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� Physical characteristics
� TSMC CMOS 28HP

� 100µW/MHz per core + L1 caches

� 2W to 3W leakage

� Processor interfaces

� 2x DDR3 Memory interfaces

� 2x PCIe Gen3 8-lane interface

� 8x 1G/10G or 2x 40G Ethernet 
interfaces

� SPI/I2C/UART interfaces

� Universal Static Memory 
Controller (NAND/NOR/SRAM)

� GPIOs with Direct NoC Access 

� NoC extension through 
Interlaken interface (NoCX)

MPPA®-256 Bostan Processor
256 + 32 VLIW cores / 18 address spaces / 2D Torus dual NoC
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MPPA®-256 Bostan Processor Architecture

Manycore Processor

� 16 compute clusters

� 2 I/O clusters each with quad-core CPUs, 
DDR3, 4 Ethernet 10G and 8 PCIe Gen3

� Data and control networks-on-chip

� Distributed memory  architecture

� 634 GFLOPS SP for 25W @ 600Mhz

Compute Cluster

� 16 user cores + 1 system core

� NoC Tx and Rx interfaces

� Debug & Support Unit (DSU)

� 2 MB multi-banked shared memory

� 77GB/s Shared Memory BW

�16 cores SMP System

� 32-bit or 64-bit addresses

� 5-issue VLIW architecture

� MMU + I&D cache (8KB+8KB)

� 32-bit/64-bit IEEE 754-2008 FMA  FPU

� Tightly coupled crypto co-processor

� 2.4 GFLOPS SP per core @600Mhz

VLIW Core
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� Dual 2D-torus NoC

� D-NoC: high-bandwidth RDMA

� C-NoC: low-latency mailboxes

� 4B/cycle per link direction per NoC

� Nx10Gb/s NoC extensions for 
connection to FPGA or other MPPA®

� Predictability

� Data NoC is configured by selecting 
routes and injection parameters

� Routing ensure deadlock-free traffic

� Injection parameters are the (σ,ρ) or 
(burst, rate) of network calculus

MPPA®-256 Bostan Network-on-Chip (NoC)



2015 – Kalray SA All Rights Reserved RTN 2016 6

� Topology

� How the nodes are connected together

� Direct network if routing nodes can be endpoints

� Switching

� Allocation of network resources (bandwidth, buffer capacity, …) to 
information flows

� Flow control

� How a downstream node forwards availability to an upstream node

� Applies at hop level, entry-to-exit level, and transport level

� Routing

� Path selection between a source and a destination node in a 
particular topology

Interconnection Network Concepts
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� 2-D Torus

� Direct

� Folded

� I/O nodes

� No virtual 
channels

� Dual NoC

� D-NoC for DMA 
transfers

� C-NoC for 
mailboxes, 
synchronization, 
and D-NoC credits

MPPA®-256 Bostan NoC Topology
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� Network switching techniques

� Circuit switching: network resources are dedicated over an end-to-
end path before transmission starts

� Packet switching:

� Store and forward: node buffers entire packet before forwarding

� Virtual cut-through: node starts forwarding as soon as buffer 
space for a whole packet is available on the next node

� Wormhole switching: the packet is decomposed into flits that 
travel in a pipelined fashion, buffering is applied at flit level

� The MPPA® NoC is wormhole switching with source routing

� A packet is composed of header flits and payload flits (32-bit flits)

� The packet follows a route determined by a bit string in the header

MPPA®-256 Bostan NoC Switching
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Wormhole Switching Illustrated
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When the required channel is busy, 
the hop flow control blocks the trailing 
flits and they stay in flit buffers along 
the established route

A packet is composed of several flits
The header flits governs the route
The payload flits follow the header in 
a pipeline fashion
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� Complex to implement

� May be true for input queueing 
& output matching (e.g. iSLIP)

� The MPPA® NoC routers only 
include demultiplexers, output 
queues and RR arbiters

� Prone to deadlocking

� In this example, the red flow 
cannot use R3→R2 because the 
blue flow is using it

� Likewise, the blue flow needs
R1→R4 held by the red flow

� Deadlock requires full queues

Wormhole Switching NoC Issues
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MPPA® NoC Router

arbiter

To WTo E

To N

To S

To L

From L From S From E From W

1 2 30

7654

From N From S From E From W

9

8

15

14

13

12

11

10

From N

From S

From L

From W

From N

From S

From E

From L

From N

From S

From E

From L

From W

20
19
18
17

16



2015 – Kalray SA All Rights Reserved RTN 2016 13

MPPA®-256 Data NoC Tx
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� Data NoC packet injection implements a (σ,ρ)regulation

� No more than σ+ρ(t-s) flits are injected for any interval [s,t] 

� Application of Network Calculus prevents NoC congestion 
and provides bounds on end-to-end delays

� Determining routes and solving the Network Calculus 
equations by (integer) linear programming is effective

Design of the MPPA® NoC Guaranted Services

Cumulative flit count

time

σ

~ρ
L
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� Initial view

� Selecting the (σ, ρ) packet injection parameters through Network 
Calculus prevents router queue filling so deadlocking is avoided

� The end nodes have the capacity to accept full NoC Rx bandwidth

� Corrected view

� Some nodes (e.g. DDR & I/O interfaces) may not accept full Rx traffic

� Need ‘entry-to-exit flow control’ => use the C-NoC to carry credits

� Network Calculus key results only apply to feed-forward networks

� A network is feed-forward if it is possible to find a numbering of 
its links such that for any flow through the network, the 
numbering of its traversed links is an increasing sequence

� The directed graph G= (link→node, turn→arc) must be cycle-free

Views of the MPPA® NoC Guaranted Services
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� Spanning tree routing

� Construct a spanning tree of the
network graph and prohibit use of
links outside the spanning tree

� Up-Down routing

� Construct a spanning tree of the
network graph, order nodes according
to their tree level, and prohibit turns
(a,b,c) such that a < b and c < b

� Turn prohibition [Starobinsky et al. 2003]

� Recursively break all the link cycles and preserve global connectivity

� Work on the network graph and assume bi-directional links

Ensuring the Feed-Forward Property
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� Deadlock results from circuits of agents and resources

connected by a wait-for relation [Dally & Seitz 1998]

� Circuit switching: agents are connections; resources are channels

� Wormhole switching: agents are packets; resources are link buffers

� Resource dependence graph

� Whenever an agent is holding resource �� while waiting for resource
��, a dependence between �� and �� exists

� Deadlock can be avoided by eliminating circuits in dependence graph

� Deadlock-free packet switching

� Restrict routing to remove enough dependences from the graph

� There must be a numbering of the links such that each allowed route 
traverses increasingly numbered links

Deadlock-free Message Routing



2015 – Kalray SA All Rights Reserved RTN 2016 19

� Deadlock-free routing implies feed-forward networks

� Wormhole switching resources are the link flit buffers

� Links between routers and links internal to routers (‘turns’)

� The (link, turn) graph considered for feed-forward networks is the 
vertex contraction of this resource dependence graph

� Special cases when the network topology is a 2D mesh

� Dimension order (X-Y on 2D meshes)

� Turn model [Glass & Ni  1994] (not the same as ‘turn prohibition’)

� Odd-Even [Chiu 2000], H. Odd-Even [Bahrebar & Stroobandt 2015]

� Strategy for the MPPA® NoC

� Isolate a 2D mesh in topology and applies deadlock-free routing

� Resulting flows are feed-forward so Network Calculus applies

Deadlock-Free Routing Wormhole Switching
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� The NoC nodes in the I/O clusters can be abstracted away

� The NoC can be partitioned in two or four along the I/O links

� The NoC has lockout bits that disable links until next reset

2D Mesh Topology on the MPPA® NoC
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� Principle [Glass & Ni 1994]

� Analyze directions in which packets can turn in the network

� Determine the cycles that such turns can form

� Prohibit just enough turns to break all  cycle

� n-dimensional meshes

� Prohibits n(n-1) 90 degree turns to prevent deadlock

� One half of all possible 180 degree turns must be prohibited

� All-but-one-negative-first (West-First)

� All-but-one-positive-last (North-Last)

� Negative-First

� k-ary n-cubes

� Allows to use the wraparound channels

Turn Model for Adaptive Routing
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� West First

� No North-West turn

� No South-West turn

� North Last

� No North-West turn

� No North-East turn

2-D Mesh Turn Models

D S

S

D
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� The adaptiveness of the Glass & Ni turn model is uneven

� At least half of the source-destination pairs are restricted to having 
only one minimal path [Chiu 2000]

� The Odd-Even turn model [Chiu 2000] is fully adaptive

� Even columns:  East-North and East-South turns are prohibited

� Odd columns: North-West and South-West turns are prohibited

� 180-degree turns are prohibited

� Hamiltonian-based Odd–Even [Bahrebar & Stroobandt 2015]

� Designed to be compatible with the Multi-Path (MP) and the Column-
Path (CP) routing algorithms for path-based multicast

� Considers Odd/Even rows instead of Odd/Even columns

� 180-degree turns are prohibited

Odd–Even Routing
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� Even rows

� East-South turn prohibited

� North-West turn prohibited

� Odd rows

� North-East turn prohibited

� West-South turn prohibited

Hamiltonian Odd-Even Prohibited Turns
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� Path-based multicast: use a series of paths

� Example for node 6 to nodes 2, 4, 9, 13

� First path: node 6 to nodes 9 and 2

� Second path: node 6 to nodes 13 and 4

Hamiltonian Odd-Even Path-Based Multicast
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� Routing between 
compute clusters

� Routes generated 
assuming a 6x6 mesh

� Impossible routes are 
discarded

� Routing between I/O 
and compute cluster

� Always possible, 
thanks to the 4 NoC 
nodes per I/O cluster

Hamiltonian Odd-Even on the MPPA® NoC

I/O DDR 1

I/O DDR 0

I/O Ethernet 1

I/O Ethernet 0
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� Compute deterministic upper/lower bounds in communication networks

� Flows are represented by cumulative data transferred up to time t

� Servers are abstracted as relations between input and output flows

� Framework based on (min,+) dioid instead of (+,*) ring or field

(� ⊗ 
)(�) = ��������(� � − � + 
(�)) convolution 

(� ⊘ 
)(�) = ������(� � + � − 
(�)) deconvolution
� ⊘ 
 ≤ ℎ ⇔ � ≤ ℎ ⊗ 


Network Calculus

SA A’
A

A’

data

time

backlog(t)

delay(t)
A ≥ A’
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� An arrival curve α(t) is a traffic contract on a flow A(t):

� ∀�,  ≥ 0, # � +  − # � ≤ $( ) equivalent to # ≤ # ⊗ α

� Leaky-bucket arrival curve:
α � = (σ + ρ�)()*+

� TSPEC arrival curve:

α � = min(. + /�, σ + ρ�)()*+

Arrival Curves

~ρ

data

A

time

σ

.

~ρ

~/
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� A server has a lower service curve β(t) iff for any input A(t):

� Output flow A’(t) satisfies #1 ≥ # ⊗ β and β 0 = 0

� Rate-latency service curve:
3 � = � � − 4 5

� A server has a strict service curve β(t) iff for any input A(t):

� For any period (s, t] during which the flow is backlogged
#1 � − #1 � ≥ β(� − �)

Service Curves

~�

4

data

A

A’

time



2015 – Kalray SA All Rights Reserved RTN 2016 32

� Constraint propagation rule

� A flow A(t) with arrival curve α(t)  that traverses a server with service 
curve β(t) results in a flow A’(t) constrained by arrival curve α ⊘ β(t)

� Tandem composition rule

� The service curve of a tandem of two of servers with respective 
service curves β1(t) and β2(t) is the convolution β(⊗ β6(t)

� Tight delay and backlog bounds

� If flow has arrival curve α(t) and
node offers service curve β(t):

� backlog = maxt≥0 (α(t) - β(t))

� delay = h(α, β) = 
maxt≥0 { inf s≥0 : α(t) ≤ β(t+s) }

Main Rules

α

β

delay

backlog
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� Blind multiplexing (flows served in arbitrary order)

� Assume a node serving the aggregate of two flows with the strict

service curve β(t); assume flow 2 is α6-smooth

� Then a service curve for flow 1 is β((�) = [β � − α6 � ]5 

� FIFO multiplexing (flows buffered in the same queue)

� Assume a node serving the aggregate of two flows in FIFO order with
the lower service curve β(t); assume flow 2 is α6-smooth;

define the 39
( family as 39

( t = [β(�) - α6(t −  θ)]5 1{��>}

� For θ≥ 0, if 39
( is wide-sense increasing, it is a service curve for flow 1

Flow Aggregation

β1

α2

α1

β
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� Without aggregation: use tandem composition (PBOO)

� Delay = h(α, β*) α the arrival and β* the convolution of service curves

� With aggregation [Bouillard & Stea 2015]:

� Separated-Flow Analysis (SFA)

� First compute the equivalent service curves for tagged flow

� Then compute the convolution of the curves thus obtained

� Pay Multiplexing Only Once (PMOO)

� First compute the convolution of the service curves

� Then compute the equivalent service for tagged flow

� Neither method is tight or best, however the SFA is more generic

Computation of the End-to-End Delay

β* = β1⊗β2β2β1α α
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� For each flow, select a single path among those proposed by 
adaptive routing so as to maximize a network utility function

� This is a multi-commodity flow
problem that can be solved using
linear programming

� Adding the single path constraints
makes the problem NP-hard but
practical instances are solved with
mixed integer programming

� Utility function is the proportional
fairness of flow rates [Kelly 1998]

� Optimal rates Γ* = {ρ*1,..ρ*n} such

that for any solution Γ, ∑
ρ

A
Bρ∗

A

ρ∗A
���

MPPA® NoC Services Objectives (I)

Flow Route Bandwidth

F48 R1 0.441901304029376

F49

R1 0

R2 0.375611423014079

R3 0

R4 0

F50 R1 0.13862940041161

F51 R1 0.23889251894024

R2 0

� Numerical results for all pairs of
flows between 8 clusters (55 flows)
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� Compute the D-NoC (σ,ρ) injection parameters along the 
path obtained from the single-path routing problem

� Assume a single maximum packet size DEFG for all interfering flows

MPPA® NoC Services Objectives (II)

Flow 1

Capacity constraint:

sum of flow rates on a link

Backlog constraint:

usage of router queue by all 

contributing flows

Flow 2

Injection constraint: 

minimum burstiness for 

a minimum packet size Flow 3
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� Link capacity constraints

� For each link traversed by a set of flows { (σi, ρi) } : ∑  ρ
�� ≤ � = 1

� Queue backlog constraints

� For each queue buffering flows { (σi, ρi) } : ∑  (σ� + ρ��  H) ≤ I��JK

4 =  H = �H − 1 DEFG with �H the count of active queues for link L

� Packet injection constraints

�  σ� ≥ DE�� (� − ρ
�
)/� with � = 1 injection rate, DE�� min packet size

Linear Programming Formulation (a)

flits arrival curve
α(t)=σ+ρt

σ

T

σ+ρT

T+σ/R
service curve
β(t)=R(t-T)+

time

flits

shaping curve
α(t)=σ+ρt

σ

flit injection pt

time

Lmin
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� Link arbiter service curves

� Approximated by latency-rate 3(�) = �[� − 4]+ with � = 1 and 4 =   H

� Blind multiplexing (different queues)

� (σ�, ρ�) → σ� + ρ� 4 + OPQ RPS

TBRP , ρ�

� FIFO multiplexing (same queue)

� (σ�, ρ�) → (σ� + ρ�(4 + OP

T
), ρ�)

(σ1, ρ′) the sum of arrival
curves of other flows
in the link arbiter

Linear Programming Formulation (b)

FIFO 

multiplexing

Blind 

multiplexing
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� Compute upper bounds on flow end-to-end delays

� Upper bound = ℎ(α� , 3*
�
) with α� � =  (σ� +ρ��)()*+

the flow �

shaping curve at injection and 3*
�

the convolution of the left-over 

service curves 3'
�

for this flow in the link arbiters along path

� Link arbiter left-over service curves

� Let (σ’, ρ’) be the sum of arrival curves of interfering flows in arbiter

� Case of FIFO multiplexing: 3’(�) = (� − ρ’)[� − 4 − σ’/R]+

� Case of blind multiplexing: 3’(�) = [� � − 4 5 − (σ′ + ρ′�)()*+
]5

� The arrival curves of interfering flows in front of each link
arbiter are obtained from the linear program

� See slide « Linear Programming Formulation (b) »

MPPA® NoC Services Objectives (III)
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� The MPPA® NoC implement wormhole switching

� Packet switching enables dynamic resource sharing

� Wormhole switching is implemented with minimal complexity

� We address both deadlock-freedom and QoS in the D-NoC

� Deadlock-free routing ensures feed-forward network flows

� Hamiltonian Odd-Even routing over a 2-D mesh subset of the D-NoC

� Solve a mixed integer program to select paths between endpoints

� Solve a linear program to compute the D-NoC injection parameters

� Work on-going for the QoS of traffic from/to DDR

� Assume each compute cluster works in its private DDR bank

� Configure the DDR controller to prevent request reordering

� Try to apply Network Calculus or Sensor Calculus model to DDR

Conclusions
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