
Kalray MPPA®

Massively Parallel Processor Array

MPPA®-256 Bostan Manycore Processor

Guaranteed Services

Benoît Dupont de Dinechin, CTO

2015 – Kalray SA All Rights Reserved RTN 2016 2

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 3

� Physical characteristics
� TSMC CMOS 28HP

� 100µW/MHz per core + L1 caches

� 2W to 3W leakage

� Processor interfaces

� 2x DDR3 Memory interfaces

� 2x PCIe Gen3 8-lane interface

� 8x 1G/10G or 2x 40G Ethernet
interfaces

� SPI/I2C/UART interfaces

� Universal Static Memory
Controller (NAND/NOR/SRAM)

� GPIOs with Direct NoC Access

� NoC extension through
Interlaken interface (NoCX)

MPPA®-256 Bostan Processor
256 + 32 VLIW cores / 18 address spaces / 2D Torus dual NoC

2015 – Kalray SA All Rights Reserved RTN 2016 4

MPPA®-256 Bostan Processor Architecture

Manycore Processor

� 16 compute clusters

� 2 I/O clusters each with quad-core CPUs,
DDR3, 4 Ethernet 10G and 8 PCIe Gen3

� Data and control networks-on-chip

� Distributed memory architecture

� 634 GFLOPS SP for 25W @ 600Mhz

Compute Cluster

� 16 user cores + 1 system core

� NoC Tx and Rx interfaces

� Debug & Support Unit (DSU)

� 2 MB multi-banked shared memory

� 77GB/s Shared Memory BW

�16 cores SMP System

� 32-bit or 64-bit addresses

� 5-issue VLIW architecture

� MMU + I&D cache (8KB+8KB)

� 32-bit/64-bit IEEE 754-2008 FMA FPU

� Tightly coupled crypto co-processor

� 2.4 GFLOPS SP per core @600Mhz

VLIW Core

2015 – Kalray SA All Rights Reserved RTN 2016 5

� Dual 2D-torus NoC

� D-NoC: high-bandwidth RDMA

� C-NoC: low-latency mailboxes

� 4B/cycle per link direction per NoC

� Nx10Gb/s NoC extensions for
connection to FPGA or other MPPA®

� Predictability

� Data NoC is configured by selecting
routes and injection parameters

� Routing ensure deadlock-free traffic

� Injection parameters are the (σ,ρ) or
(burst, rate) of network calculus

MPPA®-256 Bostan Network-on-Chip (NoC)

2015 – Kalray SA All Rights Reserved RTN 2016 6

� Topology

� How the nodes are connected together

� Direct network if routing nodes can be endpoints

� Switching

� Allocation of network resources (bandwidth, buffer capacity, …) to
information flows

� Flow control

� How a downstream node forwards availability to an upstream node

� Applies at hop level, entry-to-exit level, and transport level

� Routing

� Path selection between a source and a destination node in a
particular topology

Interconnection Network Concepts

2015 – Kalray SA All Rights Reserved RTN 2016 7

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 8

� 2-D Torus

� Direct

� Folded

� I/O nodes

� No virtual
channels

� Dual NoC

� D-NoC for DMA
transfers

� C-NoC for
mailboxes,
synchronization,
and D-NoC credits

MPPA®-256 Bostan NoC Topology

2015 – Kalray SA All Rights Reserved RTN 2016 9

� Network switching techniques

� Circuit switching: network resources are dedicated over an end-to-
end path before transmission starts

� Packet switching:

� Store and forward: node buffers entire packet before forwarding

� Virtual cut-through: node starts forwarding as soon as buffer
space for a whole packet is available on the next node

� Wormhole switching: the packet is decomposed into flits that
travel in a pipelined fashion, buffering is applied at flit level

� The MPPA® NoC is wormhole switching with source routing

� A packet is composed of header flits and payload flits (32-bit flits)

� The packet follows a route determined by a bit string in the header

MPPA®-256 Bostan NoC Switching

2015 – Kalray SA All Rights Reserved RTN 2016 10

Wormhole Switching Illustrated

1 2

5 6

3

7

4

8

9

B

A

When the required channel is busy,
the hop flow control blocks the trailing
flits and they stay in flit buffers along
the established route

A packet is composed of several flits
The header flits governs the route
The payload flits follow the header in
a pipeline fashion

2015 – Kalray SA All Rights Reserved RTN 2016 11

� Complex to implement

� May be true for input queueing
& output matching (e.g. iSLIP)

� The MPPA® NoC routers only
include demultiplexers, output
queues and RR arbiters

� Prone to deadlocking

� In this example, the red flow
cannot use R3→R2 because the
blue flow is using it

� Likewise, the blue flow needs
R1→R4 held by the red flow

� Deadlock requires full queues

Wormhole Switching NoC Issues

2015 – Kalray SA All Rights Reserved RTN 2016 12

MPPA® NoC Router

arbiter

To WTo E

To N

To S

To L

From L From S From E From W

1 2 30

7654

From N From S From E From W

9

8

15

14

13

12

11

10

From N

From S

From L

From W

From N

From S

From E

From L

From N

From S

From E

From L

From W

20
19
18
17

16

2015 – Kalray SA All Rights Reserved RTN 2016 13

MPPA®-256 Data NoC Tx

2015 – Kalray SA All Rights Reserved RTN 2016 14

� Data NoC packet injection implements a (σ,ρ)regulation

� No more than σ+ρ(t-s) flits are injected for any interval [s,t]

� Application of Network Calculus prevents NoC congestion
and provides bounds on end-to-end delays

� Determining routes and solving the Network Calculus
equations by (integer) linear programming is effective

Design of the MPPA® NoC Guaranted Services

Cumulative flit count

time

σ

~ρ
L

2015 – Kalray SA All Rights Reserved RTN 2016 15

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 16

� Initial view

� Selecting the (σ, ρ) packet injection parameters through Network
Calculus prevents router queue filling so deadlocking is avoided

� The end nodes have the capacity to accept full NoC Rx bandwidth

� Corrected view

� Some nodes (e.g. DDR & I/O interfaces) may not accept full Rx traffic

� Need ‘entry-to-exit flow control’ => use the C-NoC to carry credits

� Network Calculus key results only apply to feed-forward networks

� A network is feed-forward if it is possible to find a numbering of
its links such that for any flow through the network, the
numbering of its traversed links is an increasing sequence

� The directed graph G= (link→node, turn→arc) must be cycle-free

Views of the MPPA® NoC Guaranted Services

2015 – Kalray SA All Rights Reserved RTN 2016 17

� Spanning tree routing

� Construct a spanning tree of the
network graph and prohibit use of
links outside the spanning tree

� Up-Down routing

� Construct a spanning tree of the
network graph, order nodes according
to their tree level, and prohibit turns
(a,b,c) such that a < b and c < b

� Turn prohibition [Starobinsky et al. 2003]

� Recursively break all the link cycles and preserve global connectivity

� Work on the network graph and assume bi-directional links

Ensuring the Feed-Forward Property

2015 – Kalray SA All Rights Reserved RTN 2016 18

� Deadlock results from circuits of agents and resources

connected by a wait-for relation [Dally & Seitz 1998]

� Circuit switching: agents are connections; resources are channels

� Wormhole switching: agents are packets; resources are link buffers

� Resource dependence graph

� Whenever an agent is holding resource �� while waiting for resource
��, a dependence between �� and �� exists

� Deadlock can be avoided by eliminating circuits in dependence graph

� Deadlock-free packet switching

� Restrict routing to remove enough dependences from the graph

� There must be a numbering of the links such that each allowed route
traverses increasingly numbered links

Deadlock-free Message Routing

2015 – Kalray SA All Rights Reserved RTN 2016 19

� Deadlock-free routing implies feed-forward networks

� Wormhole switching resources are the link flit buffers

� Links between routers and links internal to routers (‘turns’)

� The (link, turn) graph considered for feed-forward networks is the
vertex contraction of this resource dependence graph

� Special cases when the network topology is a 2D mesh

� Dimension order (X-Y on 2D meshes)

� Turn model [Glass & Ni 1994] (not the same as ‘turn prohibition’)

� Odd-Even [Chiu 2000], H. Odd-Even [Bahrebar & Stroobandt 2015]

� Strategy for the MPPA® NoC

� Isolate a 2D mesh in topology and applies deadlock-free routing

� Resulting flows are feed-forward so Network Calculus applies

Deadlock-Free Routing Wormhole Switching

2015 – Kalray SA All Rights Reserved RTN 2016 20

� The NoC nodes in the I/O clusters can be abstracted away

� The NoC can be partitioned in two or four along the I/O links

� The NoC has lockout bits that disable links until next reset

2D Mesh Topology on the MPPA® NoC

2015 – Kalray SA All Rights Reserved RTN 2016 21

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 22

� Principle [Glass & Ni 1994]

� Analyze directions in which packets can turn in the network

� Determine the cycles that such turns can form

� Prohibit just enough turns to break all cycle

� n-dimensional meshes

� Prohibits n(n-1) 90 degree turns to prevent deadlock

� One half of all possible 180 degree turns must be prohibited

� All-but-one-negative-first (West-First)

� All-but-one-positive-last (North-Last)

� Negative-First

� k-ary n-cubes

� Allows to use the wraparound channels

Turn Model for Adaptive Routing

2015 – Kalray SA All Rights Reserved RTN 2016 23

� West First

� No North-West turn

� No South-West turn

� North Last

� No North-West turn

� No North-East turn

2-D Mesh Turn Models

D S

S

D

2015 – Kalray SA All Rights Reserved RTN 2016 24

� The adaptiveness of the Glass & Ni turn model is uneven

� At least half of the source-destination pairs are restricted to having
only one minimal path [Chiu 2000]

� The Odd-Even turn model [Chiu 2000] is fully adaptive

� Even columns: East-North and East-South turns are prohibited

� Odd columns: North-West and South-West turns are prohibited

� 180-degree turns are prohibited

� Hamiltonian-based Odd–Even [Bahrebar & Stroobandt 2015]

� Designed to be compatible with the Multi-Path (MP) and the Column-
Path (CP) routing algorithms for path-based multicast

� Considers Odd/Even rows instead of Odd/Even columns

� 180-degree turns are prohibited

Odd–Even Routing

2015 – Kalray SA All Rights Reserved RTN 2016 25

� Even rows

� East-South turn prohibited

� North-West turn prohibited

� Odd rows

� North-East turn prohibited

� West-South turn prohibited

Hamiltonian Odd-Even Prohibited Turns

Even

Even

Odd

Odd

Even

Even

Odd

Odd

2015 – Kalray SA All Rights Reserved RTN 2016 26

� Path-based multicast: use a series of paths

� Example for node 6 to nodes 2, 4, 9, 13

� First path: node 6 to nodes 9 and 2

� Second path: node 6 to nodes 13 and 4

Hamiltonian Odd-Even Path-Based Multicast

Even

Even

Odd

Odd

Even

Even

Odd

Odd

2015 – Kalray SA All Rights Reserved RTN 2016 27

� Routing between
compute clusters

� Routes generated
assuming a 6x6 mesh

� Impossible routes are
discarded

� Routing between I/O
and compute cluster

� Always possible,
thanks to the 4 NoC
nodes per I/O cluster

Hamiltonian Odd-Even on the MPPA® NoC

I/O DDR 1

I/O DDR 0

I/O Ethernet 1

I/O Ethernet 0

2015 – Kalray SA All Rights Reserved RTN 2016 28

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 29

� Compute deterministic upper/lower bounds in communication networks

� Flows are represented by cumulative data transferred up to time t

� Servers are abstracted as relations between input and output flows

� Framework based on (min,+) dioid instead of (+,*) ring or field

(� ⊗
)(�) = ��������(� � − � +
(�)) convolution

(� ⊘
)(�) = ������(� � + � −
(�)) deconvolution
� ⊘
 ≤ ℎ ⇔ � ≤ ℎ ⊗

Network Calculus

SA A’
A

A’

data

time

backlog(t)

delay(t)
A ≥ A’

2015 – Kalray SA All Rights Reserved RTN 2016 30

� An arrival curve α(t) is a traffic contract on a flow A(t):

� ∀�, ≥ 0, # � + − # � ≤ $() equivalent to # ≤ # ⊗ α

� Leaky-bucket arrival curve:
α � = (σ + ρ�)()*+

� TSPEC arrival curve:

α � = min(. + /�, σ + ρ�)()*+

Arrival Curves

~ρ

data

A

time

σ

.

~ρ

~/

2015 – Kalray SA All Rights Reserved RTN 2016 31

� A server has a lower service curve β(t) iff for any input A(t):

� Output flow A’(t) satisfies #1 ≥ # ⊗ β and β 0 = 0

� Rate-latency service curve:
3 � = � � − 4 5

� A server has a strict service curve β(t) iff for any input A(t):

� For any period (s, t] during which the flow is backlogged
#1 � − #1 � ≥ β(� − �)

Service Curves

~�

4

data

A

A’

time

2015 – Kalray SA All Rights Reserved RTN 2016 32

� Constraint propagation rule

� A flow A(t) with arrival curve α(t) that traverses a server with service
curve β(t) results in a flow A’(t) constrained by arrival curve α ⊘ β(t)

� Tandem composition rule

� The service curve of a tandem of two of servers with respective
service curves β1(t) and β2(t) is the convolution β(⊗ β6(t)

� Tight delay and backlog bounds

� If flow has arrival curve α(t) and
node offers service curve β(t):

� backlog = maxt≥0 (α(t) - β(t))

� delay = h(α, β) =
maxt≥0 { inf s≥0 : α(t) ≤ β(t+s) }

Main Rules

α

β

delay

backlog

2015 – Kalray SA All Rights Reserved RTN 2016 33

� Blind multiplexing (flows served in arbitrary order)

� Assume a node serving the aggregate of two flows with the strict

service curve β(t); assume flow 2 is α6-smooth

� Then a service curve for flow 1 is β((�) = [β � − α6 �]5

� FIFO multiplexing (flows buffered in the same queue)

� Assume a node serving the aggregate of two flows in FIFO order with
the lower service curve β(t); assume flow 2 is α6-smooth;

define the 39
(family as 39

(t = [β(�) - α6(t − θ)]5 1{��>}

� For θ≥ 0, if 39
(is wide-sense increasing, it is a service curve for flow 1

Flow Aggregation

β1

α2

α1

β

2015 – Kalray SA All Rights Reserved RTN 2016 34

� Without aggregation: use tandem composition (PBOO)

� Delay = h(α, β*) α the arrival and β* the convolution of service curves

� With aggregation [Bouillard & Stea 2015]:

� Separated-Flow Analysis (SFA)

� First compute the equivalent service curves for tagged flow

� Then compute the convolution of the curves thus obtained

� Pay Multiplexing Only Once (PMOO)

� First compute the convolution of the service curves

� Then compute the equivalent service for tagged flow

� Neither method is tight or best, however the SFA is more generic

Computation of the End-to-End Delay

β* = β1⊗β2β2β1α α

2015 – Kalray SA All Rights Reserved RTN 2016 35

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 36

� For each flow, select a single path among those proposed by
adaptive routing so as to maximize a network utility function

� This is a multi-commodity flow
problem that can be solved using
linear programming

� Adding the single path constraints
makes the problem NP-hard but
practical instances are solved with
mixed integer programming

� Utility function is the proportional
fairness of flow rates [Kelly 1998]

� Optimal rates Γ* = {ρ*1,..ρ*n} such

that for any solution Γ, ∑
ρ

A
Bρ∗

A

ρ∗A
���

MPPA® NoC Services Objectives (I)

Flow Route Bandwidth

F48 R1 0.441901304029376

F49

R1 0

R2 0.375611423014079

R3 0

R4 0

F50 R1 0.13862940041161

F51 R1 0.23889251894024

R2 0

� Numerical results for all pairs of
flows between 8 clusters (55 flows)

2015 – Kalray SA All Rights Reserved RTN 2016 37

� Compute the D-NoC (σ,ρ) injection parameters along the
path obtained from the single-path routing problem

� Assume a single maximum packet size DEFG for all interfering flows

MPPA® NoC Services Objectives (II)

Flow 1

Capacity constraint:

sum of flow rates on a link

Backlog constraint:

usage of router queue by all

contributing flows

Flow 2

Injection constraint:

minimum burstiness for

a minimum packet size Flow 3

2015 – Kalray SA All Rights Reserved RTN 2016 38

� Link capacity constraints

� For each link traversed by a set of flows { (σi, ρi) } : ∑ ρ
�� ≤ � = 1

� Queue backlog constraints

� For each queue buffering flows { (σi, ρi) } : ∑ (σ� + ρ�� H) ≤ I��JK

4 = H = �H − 1 DEFG with �H the count of active queues for link L

� Packet injection constraints

� σ� ≥ DE�� (� − ρ
�
)/� with � = 1 injection rate, DE�� min packet size

Linear Programming Formulation (a)

flits arrival curve
α(t)=σ+ρt

σ

T

σ+ρT

T+σ/R
service curve
β(t)=R(t-T)+

time

flits

shaping curve
α(t)=σ+ρt

σ

flit injection pt

time

Lmin

2015 – Kalray SA All Rights Reserved RTN 2016 39

� Link arbiter service curves

� Approximated by latency-rate 3(�) = �[� − 4]+ with � = 1 and 4 = H

� Blind multiplexing (different queues)

� (σ�, ρ�) → σ� + ρ� 4 + OPQ RPS

TBRP , ρ�

� FIFO multiplexing (same queue)

� (σ�, ρ�) → (σ� + ρ�(4 + OP

T
), ρ�)

(σ1, ρ′) the sum of arrival
curves of other flows
in the link arbiter

Linear Programming Formulation (b)

FIFO

multiplexing

Blind

multiplexing

2015 – Kalray SA All Rights Reserved RTN 2016 40

� Compute upper bounds on flow end-to-end delays

� Upper bound = ℎ(α� , 3*
�
) with α� � = (σ� +ρ��)()*+

the flow �

shaping curve at injection and 3*
�

the convolution of the left-over

service curves 3'
�

for this flow in the link arbiters along path

� Link arbiter left-over service curves

� Let (σ’, ρ’) be the sum of arrival curves of interfering flows in arbiter

� Case of FIFO multiplexing: 3’(�) = (� − ρ’)[� − 4 − σ’/R]+

� Case of blind multiplexing: 3’(�) = [� � − 4 5 − (σ′ + ρ′�)()*+
]5

� The arrival curves of interfering flows in front of each link
arbiter are obtained from the linear program

� See slide « Linear Programming Formulation (b) »

MPPA® NoC Services Objectives (III)

2015 – Kalray SA All Rights Reserved RTN 2016 41

� Introduction

� MPPA®-256 NoC

� Feed-Foward Flows

� Routing Techniques

� Network Calculus

� MPPA® NoC Services

� Conclusions

Outline

2015 – Kalray SA All Rights Reserved RTN 2016 42

� The MPPA® NoC implement wormhole switching

� Packet switching enables dynamic resource sharing

� Wormhole switching is implemented with minimal complexity

� We address both deadlock-freedom and QoS in the D-NoC

� Deadlock-free routing ensures feed-forward network flows

� Hamiltonian Odd-Even routing over a 2-D mesh subset of the D-NoC

� Solve a mixed integer program to select paths between endpoints

� Solve a linear program to compute the D-NoC injection parameters

� Work on-going for the QoS of traffic from/to DDR

� Assume each compute cluster works in its private DDR bank

� Configure the DDR controller to prevent request reordering

� Try to apply Network Calculus or Sensor Calculus model to DDR

Conclusions

2015 – Kalray SA All Rights Reserved RTN 2016 43

MPPA, ACCESSCORE and the Kalray logo are trademarks or registered

trademarks of Kalray in various countries.

All trademarks, service marks, and trade names are the marks of the respective owner(s), and any unauthorized use thereof is strictly

prohibited. All terms and prices are indicatives and subject to any modification without notice.

KALRAY INC.

Los Altos - USA

4962 El Camino Real
Los Altos, CA
USA

Tel: +1 (650) 469 3729
email: info@kalrayinc.com

KALRAY S.A.

Grenoble - France

445 rue Lavoisier,
38 330 Montbonnot
France

Tel: +33 (0)4 76 18 09 18
email: info@kalray.eu

KALRAY S.A.

Paris - France

86 rue de Paris,
91 400 Orsay
France

Tel: +33 (0) 184 00 00 45

email: info@kalray.eu

Thank you

