

Argo – An area-efficient time-division-multiplexed network-on-chip for real-time multicore platforms

Jens Sparsø jspa@dtu.dk

DTU Compute Department of Applied Mathematics and Computer Science

Introduction – NoC for real-time

- Hard real-time systems need worst case execution time (WCET) guarantees:
 - Execution time of tasks
 - Time predictable processor cores
 - Guaranteed latency and bandwidth of task-to-task communication
 - Time predictable NoC
- Time predictable NoC
 - End-to-end virtual circuits
 - No interference among traffic flows
 - Analysis of individual traffic flows one-by-one
 - Solution:
 - Time division multiplexing (TDM) and static scheduling
 - Rate control and non-blocking routers + network calculus

Introduction – why another NoC

Q: Why yet another NoC after 10-15 years of NoC-research?

- **Q:** Why yet another TDM-based NoC?
 - TU/e: Æthereal, Aelite, dAelite
 - KTH: Nostrum
 - TU Vienna: TTNoC
- A: Many NoC designs, both BE og GS, have very large implementations.
 - Buffers and flow control
 - Size of router + NI often approach size of processor core.
 - [As I see it] a result of :
 - Focus on providing solutions
 - Focus on layering and encapsulation

Introduction – Argo

- TDM scheduling requires a common global notion of time.
- Chip technology calls for Globally-Asynchronous Locally-Synchronous (GALS) or Mesochronous timing architecture
- ARGO combines TDM and GALS/Mesochronous
 - Individually clocked processors (GALS)
 - Mesochronous network interfaces
 - Asynchronous routers
- ARGO avoids all buffering and (run time) flow control.

TDM-mechanism transfer data end-to-end, i.e., SPM to SPM. (not just NI to NI as in other NoCs)

– A novel NI microarchitecture with a very small HW-implementation

Acknowledgements

- Presentation is based on joint work with:
 - Associate Professor Martin Schoeberl
 - Wolfgang Puffitsch (Post Doc. 2013-2016)
 - Evangelia Kasapaki (PhD student 2011-2015)
 - Rasmus Bo Sørensen (PhD student 2013-2016)
- Work has been partly funded by:
 - European Union's 7th Framework Programme: Time-predictable Multi-Core Architecture for Embedded Systems (T-CREST) under grant agreement no. 288008. [2011-14]
 - "Hard Real-Time Embedded Multiprocessor Platform RTEMP" funded by the Danish Research Council for Technology and Production Sciences under contract no. 12-127600. [2013-2016]

Outline

- 1. Introduction
- 2. Background
 - The T-CREST multi-core platform
 - Message passing, TDM and static scheduling
- 3. Architecture and implementation of Argo (globally synchronous)
 - Router
 - NI microarchitecture
 - Results (area)
- 4. Timing organization of Argo
 - Individually clocked processor cores
 - Mesochronous NIs
 - Network of asynchronous routers
- 5. Analysis of (clock and reset) skew tolerance
- 6. Generating schedules
- 7. Conclusion

Meassage passing using DMAs + virtual circuits

The T-CREST multicore platform

- All components are designed to be time-predictable
- PATMOS processors
 - Dual issue RISC
 - Special caches (method, stack, ...)
 - Private scratch pad memories (SPM)
- Argo NoC supporting message passing
 - TDM and static scheduling
 - Supports GALS timing organization
- Memory tree NoC
 - All processors towards one memory
 - TDM and static scheduling

Communicating tasks, communicating processors, and scheduling of packets.

Task graph

Core communication graph

Communicating tasks, communicating processors, and routing of packets in the NoC

Synchronous router for source-routed TDM-based NoC

K

TDM schedule + granularity

- 3-flit package and 3-stage pipelined router:
 - (TDM slot is 3 clock cycles)

 Variable length packets and arbitrary pipeline depth of router (TDM slot is 1 clock cycle)

New design: DMAs in network interfaces

NI synthesized for Altera EP2C70 FPGA TDM period = 3 clock cycles.

NI design size		NI Logic		Slot and DMA tables			
TDM Period	DMAs	LUTs FFs L		LUTs	FFs	BRAM bits	
16	4 8 16	326 337 341	162 162 162	237 450 116	374 647 88	- - 1024	
32	4 8 32	326 339 346	163 163 163	286 378 34	422 579 3	- 128 2240	
64	4 8 64	328 340 351	164 164 164	175 378 34	323 579 3	192 256 4544	

ASIC Results for a 16-node bi-torus NoC

- 4 x 4 bi-torus (16 NIs and 16 routers)
- All-to-all schedule. TDM-period = 23 slots = 69 clock cycles
- Total of 16 x 15 = 240 virtual circuits
- 65 nm CMOS
- 1.5 x 1.5 mm² tile size

	Routers	NIs	Links	FIFOs	total
Cell area total (µm ²)	127446	537397	43289	12613	720745
per node (µm ²) relative (%)	7965 17.68	33587 74.56	2706 6.01	788 1.75	45047 100
Energy total (pJ/cyc) per node (pJ/cyc) relative (%)	96.40 6.03 10.67	430.80 26.93 47.66	363.20 22.70 40.19	13.41 0.84 1.48	903.81 56.49 100

ASIC Results for a 16-node bi-torus NoC

- 4 x 4 bi-torus (16 NIs and 16 routers)
- All-to-all schedule. TDM-period = 23 slots = 69 clock cycles
- Total of 16 x 15 = 240 virtual circuits
- 65 nm CMOS
- 1.5 x 1.5 mm² tile size

	Routers	NIs	Links	FIFOs	total
Cell area total (µm ²)	127446	537397	43289	12613	720745
per node (µm ²) relative (%)	7965 17.68	33587 74.56	2706 6.01	788 1.75	45047 100
Energy total (pJ/cyc) per node (pJ/cyc) relative (%)	96.40 6.03 10.67	430.80 26.93 47.66	363.20 22.70 40.19	13.41 0.84 1.48	903.81 56.49 100

Results summary

• Relative area:

	Argo	Other TDM NoC
Router	1	1 (synchronous) 2 (mesochronous)
NI	1	2-4

Other routers and NI's

? / easily 10+

Outline

- 1. Introduction
- 2. Background
 - The T-CREST multi-core platform
 - Message passing, TDM and static scheduling
- 3. Architecture and implementation of Argo (globally synchronous)
 - Router
 - NI microarchitecture
 - Results (area)
- 4. Timing organization of Argo
 - Individually clocked processor cores
 - Mesochronous NIs
 - Network of *asynchronous* routers
- 5. Analysis of (clock and reset) skew tolerance
- 6. Generating schedules
- 7. Conclusion

Timing organization?

- mesochronous (same oscillator, some skew)

Mesochronous router

- synchronous router + bi-synchronous FIFOs

Timing organization?

- Globally-Asynchronous Locally-Synchronous

1) Asynchronous routers and links

2) Mesochronous Network Interfaces

- Mesochronous =
 - -A single oscillator
 - -Bounded skew
 - (possibly varying)

3) Independently clocked IP coores

- Different cores have different "natural" speeds
- Frequency scaling
- Voltage scaling

Clocking strategy -mesochronous (same oscillator, some skew)

Timing Organization of ARGO

Asynchronous router for source-routed TDM-based NoC

Note: A token is a flit:

- a word in a packet
- a void

Timing Organization of ARGO

Understanding the NoC

Understanding the NoC

Resetting the NoC

Resetting the NoC

Mesochronous-Asynchronous Interface

- Mesochronous NIs
 - Producer and consumer operate at TDM clk : T_{clk}
 - Skew in reset and clock results in phase shift (±δ) among TDM schedules in NIs.
 Possibly more than 1 cycle!
- Timing assumption:
 - Routers are faster than NIs
 - T_{Handshake} < T_{clk}
 - Producer ignores ack consumer ignores req
 - \rightarrow no synchronization
 - \rightarrow no metastability

Mesochronous-Asynchronous Interface

Tolerating skew – How much?

Performance Analysis of Concurrent Systems

- System model
 - Timed marked graph (a subclass of Petri nets)
 - Time Separation of Events (TSE)
- Two classes of algorithms:
 - Steady state average TSE
 - Worst case TSE (possibly an initial phase followed by oscillations)
- We have used the worst-case TSE algorithm of Hulgaard et al.:
 - H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm for exact bounds on the time separation of events in concurrent systems. IEEE Transactions on Computers, 44(11), Nov. 1995.
- Model 1: Detailed model of handshake latch implementation.
- Model 2: Coarser model of handshake latch implementation:
 - Analysis of complete 2 x 2 NoC (same results)
 - Study of possible oscillations of max TSE.

Example of coarse model

- Ring w. 4 handshake-latches and 2 tokens
 - \longrightarrow Forward latency: *Lf*=1
 - ← Reverse latency: *Lr*=3

• Time separation between successive tokens written into latch a:

4, 8, 4, 8, ... average is 6

Coarse-Grained Model of 2x2 NoC

- Pipeline stage = node
- Edges annotated with Lf and Lr
- Case 1: Skew among neighbour nodes
 - d1
 - -d2=d3=0
- Case 2: Skew among diagonal nodes – d2
 - uz

Skew – Period Results

• Neighboring nodes (case 1) is the worst-case skew tolerance

Generating schedules

- Metaheuristic scheduler
 - Input: Core communication graph w. bandwidth requirements
 - Output: Schedule + (clock)frequency
- Scheduler works on normalized BW requirements
 - Lowest BW requirement assigned 1 slot
 - Highest BW requirement assigned n slots (n can be large)
 - Schedules can be compressed by over-assigning BW to channels with small BW requirements. For a range of benchmarks we found that compressing to 100 slot TDM periods is possible with negligible effects (i.e., need to increase clock frequency)
- NoC is effecticely drained for packets between schedule periods (except for pipeline depth in shortest NI-to-NI path.
 - Perspectives for fast reconfiguration (support for mode changes)

Conclusions

- The Argo NoC combines TDM and GALS
 - Asynchronous routers
 - Mesochronous NIs
 - Independently clocked processor cores
- Significant time-elasticity provided by network of asynchronous routers.
- Small and efficient implementation
 - Avoids run time synchronization, arbitration and buffering
 - End-to-end, SPM-to-SPM transfer of data controlled by TDM schedule.

References

• Network interface:

- J. Sparsø, E. Kasapaki, and M. Schoeberl, "An area-efficient network interface for a TDM-based network-on-chip," *in Proc. Design, Automation and Test in Europe (DATE)*, 2013, pp. 1044–1047.
- R. B. Sørensen, L. Pezzarossa, and J. Sparsø, "An area-efficient TDM NoC supporting reconfiguration for mode changes," in Proceedings of the International Symposium on Networks-on-Chip (NOCS). IEEE, 2016.
- Asynchronous router and timing analysis:
 - E. Kasapaki and J. Sparsø, "Argo: A Time-Elastic Time-Division-Multiplexed NoC using Asynchronous Routers," *in Proc. IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)*. IEEE Computer Society Press, 2014, pp. 45–52.
 - E. Kasapaki and J. Sparsø, "The Argo NoC: Combining TDM and GALS", in *Proc. European Conference on Circuit Theory and Design (ECCTD)*, 2015, pp. 1-4.
- Scheduler
 - R. B. Sørensen, J. Sparsø, M. R. Pedersen, and J. Højgaard, "A Metaheuristic Scheduler for Time Division Multiplexed Networks-on-Chip," *in Proc. IEEE/IFIP Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS)*, 2014, pp. 309–316.

References (cont.)

- Journal articles with a broader perspective
 - E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens, and J. Sparsø, "Argo: A Real-Time Network-on-Chip Architecture with an Efficient GALS Implementation," *IEEE Transactions on VLSI Systems*, vol. 24, no. 2, pp. 479–492, 2015.
 - M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparso, and A. Tocchi. "T-CREST: Time-predictable multi-core architecture for embedded systems," *Journal of Systems Architecture*, 61(9):449-471, 2015.
- Open source:
 - Argo hardware: <u>https://github.com/t-crest/argo</u>
 - Scheduler: <u>https://github.com/t-crest/poseidon</u>
- Starting point for more information about the T-CREST plaform:
 - <u>http://patmos.compute.dtu.dk/</u>

END