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Introduction – NoC for real-time  
• Hard real-time systems need                  

worst case execution time (WCET) guarantees: 
– Execution time of tasks 

• Time predictable processor cores 
– Guaranteed latency and bandwidth of task-to-task communication 

• Time predictable NoC 
  
• Time predictable NoC 

– End-to-end virtual circuits  
• No interference among traffic flows  
• Analysis of individual traffic flows one-by-one 

– Solution:  
• Time division multiplexing (TDM) and static scheduling 
• Rate control and non-blocking routers + network calculus 

 



05/07/2016 
 

Jens Sparsø / RTN 2016 Keynote 4 DTU Compute, Technical University of Denmark 

Q: Why yet another NoC after 10-15 years of NoC-research? 
 

Q: Why yet another TDM-based NoC? 
– TU/e:  Æthereal, Aelite, dAelite  
– KTH:  Nostrum  
– TU Vienna: TTNoC  

 

A: Many NoC designs, both BE og GS, have very large implementations.  
– Buffers and flow control  
– Size of router + NI often approach size of processor core. 
[As I see it] a result of : 
– Focus on providing solutions 
– Focus on layering and encapsulation    

 

 
 

Introduction – why another NoC 
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Introduction – Argo 
• TDM scheduling requires a common global notion of time. 
• Chip technology calls for Globally-Asynchronous Locally-Synchronous 

(GALS) or Mesochronous timing architecture 
 

• ARGO combines TDM and GALS/Mesochronous 
– Individually clocked processors (GALS) 
– Mesochronous network interfaces 
– Asynchronous routers 
 

• ARGO avoids all buffering and (run time) flow control.               
TDM-mechanism transfer data end-to-end, i.e., SPM to SPM.   
(not just NI to NI as in other NoCs) 

– A novel NI microarchitecture with a very small HW-implementation 
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Outline 
1. Introduction 
2. Background 

– The T-CREST multi-core platform 
– Message passing, TDM and static scheduling 

3. Architecture and implementation of Argo (globally synchronous) 
– Router  
– NI microarchitecture 
– Results (area) 

4. Timing organization of Argo 
– Individually clocked processor cores  
– Mesochronous NIs 
– Network of asynchronous routers 

5. Analysis of (clock and reset) skew tolerance  
6. Generating schedules  
7. Conclusion 

 
 



05/07/2016 
 

Jens Sparsø / RTN 2016 Keynote 8 DTU Compute, Technical University of Denmark 

Meassage passing  
using DMAs + virtual circuits 
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The T-CREST multicore platform 
• All components are designed to be time-predictable 

• PATMOS processors  
– Dual issue RISC 
– Special caches (method, stack, …) 
– Private scratch pad memories  (SPM) 

• Argo NoC supporting message passing  
– TDM and static scheduling 
– Supports GALS timing organization 

• Memory tree NoC 
– All processors towards one memory 
– TDM and static scheduling 

 
 
 

Proc. 
node 
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Communicating tasks, communicating              
processors, and scheduling of packets. 
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Communicating tasks, communicating          
processors, and routing of packets in the NoC 
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Synchronous router for  
source-routed TDM-based NoC 
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• 3-flit package and 3-stage pipelined router: 
   (TDM slot is 3 clock cycles) 
 
 
 
 
 

 
• Variable length packets and arbitrary pipeline depth of router 
   (TDM slot is 1 clock cycle)  

 

TDM schedule + granularity 
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Traditional design: DMAs in processor nodes 
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Traditional design: DMAs in processor nodes 
 

• Data is copied (across CDC)               
from SPM to VC-buffer in NI = latency 

• Physical buffer per virtual circuit = area 
• Flow control: VC-buffer vs. DMA 
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Traditional design: DMAs in processor nodes 
 

• NoC transfer data:  
 - from VC-buffer in sender NI  
 - to VC-buffer in receiver NI  

• Credit based flow control = area 
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Traditional design: DMAs in processor nodes 
 

• Data is copied (across CDC)            
from NI to SPM = latency 

• Physical buffer per virtual circuit 
• Flow control: buffer vs. DMA 
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New design: DMAs in network interfaces  
 

TDM TDM 
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NI synthesized for Altera EP2C70 FPGA 
TDM period = 3 clock cycles. 

 

 Slot 
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ASIC Results for a 16-node bi-torus NoC 
• 4 x 4 bi-torus (16 NIs and 16 routers) 
• All-to-all schedule. TDM-period = 23 slots = 69 clock cycles 
• Total of 16 x 15 = 240 virtual circuits 
• 65 nm CMOS  
• 1.5 x 1.5 mm2 tile size 



05/07/2016 
 

Jens Sparsø / RTN 2016 Keynote 28 DTU Compute, Technical University of Denmark 

ASIC Results for a 16-node bi-torus NoC 
• 4 x 4 bi-torus (16 NIs and 16 routers) 
• All-to-all schedule. TDM-period = 23 slots = 69 clock cycles 
• Total of 16 x 15 = 240 virtual circuits 
• 65 nm CMOS  
• 1.5 x 1.5 mm2 tile size 
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Results summary 
 

• Relative area: 
 
 
 
 
 
 

• Other routers and NI’s                     ? / easily 10+ 

Argo        Other TDM NoC 
Router 1       1  (synchronous) 

      2  (mesochronous) 
NI 1      2-4 
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Outline 
1. Introduction 
2. Background 

– The T-CREST multi-core platform 
– Message passing, TDM and static scheduling 

3. Architecture and implementation of Argo (globally synchronous) 
– Router  
– NI microarchitecture 
– Results (area) 

4. Timing organization of Argo 
– Individually clocked processor cores  
– Mesochronous NIs 
– Network of asynchronous routers 

5. Analysis of (clock and reset) skew tolerance  
6. Generating schedules  
7. Conclusion 
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Timing organization?  
 - mesochronous (same oscillator, some skew)  

 Core  Core 

 Core 
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interface 

Router 

Link 
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Mesochronous  router 
 - synchronous router + bi-synchronous FIFOs 
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Timing organization?  
 - Globally-Asynchronous Locally-Synchronous 
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1) Asynchronous routers and links 

Request 
Acknowledge 

Data 

 
 
 
 
 
 
 
 
 

• Link: 
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2) Mesochronous Network Interfaces 
• Mesochronous = 

–A single oscillator 
–Bounded skew 
  (possibly varying) 
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3) Independently clocked IP coores 
• Different cores have 

different “natural” 
speeds 

• Frequency scaling 
• Voltage scaling 
 

 Core  Core 



05/07/2016 
 

Jens Sparsø / RTN 2016 Keynote 38 DTU Compute, Technical University of Denmark 

Clocking strategy 
 -mesochronous (same oscillator, some skew)  
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Timing Organization of ARGO 
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Asynchronous router for  
source-routed TDM-based NoC 
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Timing Organization of ARGO 
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Understanding the NoC 
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Understanding the NoC 
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Resetting the NoC  
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Resetting the NoC  
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Mesochronous-Asynchronous Interface 

• Mesochronous NIs 
– Producer and consumer operate at  

TDM clk : 𝑇𝑐𝑐𝑐 
– Skew in reset and clock results in  

phase shift (±δ ) among TDM 
schedules in NIs.             
Possibly more than 1 cycle! 

 
• Timing assumption:    

– Routers are faster than NIs 
 𝑇𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑎  <  𝑇𝑐𝑐𝑐 

– Producer ignores ack        
consumer ignores req 

 no synchronization 
 no metastability 

  NI1  NI2 

clk clk’ 
rst rst’ 

Producer Consumer 

req ack ack 
(NC) 

req 
(NC) 
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Mesochronous-Asynchronous Interface 
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Tolerating skew – How much? 
• Producer and consumer drive FIFO below its max. speed 
• Speed of a FIFO depends on how full it is 
• Skew tolerance = F(Structure, Lr, Lf, Tclk) 

 

Max speed of FIFO (i.e., cycle time) 

FIFO stages 
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Skew 
(more full) 

Skew 
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Clk 
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Performance Analysis of Concurrent Systems 
• System model 

– Timed marked graph (a subclass of Petri nets) 
– Time Separation of Events (TSE) 

 

• Two classes of algorithms: 
– Steady state average TSE 
– Worst case TSE    (possibly an initial phase followed by oscillations) 

 

• We have used the worst-case TSE algorithm of Hulgaard et al.: 
– H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm 

for exact bounds on the time separation of events in concurrent 
systems. IEEE Transactions on Computers, 44(11), Nov. 1995.                     

 
• Model 1: Detailed model of handshake latch implementation. 
• Model 2: Coarser model of handshake latch implementation:  

– Analysis of complete 2 x 2 NoC  (same results) 
– Study of possible oscillations of max TSE. 
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Example of coarse model 
• Ring w. 4 handshake-latches and 2 tokens 

 
 
 
 
 
 
 
 
 
 
 

 
• Time separation between successive tokens written into latch a: 
      4,  8,  4,  8, …       average is 6 
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Coarse-Grained Model of 2x2 NoC 
 
• Pipeline stage = node 
• Edges annotated with    

Lf and Lr 
 

• Case 1:  
   Skew among  
   neighbour nodes 

– d1 
– d2=d3=0 

 
• Case 2:  
   Skew among  
   diagonal nodes 

– d2 
– d1=d3=0 
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Skew – Period Results  

• Neighboring nodes (case 1) is the worst-case skew tolerance 
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Generating schedules 
• Metaheuristic scheduler 

– Input: Core communication graph w. bandwidth requirements 
– Output: Schedule + (clock)frequency 

 
• Scheduler works on normalized BW requirements 

– Lowest BW requirement assigned 1 slot 
– Highest BW requirement assigned n slots (n can be large) 
– Schedules can be compressed by over-assigning BW to channels with 

small BW requirements. For a range of benchmarks we found that 
compressing to 100 slot TDM periods is possible with negligible 
effects (i.e., need to increase clock frequency) 

 
• NoC is effecticely drained for packets between schedule periods (except 

for pipeline depth in shortest NI-to-NI path. 
– Perspectives for fast reconfiguration (support for mode changes)  
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Conclusions 
• The Argo NoC combines TDM and GALS 

– Asynchronous routers 
– Mesochronous NIs 
– Independently clocked processor cores 

 
• Significant time-elasticity provided by network of asynchronous routers. 

 
 
• Small and efficient implementation 

– Avoids run time synchronization, arbitration and buffering 
– End-to-end, SPM-to-SPM transfer of data controlled by TDM schedule.  
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