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Outline

Wormhole Networks

Networks-on-Chip

Real-Time Analysis

Resource Management
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Motivation

Multiprocessor and multicore systems 

forced a shift towards communication-

centric design

abundant computation resources

shared communication media

 Inter-processor communication 

point-to-point
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Networks – key characteristics

 topology
mesh, star, torus…

 routing protocol
deterministic, adaptive…

 arbitration
 round-robin, priority 

preemptive, priority non-

preemptive, TDM…

 buffering
FIFO, SAFC, SAMQ, 

DAMQ, hot potato…

 flow control protocol
handshake, credit-based…

 switching protocol
circuit, store-and-forward, 

wormhole
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Circuit switching

 Packets are forwarded through dedicated paths that are 

kept until the transmission is finished

 Contention can arise when establishing a path

 no further contention once path is established

 Temporary packet buffering in routers is not required

 Suitable to long and infrequent messages

 time to establish a path can be high



7

Leandro Soares Indrusiak  

Real-Time Systems Group

Circuit Switching

Terminal

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data



8

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



9

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



10

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



11

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



12

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



13

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



14

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



15

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



16

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



17

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



18

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



19

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



20

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

A segment of 

reserved path is 

idle for a 

significant period 

of time.

Circuit Switching

Terminal

Terminal

Packet Header

Packet Data



21

Leandro Soares Indrusiak  

Real-Time Systems Group

SAF Switching 

 SAF - Store And Forward

 Routers can only forward a packet once it is completely 
received and stored

 packet acquires one link at a time

 Router input ports must have enough buffering space to 
temporarily store a complete packet



22

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



23

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



24

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



25

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



26

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



27

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



28

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



29

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



30

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



31

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



32

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



33

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



34

Leandro Soares Indrusiak  

Real-Time Systems Group

Switch

Switch Switch Switch

SwitchSwitch

Terminal

Packet Header

Packet Data

SAF Switching 



35

Leandro Soares Indrusiak  

Real-Time Systems Group

Wormhole switching

 Packet is routed and forwarded as soon the header flit has 

arrived

 payload flits follow header

 Input ports does not need to buffer a complete packet

 flits of a packet can be stored across multiple routers

 Trade-off between buffer overheads and network contention
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Wormhole Networks-on-Chip

Small buffering overheads 

of wormhole networks is 

particularly attractive to a 

special class of resource-

constrained networks: 

Networks-on-Chip (NoCs)
small buffers mean smaller area 

and lower energy dissipation
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Wormhole Networks-on-Chip
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Wormhole Networks-on-Chip
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NoC parallelism and scalability

CPU

CPU

CPU

CPURAM CPU

I/OCPU

Multiple 

connections 

simultaneously
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NoC performance

link contention

leads to latency 

variability

CPU

CPU

CPU

CPURAM CPU

I/OCPU

task contention 

leads to latency 

variability
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Time predictability in embedded NoCs

 Ability to guarantee an upper bound 

on the system’s temporal behaviour

 worst-case response time of each task

 worst-case latency of each NoC packet

 worst-case end-to-end latencies of 

communicating task chains

 Ability to constrain the variability of 

the system’s temporal behaviour

 limited best/worst case difference

upper 

bound

time

time

frequency

frequency
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Performance guarantees in embedded NoCs

As the core counts increase, NoC link 

contention tends to me the dominant source of 

latency variability

Current solutions
Full traffic separation (i.e. no link contention)

• deterministic routing, fully disjoint routes (e.g. Hermes)

• multiple overlay networks (e.g. Tilera)
- contention over NIs and memory still possible

• circuit switching (e.g. PNoC)
- unpredictable circuit setup time

• very low utilisation

• state of the art: mixed criticality, virtual traffic separation
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Performance guarantees in embedded NoCs

As the core counts increase, NoC link 

contention tends to me the dominant source of 

latency variability

Current solutions
Virtual traffic separation

• time-division multiplexing (TDM)

- fixed traffic slotting (e.g. Aethereal, AElite)

• round-robin (RR)

- rate controlling (e.g. Kalray, Nostrum, IDAMC)

• fixed-priority (FP)

- priority-arbitrated virtual channels (e.g. QNoC)
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Priority preemptive virtual channels

Wormhole NoCs using virtual channels 

with priority preemptive arbitration can 

discriminate packets of different levels of 

urgency

Matches previous work on schedulability

analysis in priority-preemptive wormhole 

networks
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Priority-preemptive wormhole NoCs

Pros vs Cons
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Priority-preemptive wormhole NoCs

Cons
 not available as  COTS
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Priority-preemptive wormhole NoCs

Cons
 hardware overhead related to 

virtual channel buffering and 

arbitration

Xilinx Artix FPGA

B. Sudev, L. S. Indrusiak: Low overhead predictability enhancement in non-preemptive network-on-chip routers using Priority Forwarded Packet 

Splitting. ReCoSoC 2014.
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Priority-preemptive wormhole NoCs

Cons
 hardware overhead related to 

virtual channel buffering and 

arbitration

simple round-robin, 

no traffic shaping

Xilinx Artix FPGA

B. Sudev, L. S. Indrusiak: Low overhead predictability enhancement in non-preemptive network-on-chip routers using Priority Forwarded Packet 

Splitting. ReCoSoC 2014.
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Priority-preemptive wormhole NoCs

Cons
 hardware overhead related to 

virtual channel buffering and 

arbitration

priority non-

preemptive

arbitration [Sudev

& Indrusiak, 

ReCoSoC 2014]

Xilinx Artix FPGA

OPEN 

PROBLEM

ALERT

B. Sudev, L. S. Indrusiak: Low overhead predictability enhancement in non-preemptive network-on-chip routers using Priority Forwarded Packet 

Splitting. ReCoSoC 2014.
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Priority-preemptive wormhole NoCs

Cons
 hardware overhead related to 

virtual channel buffering and 

arbitration

priority 

preemptive

arbitration, 4 VCs 

with 2 position 

buffers each

Xilinx Artix FPGA

B. Sudev, L. S. Indrusiak: Low overhead predictability enhancement in non-preemptive network-on-chip routers using Priority Forwarded Packet 

Splitting. ReCoSoC 2014.
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Priority-preemptive wormhole NoCs

Pros
 notion of priorities is very intuitive and natural

 no waste of bandwidth through reservation mechanisms

 amenable to tight analysis methods (more on this later)

 virtual separation of traffic

 accommodates change in traffic properties (periods, packet sizes, jitter)
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Priority-preemptive wormhole NoCs

Pros
 simple protocols to handle mixed-criticality traffic

L. S. Indrusiak, J. Harbin, A. Burns: Average and Worst-Case Latency Improvements in Mixed-Criticality Wormhole Networks-on-Chip. ECRTS 2015.
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Priority-preemptive wormhole NoCs

vs
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Performance evaluation

 How to estimate performance figures for a particular 

application mapped to a Network-on-Chip?

 full system prototyping

• cores + NoC in FPGA, running OS + application

• extremely costly setup time, can only explore few design alternatives

 accurate system simulation

• cycle-accurate model of cores + NoC, running OS + application

• extremely long simulation time, can only explore few design alternatives

 approximately-timed system simulation

• approximately-timed model of cores + NoC, executing an abstract model of 

the OS + application

 analytical system performance models

• average or worst-case latency estimation for restricted application styles 

(periodic independent tasks, synchronous dataflow, etc.)
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Real-Time Analysis

 First approaches to analyse priority-preemptive

wormhole networks came during the 90s
 Mutka (1994)

 Hary and Ozguner (1997)

 Key idea is to consider the entire path of a packet 

as a single shared resource
 worst-case latency bound of a packet flow can be found by analysing 

the higher priority packet flows that share at least one link of its route



94

Leandro Soares Indrusiak  

Real-Time Systems Group

Real-Time Analysis
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Real-Time Analysis

Kim et al (1998) recognised 

that direct interferences are 

not enough to produce 

correct upper bounds

 Indirect interference must 

be considered, in order to 

take into account back-to-

back hits caused by 

upstream indirect 

interference
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Real-Time Analysis

With the introduction of Networks-on-Chip in the 

2000s, the approach of Kim et al was revisited by 

Lu et al (ASP DAC 2005) 
aiming to provide upper bounds to sporadic packets over NoCs

with priority preemptive virtual channels

 flawed assumption of a critical instant where all packets start 

flowing simultaneously  
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Real-Time Analysis

Shi and Burns (NOCS 2008) corrected the flaw 

on Lu et al and produced a response time 

formulation that uses a conservative approach to 

upstream indirect interference

interference jitter

Jj
I = Rj-Lj

OPEN 

PROBLEM

ALERT



98

Leandro Soares Indrusiak  

Real-Time Systems Group

Real-Time Analysis

Several lines of work were derived from Shi and 

Burns 2008
highly cited: 145 (Google Scholar)

many works on priority assignment and task mapping

a few on analysis improvement, aiming to make it tighter

• Nikolic et al (arxiv 2016) considered that the interference should not 

be calculated based on the full path, but the contention domain

• Kashif et al (Trans Comp 2015) attempted to analyse packet paths 

on a link-by-link manner, but assumed infinite buffering (i.e. did not 

consider backpressure)

• Kashif and Patel (RTAS 2016) attempted to consider buffering and 

backpressure effects

• all of them upper-bounded by Shi and Burns 2008
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Real-Time Analysis

Xiong et al (GLSVLSI 2016) has made two key 

contributions
new formulation to the upstream indirect interference problem, 

aiming to be tighter than Shi and Burns 2008

new formulation to the downstream indirect interference 

problem, aiming to capture a previously unseen issue, and 

showing that Shi and Burns 2008 is optimistic and unsafe (and 

so are all the analyses upper-bounded by it)
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Real-Time Analysis

 Indrusiak et al (arxiv 2016) has shown that
Xiong et al’s formulation to the upstream indirect interference 

problem was flawed

Xiong et al’s formulation to the downstream indirect interference 

problem was correct, but unnecessarily pessimistic (i.e. it 

assumed all indirect interference as if it is direct interference)

a tighter upper bound that considers the downstream indirect 

interference problem is possible

Xiong et al published a corrected analysis on 

IEEE Trans Comp in 2017 OPEN 

PROBLEM

ALERT
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Outline

Wormhole Networks

Networks-on-Chip

Real-Time Analysis

Resource Management
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Resource Management

Analytical models can be used to test 

whether a particular NoC configuration 

meets its hard real-time constraints

 It can be used as a fitness function in a 

search-based optimisation

guides the search towards full schedulability

much faster than simulation, therefore can cover a 

wider search space
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P. Mesidis and L. S. Indrusiak, “Genetic mapping of hard real-time applications onto NoC-based MPSoCs — A first approach,” in Int Workshop on 

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2011.

M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task mapping in Networks-on-Chip,” in IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI), 2013.

Optimisation Algorithm 
 Optimisation performed by a population-based 

evolutionary algorithm
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Optimisation Algorithm 
 A population contains a group of individuals represented 

by a chromosome structure

 Creation of new individuals is facilitated by operators:

 Selection

 Crossover 

 Mutation
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Optimisation algorithm

Goal: evolve a fully schedulable mapping 

over generations

# unschedulable tasks and flows

generations
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Experiment results

 Autonomous vehicle application (AVA) benchmark (38 

communicating tasks), 4x4 Mesh NoC

M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task mapping in Networks-on-Chip,” in IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI), 2013.
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Multi-objective optimisation algorithm

 Additional fitness functions can be added to the 

evolutionary algorithm

 example: evolve mappings that are fully schedulable and low power

# unschedulable tasks and flows

generations

dissipated power

generations
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 Autonomous vehicle 

application (AVA) 

benchmark, 4x4 Mesh

 Comparison of  best 

solution convergence 

between single and 

multiple objectives

Experiment results

M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task mapping in Networks-on-Chip,” in IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI), 2013.
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 Synthetic application 

(SA) benchmark, 4x4 

Mesh

 Comparison of  best 

solution convergence 

between single and 

multiple objectives

Experiment results

M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task mapping in Networks-on-Chip,” in IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI), 2013.
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 Synthetic application 

(SA) benchmark, 5x5 

Mesh

 Comparison of  best 

solution convergence 

between single and 

multiple objectives

Experiment results

M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task mapping in Networks-on-Chip,” in IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI), 2013.
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Conclusions

Priority-preemptive wormhole networks 

have interesting properties, making them 

amenable to real-time analysis

Analysis is less trivial than originally 

thought
advances needed on accounting for indirect 

interference

Analytical models are useful guides to 

search heuristics attempting to configure 

multiple system aspects
 task mapping, packet routing, priority assignment, 

security features, voltage and frequency scaling

OPEN 

PROBLEM

ALERT

OPEN 

PROBLEM

ALERT
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