queues: minimization of queues used by TT traffic
 - ► TT + AVB: minimization of overall tardiness of AVB streams

Input:

- Network topology
- Sset of streams
- For each stream: source, destination, route, size, period and deadline

Output:

- Number of TT queues
- Mapping of TT streams to queues
- GCLs for TT streams

Assumptions:

- All end systems and network switches must synchronize their clocks
- Unicast communication
- Can be used at both design and running time

Schedulability Analysis for AVB

Method:

Network calculus based method

Input:

- Network topology
- Set of streams
- For each stream: source, destination(s), route, size, period, deadline, idle slopes for AVB streams or GCLs for TT streams

Output:

Worst-case end-to-end delay for AVB streams

Assumptions:

- > All end systems and network switches must synchronize their clocks
- Works for both AVB traffic types, A and B
- Works with both preemptive and non-preemptive integration modes
- Can be used at both design and running time

Realistic Use Cases

Use case	Method	No. systems No. switches	No. streams	δ_t exec
Automotive	TRO AaS-TSN SA-AVB	20 20	27 48 27	570 420 2
Orion1 Orion2	SA-AVB	31 15	49 134	5 5

Synthetic Use Cases

Use case	Method	No. systems No. switches	No. streams	δ_t exec
UC1	TRO	15 15	30	210
UC2	AaS-TSN	256 146	879	730

References

V. Gavriluț and P. Pop.

Scheduling in Time-Sensitive Networks (TSN) for Mixed-Criticality Industrial Applications.

In Proceedings of International Workshop on Factory Communication Systems (WFCS), pages xx-yy, 2018.

V. Gavriluţ, B. Zarrin, P. Pop, and S. Samii. Fault-tolerant Topology and Routing Synthesis for IEEE Time-sensitive Networking.

In Proceedings of International Conference on Real-Time Networks and Systems (RTNS).

L. Zhao, P. Pop, Z. Zheng, and Q. Li.

Timing analysis of AVB traffic in TSN networks using network calculus.

In Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS), 2018.