

Work-in-Progress
Proceedings

July 09–12, 2013

Paris, France

Edited by Linh Thi Xuan Phan

Proceedings

Work-in-Progress Session

of the 25th Euromicro Conference on
Real-Time Systems (ECRTS’13)

July 09–12, 2013
Paris, France

Edited by Linh Thi Xuan Phan

© Copyright 2013 by the authors

© Copyright 2013 held by the authors

! i

Message from the Work-in-Progress Chair

Dear Colleagues:

Welcome to Paris, and to the Work-in-Progress (WiP) Session of the 25th Euromicro Conference
on Real-Time Systems (ECRTS’13)! This session is dedicated to promising new and ongoing
research on real-time systems and applications. I am happy to present eight excellent WiP
papers that cover innovative research from a spectrum of topics, including multicore scheduling
and timing analysis, functionality-aware task scheduling, real-time network architecture,
dependable and real-time wireless communications, and component-based design and model-
based development. I am confident that many of the research contributions we feature here will
appear as full-fledged conference and journal papers in the near future. The proceedings from
this session will be published online via the ECRTS 2013 WiP website (http://ecrts.eit.uni-
kl.de/index.php?id=wip1).

The primary purpose of the WiP session is to provide researchers with an opportunity to discuss
their evolving ideas and to gather feedback from the real-time community at large. Due to time
constraints, the presentations in this session can only provide a brief overview of the new
creative ideas and interesting approaches of the selected research contributions. Nevertheless, I
hope that you all will enjoy this session, and that you will find the ideas presented interesting.
Most of all, I hope you will participate in stimulating discussions, exchange your ideas, and
provide valuable feedback to the authors.

I would like to thank the members of the WiP session technical program committee, Björn
Brandenburg, Gabriel Parmer, Martin Schoeberl, and Insik Shin, for their hard work in reviewing
the papers. I would also like to thank the authors for their interesting contributions and their
confidence in ECRTS as a means to improve and advance their research. Last but not least,
special thanks go to the ECRTS’13 organizers, Laurent George, Stefan M. Petters, and Gerhard
Fohler, for their support and guidance.

Linh Thi Xuan Phan
University of Pennsylvania

Work-in-Progress Chair
25th Euromicro Conference on Real-Time Systems (ECRTS’13)
July 2013

! ii

ECRTS’13 Work-in-Progress Technical Program Committee

PROGRAM COMMITTEE

• Björn Brandenburg, Max Planck Institute for Software Systems, Germany

• Gabriel Parmer, George Washington University, USA

• Martin Schoeberl, Technical University of Denmark, Denmark

• Insik Shin, KAIST, Korea!
!
WORK-IN-PROGRESS CHAIR

Linh Thi Xuan Phan, University of Pennsylvania, USA

! !

! iii

Table of Contents

Message from the Work-in-Progress Chair…………………..…………………..………………….

i

Technical Program Committee…………………..…………………..…………………..……………

ii

On-Demand Coherent Cache for Parallelised Hard Real-Time Applications…………………….
Arthur Pyka, Mathias Rohde, Sascha Uhrig and João Fernandes

1

Response-Time Analysis of Fork/Join Tasks in Multiprocessor Systems………………………..
Cláudio Maia, Luís Nogueira, Luis Miguel Pinho and Marko Bertogna

5

Scheduling with Functional and Non-Functional Requirements: The Sub-Functional
Approach…………………..…………………..…………………..…………………..………………..
Luca Santinelli, Wolfgang Puffitsch, Claire Pagetti and Frederic Boniol

9

High Level Modeling for Real-Time Applications with UML & MARTE…………………………...
Julio Medina and Alejandro Pérez Ruiz

13

An Arbitrarily Precise Time Synchronization Algorithm Based on Ethernet Switch
Serialization…………………..…………………..…………………..…………………..……………..
Fabrice Frances, Ahlem Mifdaoui, Xavier Codogni and Christian Fraboul

17

End-to-End Timing Challenges in Seamless Tool Chain Development for Vehicular
Embedded Real-Time Systems…………………..…………………..…………………..…………..
Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin

21

Extending Real-Time Networks over WiFi: Related Issues and First Developments……………
Tony Flores Pulgar, Jean-Luc Scharbarg, Katia Jaffrès-Runser and Christian Fraboul

25

Towards Resilient Real-Time Wireless Communications…………………..…………………..….
Jeferson Souza and José Rufino
!

29

On-Demand Coherent Cache for Parallelised Hard

Real-Time Applications

Arthur Pyka*, Mathias Rohde*, Jo˜ao Fernandes†, Sascha Uhrig*

*Technical University of Dortmund, Germany

{arthur.pyka, mathias.rohde, sascha.uhrig}@tu-dortmund.de

†Honeywell International, Czech Republic

joao.fernandes@honeywell.com

Abstract—The efficient execution of parallelised hard real-time
applications on many-cores highly depends on the accessibility of
shared data. Concurrent accesses to the same memory induce
a bottleneck for the application execution. Usage of coherent
cache architectures dislocates the bulk of memory transfers to
the responsible caches while ensures the coherence of shared
data. For hard real-time systems, these cache coherence strategies
are not suitable, since inter-cache communication corrupts the
predictability of the timing behaviour.

In this paper we propose our ongoing work on the On-
Demand Coherent Cache (ODC2) for hard real-time capable
many-core systems. This strategy is based on marginal hardware
extension and the use of common synchronisation techniques.
ODC2 provides caching of private as well as shared data
while ensuring coherent accesses to shared data without inter-
cache communication. We present a preliminary performance
evaluation using a parallelised hard real-time 3D Path Planing
application from the avionic domain.

I. INTRODUCTION

Parallelisation of hard real-time applications is a complex

challenge. In the desired case, discovering of the possibilities

for task and data parallelism leads to a parallelised code and

a significant speedup when executed on a multi- or many-core

platform. But even if a parallelised application is available,

more challenges lie ahead.

The selection of a suitable platform has an enormous impact

on the effectiveness of the parallelisation. Concurrent accesses

of multiple cores to a shared memory can induce a bottleneck

for the application execution and decrease the desired speedup.

On platforms with a mesh or torus interconnect, the long

distance between a shared memory and cores located at several

nodes can increase the impact of the bottleneck. In such

systems, private caches must be used to allow fast data access,

while cache coherence mechanisms are needed to preserve the

coherence of accesses to shared data.

Many cache coherence protocols have been introduced in

the last decades. A large part of the mechanisms are based

on ideas developed in the 1980 and are successfully used in

various systems. These snooping or directory based protocols

have been successively improved and evaluated [1]. Another

method to provide coherent accesses to the main memory is

based on the virtual memory management functionality of the

cores [2]. Similar techniques are presented by Park et al. [3]

and Ros et al. [4]. A technique closely related to this work

is self invalidation. Lebeck et. al. [5] proposes dynamic self-

invalidation, in which blocks are automatically selected to be

invalidated.

While providing adequate solutions for various systems,

these coherence strategies are not suitable for hard real-time

systems. In such systems, the usage of cache memory is

problematic. The execution of critical tasks has to follow strict

timing restrictions, otherwise an intolerable system failure can

occur. To ensure that timing conditions are met, a static timing

analysis is used, allowing the system designer to estimate an

upper bound for the worst case execution time (WCET) of an

executed task. For the determination of proper memory access

latencies, the timing analysis requires a suitable knowledge

of the behaviour of the memory system including cache

memories.

A profitable timing analysis of a cache memory is a chal-

lenging task for itself, dependent on the predictability of the

cache behaviour. But in multi-core environments, when cache

coherence mechanisms come into play, reliable predictions of

a cache’s timing behaviour are impractical. Timing analysis

needs sufficient knowledge about the state as well as the con-

tent of block frames at a specific time. Having this information,

cache hits and misses can be predicted in order to forecast

memory access latencies, and the lack of this knowledge leads

to a large WCET overestimation.

The essential operations of common cache coherence

protocols restrain the analysability of the timing behaviour

for different reasons. In the following, the effect of coherence

protocols on analysability is described.

II. ANALYSABILITY OF CACHE COHERENCE PROTOCOLS

Cache coherence protocols for multi-cores rely on various

interaction between the caches. The state and the content of

a cache line can be modified externally via actions triggered

by other cores. The following three scenarios demonstrate

possible interferences between caches resulting in corruption

of content and mutated timing behaviour:

1) Validity of cached data:
In both types (invalidation-based as well as update-

based) of coherence protocols, the lifetime of a specific

cache line is hard to predict:

1

• A cache line containing data which is shared with

other cores can become invalid if another core

intends to write on that data.

• Even though the lifetime of any private cache line

is not directly affected by shared data, the state

of the replacement policy (e.g. Least-Recently-

Used) can be influenced by external invalidations

of block frames holding shared data.

As a result, the lifetime of any cache line not only

depends on internal modifications but also on un-

predictable invalidations caused by other cores. This

makes the prediction of the cache’s content practically

impossible.

2) Latency of cache misses while accessing shared data:
A cache miss of shared data typically generates a read

burst from the main memory. Since the data in the main

memory could be outdated and the modified data could

be present in another core’s cache, a previous write back

procedure of the possessing core may be necessary.

Hence, the latency of cache misses at accesses to shared

data is mutable since it is not known when the other

core is able to handle the request.

3) Latency of cache misses while shared data is hold
by the cache:
The execution time of a specific task can be influenced

by another core. If a core is holding a modified cache

line with shared data, it can be forced to write back

that cache line to re-establish the validity of data in the

main memory. This intervention can delay a local cache

miss, resulting in an unpredictable miss latency.

All three scenarios show, that holding shared data in a

core’s cache makes the latency of future cache accesses unpre-

dictable. This is caused by external modifications of the cache’s

state and content. Common cache coherence mechanisms,

invalidation- and update based, snooping- as well as directory-

based, all rely on these modifications. A coherence mechanism,

suitable for hard real-time systems must be defined by the

absence of external intervention. The timing behaviour has to

be predictable from the core’s point of view.

Figure 1 demonstrates three scenarios of the same mem-

ory access sequence using a conventional cache coherence

protocol. Assuming a 2-way set-associative cache with Least-

Recently-Used (LRU) replacement strategy and the cache line

access order A,X,B,A, where the cache lines A and B hold

private and X shared data. All accesses concern the same set.

In the case X is not externally invalidated (see scenario a) or

X is externally invalidated after the access to B (see scenario

b), B will evict A and the next access to A will lead to a

cache miss. If X is externally invalidated before the access to

B (see scenario c), the free block frame is used for B and

A stays in the cache. In addition to that validity of cached
data (1), the latency at loading X can vary depending on the

presence of a modified X in another cache (2). Moreover, the

invalidation of X in the scenarios b and c can conflict with

loading A and B, respectively, leading to fluctuating latency

of the corresponding load.

Fig. 1. Three scenarios of a 2-way set-associative cache using LRU

replacement and the access sequence A-X-B-A where A and B are private

and X shared data

..

-- Accesses to private data only --

..

lock(critical_section);

enter_shared_mode();

..

-- Accesses to shared data --

..

exit_shared_mode();

unlock(critical_section);

..

-- Accesses to private data only --

..

Fig. 2. Example code snippet with switching ODC

2
mode inside a critical

section

The On-Demand Coherent Cache (ODC2) technique in-

troduced by Pyka et al. [6] provides a predictable timing

behaviour at the expense of an increased miss rate compared to

the well-known MESI and MOESI coherence techniques. The

mechanism is based on protected access to shared data and

controlled invalidation of selected cache lines. Depending on

the context of a cache miss, the corresponding block frame is

regarded as private or shared. Block frames regarded as shared

are invalidated automatically at specific execution points.

The ODC

2
technique is free of any interactions between

caches, thus above mentioned scenarios does not appear.

All modifications of a cache are induced by software and

predictable as far as for incoherent caches. Apart from that,

the mechanism can improve the availability of private data in

set-associative caches, compared to conventional coherence

mechanisms.

2

Fig. 3. Block frame of ODC

2
including the Shared bit which tags the block

frame to be a possible carrier of shared data

III. THE TIME PREDICTABLE ODC

2

In this section a brief description of On-Demand Coherent

Cache as presented in [6] is given.

The aim of ODC

2
is to provide a fast access to private

as well as to shared data, the latter in a coherent way. To

do this, shared data is hold only as long as necessary and

is flushed back to main memory after the time of use. To

identify instruction sequences that access shared data, the

ODC

2
depends on critical sections or other synchronisation

techniques which are anyway needed in parallel applications

to protect accesses to shared resources and to show a deter-

ministic behaviour. Therefore, these critical sections (using

atomic lock-/unlock-operations) need to be extended by two

operations that control the ODC

2
cache controller. The code

snippet presented in Figure 2 shows an example of a critical

section containing the control operations enter shared mode()
and exit shared mode().

An application using ODC

2
can take full advantage of

caching (private) data in all code sections where no shared data

is accessed. Therefore, ODC

2
supports two different working

modes, the private mode and the shared mode. The activation

and deactivation of the shared mode can be triggered either by

accesses to cache control registers.

In private mode, the ODC

2
acts as a standard cache controller

without any coherence functionality since in this mode no

accesses to shared data are allowed. This mode is used as

long as the processor has not entered a critical section.

At the time a critical section is entered, the shared mode

is activated and the ODC

2
shows additional functionality. If a

cache miss occurs, the loaded cache line is marked as shared by

the shared bit. This additional information inside a block frame

(see Figure 3) identifies the cache line as a potential carrier of

shared data on which coherence actions are required. Seeing

that some of the potential carriers can hold private instead of

shared data, this private data is needlessly marked as shared.

To minimise this negative effect, the address of an access is

checked in shared mode. By doing this, it is possible to identify

and to exclude specific memory sections from being marked

(e.g. stack) or even restrict the marking to a special shared
section.

At the time of deactivation of shared mode, all subsequent

memory accesses are stalled and the cache controller performs

a restore procedure. In case of a write-back write strategy, all

cache lines marked as shared and modified are written back

to the main memory. In case of a write-through policy, no

additional write-back is required. Independent from the write

policy, all cache lines marked as shared are invalidated. After

this operation all modified shared data is flushed to the main

memory and no shared data remains in the cache. Being free of

shared data, the cache can perform future private data accesses

more efficient. At the next access to the same shared data,

it needs to be reloaded from the memory. Thus, shared data

accessed by one processor is always consistent with the data

accessed by other processors.

IV. EVALUATION

The major requirement of a coherence technique suitable

for hard real-time systems is a predictable timing behaviour.

Performance improvements play a subsidiary role i. e. perfor-

mance improvements with unpredictable timing behaviour are

of no use for hard real-time systems. A common workaround

used in current multi-core and many-core hard real-time sys-

tems is the application of non-coherent caches for private data

only. Shared data has to be accessed without the help of caches.

Apart from the predictable timing behaviour, the ODC

2
has

to provide a significantly improved performance compared to

uncached accesses to shared data, to be a reasonable alterna-

tive. So, our evaluation is based on a comparison between the

ODC

2
and the workaround using a hard real-time application

from the avionic domain, executed on a mesh-based system.

A. 3D Path Planning Application
In this evaluation, a parallelised implementation of the

3D Path Planning application from Honeywell is used. This

application was provided in the context of the parMERASA

project [7]. It is used for airborne collision avoidance that

builds a path between an initial and goal waypoint, and

its implementation is based on the Laplace’s equation. The

vehicle’s surrounding space is represented by a 3 dimensional

vector space, containing obstacles that must be avoided. The

most computational intensive part of the application is highly

suitable for parallelisation: the vector space can be divided

into multiple compartments (i.e., 3-dimensional sub-grids) that

can be processed in a pipeline scheme. All cores share the

surrounding information (obstacle map and goal position) and

cores with neighbouring compartments exchange data during

computation, with inter-core synchronisation being done via

locks and barriers. The code was extended with the required

operations to control the ODC

2
protocol, whenever shared data

is accessed (as described in Section III).

B. Evaluation Environment
The parMERASA simulator, a many-core simulation plat-

form, developed in the parMERASA project [7], is used

for this evaluation. It is based on the SoCLib simulation

platform [8], a collection of SystemC hardware modules (pro-

cessors, networks, memory, etc.). Our basic platform consists

of multiple clusters, connected via routers in form of a mesh.

A cluster itself is composed by different modules which are

connected via a local crossbar.

For this evaluation, we set the platform to 3x3 mesh with

one core per cluster, local memory in each cluster and a global

3

Fig. 4. Results of 3D Path Planning benchmark with configuration 1

memory (containing shared data and synchronisation variables)

in the lower left cluster (first configuration), respectively in the

middle cluster (second configuration). We evaluated platforms

with 1 up to 8 cores involved in the parallel execution. The

execution times of the ODC

2
are compared with the uncached

execution. For ODC

2
, private and shared data is cached while

synchronisation variables remains uncached. Only private data

is cached during the execution on the uncached platform.

C. Preliminary Results
In Figure 4 the execution time of the 3D Path Planning

application executed with the first configuration is shown. The

graph presents the results of parallel computation normalised

to the unshared platform with 1 participating core.

An immense reduction of the execution time can be seen

with ODC

2
compared to uncached. Using ODC

2
, the appli-

cation benefits from the higher parallelisation degree when

increasing the number of cores. On the unshared platform,

parallelisation benefits can be achieved only up to 4 cores.

With more than 4 cores, the results starts obvert, caused by

the higher amount of accesses to the shared memory. The

exceptionally low execution time with one core is partly caused

by the omitted synchronisation overhead, but mainly by the

fast access to the shared memory that lies in the same cluster.

To provide a fair chance for all cores to access the shared

data without hindrance, in the second configuration the global

memory is placed in the middle cluster. As seen in Figure

5, the parallel execution with up to 4 cores is considerably

improved by the centralised memory. Still the execution with

ODC

2
outperforms the uncached execution and is less sensible

to layout variations.

V. CONCLUSION AND FUTURE WORK

This paper presents a preliminary evaluation of the time

predictable ODC

2
executing a parallelised hard real-time

application from the avionic domain. The results fulfil the

expectations of significant performance gain. While preserving

the timing analysability of the system, ODC

2
offers improved

performance for the parallelisation of hard real-time applica-

tions compared to uncached accesses.

Fig. 5. Results of 3D Path Planning benchmark with configuration 2

Future work will focus on WCET analysis of the presented

techniques together with more extensive evaluations on an

increased number of cores, distributed on multiple clusters.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union Seventh Framework Programme

under grant agreement no. 287519 (parMERASA).

REFERENCES

[1] M. Tomasevic and V. Milutinovic, “Hardware approaches to cache

coherence in shared-memory multiprocessors part 2,” IEEE Micro,

vol. 14, no. 6, pp. 61–66, Dec. 1994.

[2] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,

and B. Saha, “A case for software managed coherence in many-core

processors,” in Proceedings of the 2nd Usenix Workshop on Hot Topics
in Parallelism. Usenix Assoc., 2010.

[3] J. Park, C. Jang, and J. Lee, “A software-managed coherent memory

architecture for manycores,” in Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, ser.

PACT ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.

213–.

[4] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,”

in Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, ser. PACT ’12. New York,

NY, USA: ACM, 2012, pp. 241–252.

[5] A. Lebeck and D. Wood, “Dynamic self-invalidation: reducing coherence

overhead in shared-memory multiprocessors,” in Computer Architecture,
1995. Proceedings., 22nd Annual International Symposium on, 1995, pp.

48–59.

[6] A. Pyka, M. Rohde, and S. Uhrig, “A Real-time Capable First-level

Cache for Multi-cores,” in Workshop on High Performance and
Real-time Embedded Systems (HiRES) in conjunction with HiPEAC’13,
Berlin, Germany, jan 2013.

[7] parMERASA - Multi-Core Execution of Parallelised Hard Real-Time

Applications Supporting Analysability, “http://www.parmerasa.eu/.”

[8] “The SoCLib project. Mainpage.” last download Nov. 17, 2012.

[Online]. Available: http://www.soclib.fr/

4

Response-Time Analysis of Fork/Join Tasks in Multiprocessor Systems

Cláudio Maia, Luís Nogueira, Luis Miguel Pinho
CISTER-ISEP / INESC-TEC

Porto, Portugal

Email:{crrm, lmn, lmp}@isep.ipp.pt

Marko Bertogna
University of Modena

Modena, Italy

Email:{marko.bertogna}@unimore.it

Abstract—This paper proposes a model to analyse the

response-time of parallel real-time tasks. The presented model

is based on the fork/join model which is internally used by user-

level frameworks to exploit the parallelism provided by the

underlying architecture. The model considers tasks with fixed

priorities and allows real-time jobs to generate an arbitrary

number of parallel threads. Each parallel thread is scheduled

at runtime by taking into account the timing properties of the

job that spawns it.

Keywords-Parallel Task Model, Job-level Parallelism, Real-

Time

I. INTRODUCTION

Nowadays most of the computer devices (e.g. PC, tablet,
mobile phone) rely on multiple processors, and future gen-
erations of processors are expected to integrate thousands
of simple processors into a single chip [1]. The turning
point in the computer industry begun in 2001 when Sun
Microsystems and IBM (in a separate effort) produced the
dual-core processors, and later on in 2006 this type of
processors became a mainstream technology powered by
Intel and AMD.

The causes behind the paradigm shift are mostly con-
cerned with the physical limitations of computer chips as
an increase in the operating frequencies of the chips leads
to an increase in power consumption as well as temperature.
Therefore, and to overcome such limitations, instead of
increasing the operating frequencies of the chips, chip manu-
facturers increased the number of computing units operating
in parallel at lower frequencies.

The real-time and embedded systems domain was no
exception to this shift. Industries such as automotive,
aerospace, and avionic, design complex systems that require
powerful hardware capable of supporting their functional
and non-functional software requirements. It is therefore ex-
tremely important for each of these industries to incorporate
new and state-of-the-art multiprocessor architectures in their
products, not only because of the added computing capacity
but also due to the size, weight, and power constraints of
the hardware itself.

Traditional real-time applications are scheduled in a mul-
tiprocessor system by well-studied approaches, as it has been
shown in a recent survey [2]. Nonetheless, the paradigm shift

Figure 1. Job tree (DAG) of a job of Task ⌧i

revealed, among others, that the problem of scheduling real-
time tasks is no longer a problem of scheduling sequential
tasks (i.e. without intra-task parallelism). New models for
computing real-time tasks that consider job-level parallelism

or intra-task parallelism should be employed to maximise
the performance of the applications, and therefore the utili-
sation of the available processing capacity.

Frameworks such as Java Fork/Join [3] or OpenMP [4]
help the application programmer divide the applications into
sets of blocks which can then be scheduled in parallel in a
multiprocessor architecture. Nevertheless, such parallelisa-
tion brings problems when application’s timing constraints
are considered, mainly because existing models are still
restrictive (e.g. [5] and [6] transform a parallel task into
a sequential task in order to apply well-known techniques
used in traditional models).

The fork/join model is a model used by the above-
mentioned frameworks to divide the applications into small
blocks. In its basic form, the job of a task is composed
of two sequential parts and a parallel part, as depicted in
Figure 1. The first sequential part spawns several smaller
units of execution that can be executed in parallel in order
to exploit the inherent parallelism offered by multiprocessor
architectures (in this paper these units are named parallel

jobs or p-jobs). The number of parallel parts can be arbitrary
large, as long as each parallel part is preceded by a sequential
part and succeeded by another sequential part.

In this paper, the schedulability analysis of fork/join tasks
from a response-time perspective is covered. We propose the

5

decomposition of a fork/join task into threads of execution,
in order to improve the computation of the interference
of each task on itself and on lower priority tasks. The
proposed task model is composed of fixed-priority tasks
where each real-time task can be a fork/join task, or a
traditional sequential real-time task. The model assumes the
graph of each task is known a priori, and the number of
parallel jobs generated by each task can be greater than the
number of cores in the platform.

The remainder of this paper is organised as follows.
Section II presents the state of the art of parallel real-time
tasks. Section III describes the system model. Section IV
presents the possible approaches to perform response-time
analysis of fork/join tasks. Finally, section V concludes the
paper and presents the future work.

II. RELATED WORK

Instead of considering a pure sequential task model,
we consider the execution of parallel real-time tasks, i.e.
job-level parallelism is allowed. In the domain of job-
level parallelism, Goossens and Berten in [7] redefined a
classification for different types of parallel tasks. Following
this classification a job may be classified as rigid, moldable
or malleable. A job is said to be rigid if the number
of processors assigned to it is determined a priori, and
this number does not change throughout job execution. A
job is said to be moldable if the number of processors
assigned to it is determined by the scheduler, but cannot
change dynamically. Finally, a job is said to be malleable
if the number of processors assigned to it is determined by
the scheduler at runtime, and can change during the job’s
execution. Hence, a task is said to be: rigid if all of its
jobs are rigid; moldable if all of its jobs are moldable; and
malleable if all of its jobs are malleable. According to this
classification, the parallel task model presented in this paper
is considered to be composed of malleable tasks.

Malleable tasks were covered by Jansen [8], Collette et al.
[9], and Korsgaard and Hendseth [10]. Jansen [8] focused on
minimizing the makespan but without considering real-time
constraints. Collette et al. [9] studied the problem of global
scheduling of sporadic task systems on multiprocessors
considering job-level parallelism. Korsgaard and Hendseth
[10] proposed a sustainable schedulability test for malleable
tasks scheduled with global Earliest Deadline First (EDF).

More recently, Lakshmanan et al. [5] and Saifullah et
al. [6] focused on the study of scheduling fork/join tasks.
Lakshmanan et al. [5] studied the scheduling of periodic
real-time tasks that follow a fork-join structure on multipro-
cessor systems. In their proposed model, each parallel task
is divided into a series of sequential and parallel segments,
where all parallel segments must have the same number of
threads and this number cannot be greater than the number
of processors in the system. Moreover, the authors propose
the task stretch transform algorithm in order to schedule

fork/join tasks using traditional techniques. Saifullah et al.
[6] present a synchronous task model for the scheduling of
parallel real-time tasks with a fork-join structure. This model
does not have any limitations on the number of parallel
threads per segment and therefore is more general than
[5]. The authors also proposed an algorithm to decompose
the tasks into sequential tasks in order to use traditional
schedulability analysis approaches.

III. SYSTEM MODEL

We consider the problem of scheduling independent jobs
on a system that comprises m identical processors with
uniform memory access. In our model, a job is allowed to
execute in more than one core at the same instant. A fully
preemptive system is assumed where any job executing may
be preempted at any instant and resumed later without any
cost. At any given instant, the jobs with the highest priority
among the ready jobs are the ones executing in the cores.

Let ⌧ = {⌧1, ⌧2, ..., ⌧n} denote the set of n periodic tasks.
Each task ⌧i in the task set ⌧ is characterised by a period Ti,
a worst-case execution time requirement Ci, and a relative
deadline Di. Each task releases an infinite sequence of jobs
at periodic time intervals separated by at least Ti time units.
Each job has an implicit deadline equal to Di = Ti and a
worst-case execution time requirement equal to Ci.

During execution, a job of ⌧i may spawn a set of k

"sub-jobs", denoted by parallel jobs or p-jobs, pJi =
{pJi,1, pJi,2, ..., pJi,k}. The parallel jobs are sequential
threads that decompose the job’s workload so that its ex-
ecution can be performed in parallel, therefore having the
advantage of being executed in different processors in the
same time instant (see Figure 1). Thus, each job has a set
of instructions that are executed sequentially, and may have
a set of instructions that can be executed in parallel upon m

processors, i.e. a sequential part and a parallel part.
Note that the worst-case execution time Ci is equivalent to

the time it takes to execute a job of ⌧i in a single processor
without preemption, i.e. executing all p-jobs sequentially.
Let CSeq

i,s be the sequential worst-case execution time of the
s-th sequential part of task ⌧i, and C

Par
i,p be the worst-case

execution time of the p-th p-job spawned by task ⌧i . Then,
Ci =

Ph
s=1 C

Seq
i,s +

Pk
p=1 C

Par
i,p , where h and k are the

number of sequential and parallel parts of ⌧i, respectively.
Each p-job instance pJi,p inherits the timing properties

from the job that spawns it. Thus, the p-th instance of a
p-job is characterised by the same period Ti and relative
deadline Di of the parent job. In this model, parallel jobs
are independent, and with the exception of the processors,
there are no other shared resources or critical sections.

The task structure is represented by a directed acyclic
graph (DAG), denoted as Gj = (V,E), as depicted in
Figure 1. Each element in the set of vertices V represents
the sequential parts of a job and the p-jobs spawned during

6

the execution. Each vertex has an associated worst-case ex-
ecution time. Each element in the set of edges E represents
the communication path between two vertices, vi and vj in
the set V , i.e. vi, vj 2 V . The proposed model does not take
into account any communication cost between any two nodes
in the graph. Nevertheless, a partial order in the execution
is imposed which is deemed correct from the relation that
exists between a job and its spawned p-jobs.

The minimum execution time Pi of a job j is defined to
be the longest execution path in the task graph from the root
vertex to the leaves, i.e. the critical path length. Formally, Pi

is defined as Pi =
P

v2Ll
max(Ci,v), l = 0, 1, ..., L, where

v represents the v

th vertex that is part of level Ll and L
denotes the number of levels in the graph (see Figure 1).

The utilisation ui of task ⌧i is the ratio between the task’s
execution time and period, ui = Ci

Ti
. For the task set ⌧ ,

the total utilisation factor is defined as U(⌧) =
Pn

i=1
Ci
Ti

.
For implicit-deadline sequential task sets, a necessary and
sufficient condition for feasibility is U(⌧) m ([11]).
Nevertheless, for fork/join tasks this condition is only neces-
sary [5]. It is important to mention that the fork/join model
allows a task to have a utilisation larger than 100% while
assuring that the cumulative utilization of the task set is no
greater than m. This property prevents the serialisation of
certain task sets to the implicit-deadline sequential case, as
it would deem these task sets unschedulable.

IV. RESPONSE-TIME ANALYSIS

The response-time of a job is the amount of time that
elapses between the release of the job and its completion
time. From a real-time systems perspective, guaranteeing
that the response-time of the tasks in the task set does not
exceed their deadlines for all possible arrivals of the tasks,
assures that the system is schedulable.

Lakshmanan et al. [5] analyse fork/join tasks from a
feasibility perspective and provides the best-case and worst-
case fork/join task structure. The best-case task structure is
composed of m p-jobs which can be executed in parallel by
fully utilising the m cores provided by the platform, with a
cumulative utilisation of the task set that does not exceed m.
The worst-case structure is based on infeasible task sets with
a cumulative utilization closer to 100%, regardless of the
number of processors present in the platform. An example
of such task sets is given by taking a fork/join task with an
implicit deadline equal to the minimum execution time and a
short parallel region spanning all the cores in the platform;
when this task is scheduled along with a sequential task with
an arbitrarily small utilization and a deadline equal to the
parallel region of the fork/join task, a deadline can be missed
with a cumulative utilisation close to 100%.

From a response-time analysis perspective, the worst-case
response-time of a fork/join task does not only depend on the
interference caused by other higher priority jobs, but also on
the precedence constraints between serial and parallel stages

Figure 2. Decomposition approach example

of the task itself, as well as on the degree of parallelism of
each stage and of the architecture.

In this paper we propose a global fixed-priority approach
for fork/join tasks in which all the ready jobs/p-jobs are
inserted in a global queue from where m processors pick
the highest priority m jobs/p-jobs. In order to perform
the response-time analysis of such tasks, we propose two
possible approaches. The first approach considers for each
job its execution time and the interference that it suffers
from higher priority tasks. If the system is schedulable, the
interference is bounded and the job execution time plus the
imposed interference is always less than or equal to the job’s
deadline. If a job finishes its execution before its deadline,
the available slack, given by the difference between the
deadline Di and the response time Ri, can be used to refine
the computation of the worst-case interfering workload for
other tasks, similarly to the method presented for sequential
task sets in [12]. Moreover, a further refinement for fork/join
tasks can be given by examining the response-time of each
parallel stage of a task, allowing a tighter estimation of the
interference imposed by such a task.

A second approach to response-time analysis is to con-
sider a novel decomposition approach of a fork/join task,
as depicted in Figure 2. In this approach, the fork/join task
is decomposed into a set of threads of execution. There is
a main thread of execution (Th1 in the example) which
is composed of all the sequential parts and the worst-case
parallel part of each level Li with an execution time of Pi.
The remaining threads of execution (Th2 and Th3 in the
example) are composed of sets of parallel jobs belonging to
different levels in the graph, picking one parallel job from
the remaining ones in each level Li. The total number of
threads of execution is given by the maximum out degree
of all the sequential nodes in the graph. The algorithm that
performs the decomposition is depicted in Algorithm 1.

Once the task decomposition into different threads is
done, classic methods to bound the interfering contribution
of each sequential thread can be applied, e.g., limiting the
carry-in contributions to at most m�1 threads [13], limiting
each thread interference to a task ⌧i to at most Di �Pi +1
time-units [14], etc.

V. CONCLUSION

In this paper, we presented a model to analyse the
response-time of fixed-priority fork/join tasks. Different

7

Algorithm 1 Task decomposition algorithm
vi RootV ertex(Gj)
function COMPUTE THREADS(vi)

Create new list

backtrackNode vi

if vi not visited then

vi visited

add vi to list

V isitedNodes V isitedNodes+ 1
end if

for each vj in Gj such that vi, vj is an edge

and vj is ordered in nonincreasing order by WCET

do

if vj not visited then

add vj to list

vj visited

vi vj

V isitedNodes V isitedNodes+ 1
else

if inDegree of vj > 1 then

vi vj

end if

end if

end for

if V isitedNodes < |V | then

Compute threads (backtrackNode)
end if

end function

methods are proposed to improve the response-time analysis
of such task systems, including the decomposition of each
fork/join task into sequential threads of execution. Future
work includes a complete schedulability analysis of such
tasks, considering the worst-case situations that lead to the
largest possible interference for each task. Moreover, we
believe the proposed model can be easily adapted to support
strict fork/join tasks, where nested parallelism is allowed,
and other general parallel task models.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-022701 (CISTER), ref. FCOMP-
01-0124-FEDER-020447 (REGAIN) and ref. FCOMP-01-
0124-FEDER-012988 (SENODS); also by FCT and by
ESF (European Social Fund) through POPH (Portuguese
Human Potential Operational Program), under PhD grant
SFRH/BD/88834/2012.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from berkeley,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[2] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011.

[3] D. Lea, “A java fork/join framework,” in Proceedings of the

ACM 2000 conference on Java Grande, ser. JAVA ’00, 2000,
pp. 36–43.

[4] OpenMP, “Openmp,” http://openmp.org/, Jun. 2011.

[5] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling
parallel real-time tasks on multi-core processors,” in Proceed-

ings of the 2010 31st IEEE Real-Time Systems Symposium,
ser. RTSS ’10, 2010, pp. 259–268.

[6] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
real-time scheduling for generalized parallel task models,”
Real-Time Systems Symposium, IEEE International, vol. 0,
pp. 217–226, 2011.

[7] J. Goossens and V. Berten, “Gang ftp scheduling of periodic
and parallel rigid real-time tasks,” CoRR, vol. abs/1006.2617,
2010.

[8] K. Jansen, “Scheduling malleable parallel tasks: An asymp-
totic fully polynomial-time approximation scheme,” in Pro-

ceedings of the 10th Annual European Symposium on Algo-

rithms, ser. ESA ’02, 2002, pp. 562–573.

[9] S. Collette, L. Cucu, and J. Goossens, “Integrating job paral-
lelism in real-time scheduling theory,” Inf. Process. Lett., vol.
106, no. 5, pp. 180–187, May 2008.

[10] M. Korsgaard and S. Hendseth, “Schedulability analysis of
malleable tasks with arbitrary parallel structure,” Real-Time

Computing Systems and Applications, International Workshop

on, vol. 1, pp. 3–14, 2011.

[11] W. A. Horn, “Some simple scheduling algorithms,” Naval

Research Logistics Quarterly, vol. 21, no. 1.

[12] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor platforms,” in
Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE

International, 2007, pp. 149–160.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time
bounds for fixed priority multiprocessor scheduling,” in Real-

Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, 2009,
pp. 387–397.

[14] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedula-
bility analysis of edf on multiprocessor platforms,” in Real-

Time Systems, 2005. (ECRTS 2005). Proceedings. 17th Eu-

romicro Conference on, 2005, pp. 209–218.

8

Scheduling with Functional and Non-Functional Requirements:
the Sub-Functional Approach

Luca Santinelli, Wolfgang Puffitsch, Claire Pagetti and Frederic Boniol
ONERA, Toulouse

name.surname@onera.fr

Abstract—The problem of finding a feasible task scheduling
with both functional and non-functional requirements has risen
to complexities never experienced before. In this paper we
propose a functional task classification stage through which
tasks are grouped together following their functional properties.
Then the task scheduling problem is reduced into a group
scheduling problem where inter-group and intra-group ordering
are experienced.

I. INTRODUCTION
Finding valid schedules can become problematic for todays

embedded systems with large task sets that could include both
functional requirements in the form of dependencies between
tasks, and non-functional requirements in terms of timing
constraints. On the one hand, the dependencies defeat tradi-
tional schedulability tests that assume independence between
tasks. On the other hand, exact approaches face limitations
when being applied to task sets with thousands of tasks [1],
[2], [3].
The complexity to find a schedule that fulfills all the func-

tional and non-functional constraints becomes increasingly
harder, in particular because the underlying problem is NP-
hard [4], [5]. Although attacked from different perspectives,
i.e. [6], the complexity problem remains hard for realistic
real-time systems with large task sets.
In order to make such sets tractable, it is necessary to

reduce the complexity of the scheduling problem. In this
work we propose to group tasks according to their functional
requirements, and perform scheduling on these groups of
tasks rather than individual tasks. Reducing the number of
items to be scheduled reduces consequently the complexity
of the scheduling problem to be solved; therefore makes
tractable real-time systems with thousands of tasks.

A. Related Work
There are several exact approaches to finding off-line

schedules for task sets with precedence constraints. An early
approach comes from [1], which starts from a heuristic
solution that is consistent with the functional requirements
and then uses a branch-and-bound algorithm to improve
the solution with regard to the non-functional requirements.
Other approaches combine the functional and non-functional
requirements and try to find a solution that satisfies both in
a single step. In [2], the Petri nets are applied to model
the scheduling of dependent tasks. Ekelin [3] explores the

use of constraint programming to solve scheduling problems,
with several optimizations to speed up the search for a valid
solution.
Chetto et al. [7] first considered the effect of prece-

dence constraints between tasks on the dynamic priority
scheduling problem. Spuri et al. [8] extended formal results
on precedence constrained tasks to arbitrary timed tasks
with preemption. Cucu-Grosjean et al. have tackled with
the scheduling problem with a graph representation for the
functional constraints [9], [10]. Those papers are inspired,
among the others, by Clark [11] which outlines the task
dependence problem together with the complexity of the
scheduling problem when the dependences are dynamic, and
by the work of Natale et al. [4] where end-to-end timing
constraints are applied to guarantee distributed processes.
While these approaches can be fairly efficient for some

cases, they cannot escape the fact that the underlying schedul-
ing problem is a hard problem.

II. PROBLEM STATEMENT & BACKGROUNDING
In this paper we tackle with the real-time scheduling

problem by classifying tasks into groups according to their
functional requirements. We call our approach sub-functional
scheduling, as it is composed by the ”functional grouping”
and a series of future steps toward the schedulability analysis
including both functional requirements and non-functional
requirements, e.g. timing constraints.
Our sub-functional scheduling approach is developed as-

suming a) the functional constraints as data dependencies
and precedence constraints described with graphs, b) off-line,
non-preemptive and single-processor scheduling, c) mono-
rate, synchronous tasks with the same period. In future work
we intend to release some of the assumptions made.

Example II.1. Figure 1 shows our reference example to
explain the approach under development. The 22 tasks have
functional requirements described in Figure 1(a) with the
precedence dependences as edges of the graph. Figure 1(b)
shows an example of task scheduling compliant to the func-
tional requirements.

A. Functional Backgrounding
A real-time system can be seen as a task set Γ =

{τ1, τ2, . . . τn} where each composing task τj is described

9

τ1

τ2 τ3

τ4 τ5

τ6

τ7

τ8

τ9 τ10

τ11

τ12 τ13 τ14

τ15 τ16

τ17

τ18

τ19

τ20

τ21 τ22

(a) Functional dependencies through data flow and
graph representation

τ1 τ2 τ3τ4 τ5 τ6 τ7 τ8τ9 τ10 τ11

τ15

τ17 τ18τ19 τ20τ21 τ22

(b) An example of a possible task execution ordering for the
tasks within the graph

Figure 1. Task functional dependence description and a possible scheduling.

by a tuple (aj , Cj , Tj) with Cj being the task worst-case
execution time, Tj the inter-arrival time of the task instances
(jobs) and aj the task activation which repeats at any of its
instance. All the tasks of Γ are assumed with the same period
to approach safety-critical avionic platforms. Recent works
have shown that in safety-critical avionic platforms the strict
time-oriented approach is applied with mono and multiple-
rate tasks, [12], [13]. In our first stage we start with the
mono-rate case to converge to the multiple-rate case in the
future. Thus all the tasks share the same period Tj .
In our model, the precedence constraints (i.e. data depen-

dences) between tasks are described as a directed acyclic
graph G = (V,E) where V is the set of tasks Γ, Γ ≡ V,
and E ⊆ V × V is the set of edges which represents the
precedence constraints between tasks.
Although classical real-time system models assume task

execution as an infinite sequence of tasks instances (jobs),
we keep our model within the finite directed graph scenario
considering the tasks, not the jobs.
1) Graph Modeling: Given a graph G = (V,E), an

edge between two tasks τj and τk, τj → τk, represents a
precedence constraint between τj and τk.
A path p(τi, τo) from task τi to task τo within a graph G =

(V,E) is an alternating sequence 〈τi, τi → τ1, τ1, . . . , τn →
τo, τo〉 of vertices and distinct edges where τi, τ1, . . . , τn, τo ∈
V and τi → τ1, . . . , τn → τo ∈ E. We denote by P the set
of all the paths in G and we conclude that two tasks τk and
τj are connected if there is at least one path p(τk, τj) ∈ P .
As the number of vertices and edges is finite and the graph
is acyclic, P is a finite set; by P (τk, τj) we denote the set
of all the paths from τk to τj . M(τk, τj) instead is the set of
tasks belonging to all the possible paths from τk to τj .
The set of predecessors of a task τi is denoted by preds(τi)

such that preds(τj)
def
= {τk | τk → τj}, and the number of

successors succs(τi), as succs(τj)
def
= {τk | τj → τk}. The

cardinality of a task is the sum of the number of predecessors
and successors, ‖τk‖ = ‖preds(τk)‖+ ‖succs(τk)‖.

B. Functional Abstraction
The functional description implies a partial ordering be-

tween tasks, but usually allows more than one valid schedule.

We can define equivalence among scheduling as follows:
two scheduling resulting from the same partial ordering are
functionally equivalent. Then the objective of the scheduling
problem is to find in a total ordering of task such that
complies to both functional and non-functional requirements.

Definition II.2 (Direct Dependence)). Given a graph G =
(V,E), a task τk directly depends on a task τj , τk) τj if
τj → τk.

The direct dependence relation can be extended transitively
to a notion of functional dependence.

Definition II.3 (Functional Dependence !). Given a graph
G = (V,E), a task τk functionally depends on a task τk, τk!
τj if there exists at least one path p(τk, τj) ∈ P connecting
τk and τj within G.

The functional dependence is a transitive relation between
tasks; indeed, if τk → τj and τj → τr, then τk ! τr. Thus
the direct dependence is a stricter definition of dependence
)⊆ !, which does not include the transitivity property.

Definition II.4 (Functional Independence !). The notion of
independence is the opposite (the negation) of the depen-
dence, !. Two tasks τj and τk are called independent, τj!τk
if ! p(τj , τk) ∈ P.

III. SUB-FUNCTIONAL GROUPING

To simplify the scheduling problem with functional de-
pendencies we propose to classify tasks according to their
dependencies and create groups of tasks.

Definition III.1 (Grouping). Given a graph G = (V,E), a
grouping G = {G1, . . . ,Gn} divides the task set into disjoint
subsets such that ∀Gi,Gj ∈ G, Gi∩Gj = ∅ and

⋃n
i=1 Gi = V.

The direct and functional dependence can be extended from
tasks to groups of tasks by considering groups dependent if
there is a dependence between any of their tasks:

Gi) Gk ⇔ ∃τj ∈ Gi, τl ∈ Gk, τj) τl (1)

Gi ! Gk ⇔ ∃τj ∈ Gi, τl ∈ Gk, τj ! τl (2)

The criteria for the functional grouping may be chosen
arbitrarily, and some grouping are more helpful with regard
to scheduling than others. In the following, we focus on two
classes: a) independence grouping which exploits the notion
of independence to partition the task set and b) dependence
grouping which creates groups of dependence tasks.

A. Independence Grouping

Definition III.2 (Independence Grouping). We call a group-
ing I an independence grouping if only independent tasks
belong to the same partition Ii,

∀Ii ∈ I, ∀τj , τk ∈ Ii, τj!τk. (3)

This definition does not infer a unique grouping. A trivial
independence grouping would be a grouping where each

10

Algorithm 1 Independence grouping algorithm
Input: Γ
Output: Ii

1: i← 1, R← Γ
2: while R "= ∅ do
3: Ii ← {τj | preds(R, τj) = ∅}
4: R← R− Ii

5: i← i + 1
6: end while

I1

I2 I3

I4

I5
I6

I7 I8 I9

I10I11

Figure 2. An Independence grouping example.

partition contains exactly one task. Obviously, such a group-
ing would not be particularly helpful. However, even when
considering non-trivial cases, grouping according to indepen-
dence allows for some ambiguity.
Algorithm 1 shows an algorithm to create an independence

grouping by moving forward through the task graph. In the
first step, it puts all tasks without predecessor tasks (begin
tasks) into the same group. As none of these tasks have
predecessors, it cannot be the case that τi ! τk and the
group consists only of independent tasks. The algorithm then
removes these nodes and the related edges from the graph and
creates a group which contains tasks without predecessors in
the new task graph. The same reasoning as before applies, and
all tasks in the group are independent. While removing tasks
from the graph no relevant edges are removed; only the prece-
dent tasks are evicted and the dependences among remaining
tasks remain unaffected. Therefore, Algorithm 1 creates a
valid independence grouping, and Figure 2 shows the result of
applying the independence algorithm to Example 1. Among
the other possibilities, there is also the backward approach to
the grouping by moving backward to the graph.

B. Dependence Grouping

Instead of grouping independent tasks, we can group tasks
that form chains of dependent tasks.

Definition III.3 (Chain). Two tasks τi and τk form a chain
if τk is the only successor of τi and τi the only predecessor
of τk, or if there exists a sequence of chains between τi and
τk through intermediate tasks.

τi " τk
def
= (succs(τi) = {τk} ∧ preds(τk) = {τi})

∨ (∃τl, τi " τl ∧ τl " τk)
(4)

Definition III.4 (Dependence Grouping). A dependence
grouping D is a partitioning of the task set such that chains
of dependent tasks belong to the same group Di

∀Di ∈ D, τj , τk ∈ Di, j 1= k ⇔ τj " τk ∨ τk " τj . (5)

Algorithm 2 Dependence grouping algorithm
Input: Γ
Output: Di

1: i← 1, R← Γ
2: while R "= ∅ do
3: T ← {τi | preds(R, τi) = ∅}
4: for τj ∈ T do
5: Di ← {τj} ∪ {τk | τj ! τk}
6: i← i + 1
7: end for
8: R← R−

⋃i
j=1

Dj

9: end while

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

Figure 3. The only possible grouping with dependences.

Algorithm 2 computes the dependence grouping. It starts
from the tasks without any predecessors and iterates over
them creating a group for each of these, which includes the
task and all those that form a chain with it. Afterwards,
it removes the tasks that already are part of a group and
continues until the task graph is empty.
Algorithm 2 is a correct dependence grouping since it

explores the whole graph for the largest dependence groups,
Equation (5). It dominates all the possible dependence group-
ing which start from intermediate or leaf tasks.
Figure 3 is for the result of the dependence grouping to

Example 1 with 10 groups.

IV. SCHEDULING
The partial order established by the functional dependences

is transformed into a total order by the scheduling.

A. Sub-Functional Scheduling
For a system of tasks Γ, a schedule S is a totally ordered set

of activation times of all the tasks S = {aj ∈ N}, τj ∈ V such
that all the precedence constraints are satisfied [9]. S is the set
of all the possible schedules. With the group decomposition,
for a scheduling problem we can differentiate two “levels”
of scheduling. There is the inter-group scheduling, as the
ordering of groups, and the intra-group scheduling, as the
ordering of the tasks composing each group.

Example IV.1. Taking the reference example from Figure 1,
we have that the first block of the graph composed by the tasks
τ1, τ2, τ3, τ4 and τ5 can results into 10 possible schedules:

τ1 − τ2 − τ3 − τ4 − τ5 τ1 − τ2 − τ4 − τ5 − τ3

τ1 − τ4 − τ5 − τ2 − τ3 τ1 − τ4 − τ2 − τ5 − τ3

τ1 − τ4 − τ2 − τ3 − τ5 τ1 − τ2 − τ4 − τ3 − τ5

τ4 − τ5 − τ1 − τ2 − τ3 τ4 − τ1 − τ5 − τ2 − τ3

τ4 − τ1 − τ2 − τ5 − τ3 τ4 − τ1 − τ2 − τ3 − τ5

11

All of them are compliant to the functional requirements,
although they differ in terms timing.

1) Independence Scheduling: With an independence
grouping as computed by Algorithm 1, the scheduling of
groups is already fixed. The algorithm create groups greedily,
such that groups must be executed in the same order as they
were created for the algorithm. However, as all tasks are
independent, the execution order of tasks within a group can
be chosen freely.

Example IV.2. From Example II.1 with a
forward independence grouping it is Γ =
{I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11} where
the group ordering is already decided as
I1 − I2 − I3 − I4 − I5 − I6 − I7 − I8 − I9 − I10 − I11,
Figure 2. The total ordering is obtained selecting for each
set an order for the composing tasks.
This results into 2!2!1!1!2!2!3!4!3!1!1! = 13824 possible

task combinations tough, still a complex problem.
Considering the subgraph I1−I2−I3, there are 4 possible

orderings with independence grouping

τ1 − τ4 − τ2 − τ5 − τ3 τ1 − τ4 − τ5 − τ2 − τ3

τ4 − τ1 − τ2 − τ5 − τ3 τ4 − τ1 − τ5 − τ2 − τ3

out of the 10 possible without any grouping applied. This is
the degree of flexibility we lose by applying grouping while
reducing the complexity of the problem.

The independence grouping reduces the possible task
schedules, which in the worst case could eliminate all sched-
ules that would satisfy the timing requirements. However,
the grouping does not add any additional schedules, and is
therefore safe with regard to the functional requirements.
2) Dependence Scheduling: With the dependence group-

ing paradigm, the ordering of tasks within a group is fixed
by the functional constraints. In contrast, the scheduler has
to find a suitable ordering of the groups of dependent tasks.
Within this paradigm, the scheduling remains a mixture
of functional and execution ordering with less flexibilities
compared to the case without grouping. Like independence
grouping, dependence grouping is safe with regard to the
functional requirements, but may eliminate all schedules that
would satisfy the timing constraints.

Example IV.3. The resulting dependence scheduling for
Example II.1 derives from the following set of combinations
{D1,D2}−D3−{D4,D5}−{D6,D7,D8,D9}−D10, where
the relative order between D1 and D2 does not affect the
functional requirements as well as for D4 and D5 and
D6,D7,D8 and D9. It results into 2!1!2!4!1! = 96 possible
ordering, Figure 3.
Considering the partition {D1,D2} − D3, with a depen-

dence grouping, we have 2 possible ordering depending on
which between D1 or D2 is scheduled first, thus

τ1 − τ2 − τ3 − τ4 − τ5 τ4 − τ5 − τ1 − τ2 − τ3

as a subset of the 10 possible without any grouping. We notice

that with a dependence grouping we further lose scheduling
possibilities in that particular configuration.

V. CONCLUSIONS
In this paper we introduced the notion of grouping to

classify tasks with respect to their functional requirements.
We proposed two different grouping policies according to the
notion of functional dependence and functional independence.
In future stages, we intend to combine the grouping with

schedulability analysis for timing constraints in terms of
latencies. Extensions to this work will also release some of
the assumptions made i.e., non preemptability or mono-rate,
to generalize both the grouping approach and the consequent
timing analysis.

REFERENCES
[1] J. Xu and D. Parnas, “Scheduling processes with release times,

deadlines, precedence and exclusion relations,” IEEE Trans.
Softw. Eng., 1990.

[2] E. Grolleau and A. Choquet-Geniet, “Off-line computation of
real-time schedules by means of petri nets,” in Workshop On
Discrete Event Systems, WODES, 2000.

[3] C. Ekelin, “An optimization framework for scheduling of
embedded real-time systems,” Ph.D. dissertation, Chalmers
University of Technology, 2004.

[4] M. D. Natale, M. Di, N. John, and J. A. Stankovic, “Dynamic
end-to-end guarantees in distributed real time systems,” in
Proceedings of RealTime System Symposium, (RTSS), 1994.

[5] S. Baruah and J. Goossens, “Scheduling real-time tasks: Algo-
rithms and complexity,” Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, 2003.

[6] R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedu-
lability tests for fixed priority real-time systems,” IEEE Trans.
Comput., 2008.

[7] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling
of real-time tasks under precedence constraints,” Real-Time
Systems, 1990.

[8] M. Spuri and J. Stankovic, “How to integrate precedence
constraints and shared resources in real-time scheduling,”
Computers, IEEE Transactions on, 1994.

[9] L. Cucu-Grosjean and Y. Sorel, “Non-preemptive scheduling
algorithms and schedulability conditions for real-time systems
with precedence and latency constraints,” INRIA Rocquen-
court, Tech. Rep., December 2004.

[10] L. Cucu, R. Kocik, and Y. Sorel, “Real-time scheduling for
systems with precedence, periodicity and latency constraints,”
in Proceedings of Real-time and Embedded Systems, 2002.

[11] R. K. Clark, “Scheduling dependent real-time activities,”
School of Computer Science, Carnegie Mellon University,
Tech. Rep., 1990.

[12] F. Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic
execution model on cots hardware,” in Proceedings of the
25th international conference on Architecture of Computing
Systems, ser. ARCS, 2012.

[13] M. Lauer, J. Ermont, F. Boniol, and C. Pagetti, “Latency and
freshness analysis on ima systems,” in Emerging Technologies
Factory Automation (ETFA) IEEE 16th Conference on, 2011.

12

High level modeling for Real-time applications with
UML & MARTE

Julio L. Medina and Alejandro Pérez Ruiz
Departamento de Electrónica y Computadores, Universidad de Cantabria. Santander, Spain

{julio.medina, alejandro.perezruiz}@unican.es

Abstract—This paper shows initial results and the research
path in a methodology to use UML & the UML Profile for
MARTE in the design of real-time applications. The modeling
constructs used are those proposed in the High Level Application
Modeling chapter of the MARTE standard. These elements are at
a high abstraction level, and hence they need to be complemented
with a number of constraints and rules of usage in order to get a
consistent set of transformations to obtain code and analysis
models automatically from them. The rules and patterns
proposed in this effort are meant to address increasingly complex
design intents. As a starting point in the methodology this paper
shows some of the basic ones, concretely the simple independent
tasking model, the passive protected data sharing, and the
distributed end-to-end flows of linear execution. The models here
defined are suitable to be transformed into both: schedulability
analysis models and code generation models. These models are
also represented in UML as a previous step to its execution, the
profiling of its execution times, and the schedulability analysis.

Keywords—code generation; modeling; UML; MARTE; model-
based schedulability analysis; MAST; Ada; real-time.

I. INTRODUCTION
Model-based software development is progressively taking

momentum in industry as one of the most promising software
engineering approaches. It helps to create and keep assets of
many kinds along the development process. It facilitates the
separation of concerns, increasing the process efficiency, and
finally empowering the quality of software.

For real-time applications, a model-based methodology can
also help to simplify the process of building the temporal
behavior analysis models. These models constitute the basis of
the real-time design and the schedulability analysis validation
processes. With that purpose, the designer must generate, in
synchrony with the models used to generate the application’s
code, an additional parameterizable model, suitable for the
timing validation of the system resulting out of the composition
of its constituent parts. The analysis model for each part
abstracts the timing behavior of all the actions it performs, and
includes all the scheduling, synchronization and execution
resources information that is necessary to predict the real-time
qualities of the applications in which such part might be
integrated. In the approach here presented, these analysis
models are automatically derived from high level design
models annotated with a minimum set of real-time features
taken from the requirements of the application in which they
are to be used. Following the generation of the application’s

code as a composition of the code of its constituent parts, the
complete real-time analysis model of the application can also
be automatically generated from the composition of the set of
real-time sub-models that form it.

The research effort that this paper presents considers the
model-based development of hard real-time applications, for
which the definition of the corresponding schedulability
analysis models is an automated result of a chain of tools and
techniques used in a model driven engineering approach. Our
previous efforts in this direction can be read in [1]. In this
context, this paper proposes the concrete modeling elements at
a high level of abstraction, useful to conceive and elaborate the
system using the Unified Modeling Language (UML) [2]. This
is a general purpose modeling language standardized by the
Object Management Group (OMG). This is used in conjunction
with its standard extensions for Modeling and Analysis of
Real-Time and Embedded systems, namely the UML Profile
for MARTE [3]. There are other model driven similar efforts
from the software engineering perspective derived from the
ASSERT project, in [4] for example UML is used, though not
fully based in standard modeling extensions like MARTE.

The most widely known use of model based development
techniques comprises the generation of code from structural
models like class diagrams. With those automations an initial
set of skeletons of the classes and structural packages that form
an application is usually easy to obtain. Also some form of
reverse engineering is available through the usage of specially
formatted “comments” placed as textual marks surrounding the
space in the code files for the “bodies” of the operations. The
final implementation code is then inserted (usually typed by
hand) between the textual marks that are managed by the code
generators. A further refinement that generates both,
specifications and bodies from models, are code generators that
use state machines for modeling the behavior of the classes.
This mechanism uses the operations of a class as message
handlers that trigger the events between states. That way the
messages from other objects can interact with the automaton of
the class, though in a non-predictable order. Then, this kind of
code generators is not consistent with the required scenario-
based description of real-time activities used for schedulability
analysis.

For this reason a different approach to the code generation
is necessary if we want to keep both models in tune in a way as
automated as possible. Our tactic for generating the code that
goes inside the marks of the structural skeletons is the use of
the behavioral models given for each operation of the class.

This work has been partially funded by the Spanish Government under
grant TIN2011-28567-C03-02 (HI-PARTES). This work reflects only the
author’s views; the funding organism is not liable for any use that may be
made of the information contained herein.

13

Fig. 1. Models and transformations used in our approach

These models are usually made just for descriptive or
documentation purposes, but there is no reason for not using
them precisely as a specification. For this labor the more
adequate modeling elements are activity diagrams. The
formalization of the textual code inside actions may be either
the standardized action language [5] of the OMG, or specific
annotations made in the target language that specify the
concrete actions to be performed.

In the context of the methodology proposed in this
approach, this paper contributes to clarify the process to use
from a software engineering point of view, and to define the
input modeling formalisms, using UML and MARTE for
expressing the needs of the designer.

The paper is organized as follows: Section 2 presents a
global view of the approach and situates the contribution of this
work-in-progress paper in its perspective. It also makes a brief
summary of the challenges, and presents related efforts.
Section 3 presents the concrete modeling elements and rules
used for modeling applications compliant to (A) the simple
independent tasking model, (B) the passive protected data
sharing and (C) end-to-end flows of linear chains of execution.
Finally some conclusions and next steps to follow in our
envisioned model based engineering approach.

II. CONTEXT OF THE MODEL-BASED APPROACH
As early mentioned, here we use UML as modeling

language and the UML standard extensions proposed by the
MARTE profile for annotating the necessary real-time aspects
at different levels of specification. A synthetic view of the
approach is shown schematically in Fig. 1.

The initial model used to describe the application and its
real-time features is constructed using the MARTE extensions
for high level application modeling (HLAM). From this
formalism, two model-to-model (M2M) transformations are
used. One, indicated as M2M_A in Fig. 1, is used to create the
UML representation of the analysis model. This transformation
is used to create a model for each real-time situation under
analysis together with the model of the processing resources,
and the workload to consider. For this model the schedulability
analysis modeling (SAM) capabilities of MARTE are used.
The other transformation, M2M_C, is used to generate an
intermediate model ad hoc for the code generation. The
intermediate model, called UMLforCode in Fig. 1, is a typical

UML object oriented generic model that comprises structural
as well as behavioral information. The behaviors of the
operations in this model are expressed by means of activity
diagrams.

The model-to-text (M2T) transformation, denoted as
M2T_MAST in Fig. 1, is used to generate the schedulability
analysis models. It is part of our previous work [1]. An eclipse
based tool [6] is available for the generation of analysis
models, the invocation of the analysis tools, and the retrieval of
results back into the modeling context. The tool then converts
SAM models into the formalisms used by MAST [7] and then
recovers its results back into the UML+MARTE model.

Another tool is also provided for generating Ada code from
the UMLforCode object oriented generic model [8]. This is a
model-to-text transformation, called M2T_ADA in Fig. 1. The
code implemented out of the combination of M2M_C and
M2T_ADA is consistent from the execution semantics point of
view with the analysis models generated out of the
combination of M2M_A and M2T_MAST. The transformation
that generates the UMLforCode model includes the necessary
instrumentation code that is used to measure and recover the
approximate values for the worst, best and average execution
times into the analysis model (a process called CT_DATA in
Fig. 1). The op_codes table will help the transformations and
tools to keep track of sections of code instrumented. Once the
analysis is performed, scheduling analysis results are back
annotated to the SAM models. These real-time configuration
data include priorities (or relative deadlines) for the concurrent
units, and priority ceilings (preemption levels or deadly floors)
for shared resources. Called CF_DATA. in Fig. 1, these data
are the configuration information in the UMLforCode
generation model.

A. Design and analysis in the software development process
From a software engineering perspective a summary of the

methodological steps to follow may be stated as:

(a) Introduction of design intent in UML using HLAM. The
definition of the models to use for this step is the aim of the
research work proposed by this work-in-progress paper.

(b) An initial schedulability analysis architectural validation
may be done using speculative values for execution times using
M2M_A in exploration mode, the extraction of schedulability
analyses models with M2T_MAST, and the execution of the
analysis tools (in this case MAST).

(c) Generation of UMLforCode model with M2M_C.

(d) Code generation (M2T_ADA) and execution in
profiling mode (to use less speculative values in the analysis).
Alternatively the code may be statically analyzed and executed
with ad-hoc worst case execution time analysis tools.

(e) Generation of the SAM model with M2M_A, which
now includes the recovered execution times (WCET)

(f) Extraction of final schedulability analysis models with
M2T_MAST, and execution of the analysis tools (i.e. MAST)

(g) Recovery of analysis results in SAM and transposition
of configuration data into the UMLforCode model.

14

(h) Generation of the final application code.

This paper proposes a way for HLAM models to be created
so that all the transformations mentioned may work correctly.
The transformations for generating UMLForCode (M2M_C)
and analysis (M2M_A) models will be our next steps.

B. Related work
Following previous efforts that have studied the design of

real-time systems using object oriented formalisms, we observe
that most of them include the specification of the concurrency
using structural models, usually at the design-for-
implementation level. These dual structural-behavioral
formalisms are made in the aim that this will help to realize
schedulability analysis with the simple tasking model in mind
and basic rate monotonic analysis (RMA) techniques later on.
Unfortunately the complexity of the mechanisms used to
generate the code makes this assumption not realistic, such as
in ROOM [9], Octopus/UML [10], ACCORD/UML [12] [13],
Comet [14], or the design model extremely constrained and
monolithic such as in HRT-HOOD [15], OO-HARTS [16].

Being a syncretism of all those mentioned, and in order to
ease the application of simple schedulability analysis
techniques, the high level application modeling constructs in
MARTE (see the HLAM section in [3]) also facilitate the use
of structural models for the specification of the concurrency.
But the interactions between them (including distribution) may
take complex patterns that require a richer model for the
analysis. Then, from the analysis perspective the end-to-end
offset based analysis techniques scale far better to deal with
these scenarios than the basic RMA tasking model. HLAM
proposes two basic building blocks, the real-time unit: RtUnit
and the passive protected unit: PpUnit. As for the behaviors in
them (the code inside the marks), due to its natural complexity
it is usually not just passive linear code that can be modeled as
a computation time; instead they include delays, and
interactions among objects and nodes, mostly when they
become formed out of a composition of distributed operations
(behavioral models). In these cases a state machine (the basic
construct used in most of the analyzed approaches) is not
directly transformable into an analysis model.

From the analysis perspective, the models that are required
to apply the modern offset-based analysis techniques, are
fundamentally scenarios. A scenario is an expression of the
(worst case) expected or observable manifestation of the design
intents (coded behaviors). This is the basis for coping with
complexity that distinguishes RMA schedulability analysis
techniques from those other strategies like the based on timed
automata or synchronous languages.

As a modeling language for this domain, the scheduling
analysis modeling section of MARTE (SAM) is also able to
express that kind of scenario models, and then it is an adequate
formalism to feed the corresponding analysis tools.
Unfortunately these scenarios are not necessarily part of the
initial specification of the system behavior. They are a means
to express: the expected stimuli, the high level expected
workload, and the end-to-end timing requirements, but they are
usually not the basic data used for design intent or code
generation drawn by the designers.

The creation of these (usually worst case) analysis oriented
scenarios in tune with the final code is actually the main duty
and a high responsibility of the real-time practitioner. In order
to help in this labor the automation tools need the model used
for code generation to have the behaviors of its operations
expressed as scenarios. For this reason the adequate input
models for the generation of the code inside the operations in
the UMLforCode model are UML activities. This is why the
tool that fills the code for the methods of the classes retrieves it
from activity diagrams.

The use of scenarios has an additional benefit. This method
helps to support the design of applications in terms of
composable parts, which are closer in granularity to the
concept of real-time objects than to the fully component-based
software engineering (CBSE) interpretation of components. In
a fully component-based approach, the creation of the analysis
models would have to be made as a combination of both,
structural elements plus their deployment. In an object-oriented
model-driven approach, this later strong form of composability
is in a higher level of abstraction, but still may benefit of the
approach here described in order to assess a variety of non-
functional properties, in our case of course the assessment of its
timing properties by means of schedulability analysis.

C. Contribution of the effort here described
The contribution of this work-in-progress paper is in the

clarification of the approach, the steps to follow in a software
engineering process, and the initial identification of rules and
concrete modeling elements in UML and MARTE so that
suitable design models may be processed by the tools that the
full model-based methodology presented comprises.

III. HIGH-LEVEL MODELING RULES
The basis for modeling with schedulability analysis in mind

is the specification of three basic models, the platform, the
logic of the application and the workload the system is
expected to support. An initial set of modeling rules, which
included those for describing the platform, was proposed in [1].
Here we enhance and extend it to address also code generation.
For those terms in italics refer to the MARTE specification [3].

A. Modeling independent tasks
In cases where tasks are independent, the basic rules for

describing the logic of the application are:

1. Each RtUnit have only one schedulableResource
(thread) on it. Its behaviors (operations) may not be
called from other RtUnits, and run under the
scheduling parameters associated to that schedulable
resource. Behaviors called in other passive classes run
under the scheduling parameters of the calling RtUnit.

2. Each RtUnit has one and only one of its operations
(UML BehavioralFeatures or behaviors) with the
stereotype RtFeature. This has an RtSpecification (a
comment stereotyped) in which at least the attribute
occKind, has to be specified. This attribute indicates
the ArrivalPattern (the triggering scheme) of the
underlying task (usually a periodic pattern).

15

3. All the RtUnits deployed in a processingResource (a
host) are handled by the same scheduler and use the
same (or fully compatible) scheduling policy.

4. Each RtUnit whose isMain attribute is set to true,
implies the presence of an execution host where the
main service of the RtUnit is deployed.

5. The attribute srPoolPolicy holds the value infiniteWait

B. Modeling share data interactions
When tasks share passive data the PpUnit modeling

construct is used, in this case these additional rules apply:

6. The ExecKind of PpUnit services is ImmediatRemote

7. All services of the PpUnit use the same protection
protocol: ImmediateCeiling or PriorityInheritance

8. The ConcurrencyPolicy of PpUnit is Guarded.

The concurrencyPolicy of the kind Concurrent might be
enabled in order to have the writer/reader ConcurrencyKind
available, but this behavior requires additional capabilities
from the analysis techniques to take really advantage of it, so in
principle it is discouraged.

C. Modeling end-to-end flows
When tasks interact by triggering one another, chains of

actions need to be ensemble. In this case the calling of the first
action (task) in the chain determines the execution periodicity
and end-to-end deadline. The following rules apply in this case:

9. The first restriction in rule 1 is here relaxed so that
operations stereotyped as RtServices of RtUnits may be
invoked by others using the SignalEvent semantics.

10. In this case, in order to have analyzable models, only
the first calling operation in the chain may have an
ArrivalPattern specified be means of its corresponding
RtFeature and its RtSpecification comment.

11. Operations in an RtUnit that are not stereotyped as
RtServices run in the context of the calling task. They
are called passive and use the CallEvent semantics.

See [1] for additional rules that apply in general in specific
phases of the development process.

The invocation of behaviors is made in activity diagrams.
sendSignalActions are used for triggering RtServices and
callActions for calling passive operations. The invocation of an
RtService that holds an arrival pattern implies the initialization
of the task (usually invoked in the main). This auxiliary code
will be automatically inserted in the activity diagrams of the
UMLforCode generation model. This will be done following
the arrival pattern of the task (usually periodic).

The constraining rules described here for this HLAM input
model are meant for ensuring (i) analyzability by means of
schedulability analysis (ii) consistency between the analysis
models and the generated code, (iii) the minimum usage of
tools and transformations, and (iv) compliance with executable
versions of UML, fUML [17] and the future standard for a
Precise Semantics of UML Composite Structures [18].

IV. CONCLUSIONS AND FUTURE WORK
This paper presents a model-based software engineering

methodology for the development of real-time applications.
Some steps in the necessary chain of tools have been realized
and this paper shows some of the basic steps missing. It
addresses the simple independent tasking model, the passive
protected data sharing, and the distributed end-to-end flows of
linear execution. The models compliant to the rules here
defined are suitable to be transformed into both: schedulability
analysis and code generation intermediate models. Next steps
include, the high level transformations into these intermediate
models, experiments, rules to handle interrupts, and tooling
support for the complete iterative engineering process.

REFERENCES
[1] J. Medina and A. Garcia Cuesta. Model-Based Analysis and Design of

Real-Time Distributed Systems with Ada and the UML Profile for
MARTE. In Proc. of the 16th International Conf. on Reliable Software
Technologies-AdaEurope 2011, LNCS 6652, pp 89-102.

[2] Object Management Group. Unified Modeling Language version 2.4.1,
OMG document formal/2011-08-06, 2011.

[3] Object Management Group, UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, version 1.1, OMG doc.
formal/2011-06-02, 2011.

[4] Silvia Mazzini, Stefano Puri, and Tullio Vardanega. An MDE
Methodology for the Development of High-Integrity Real-Time
Systems. Proceedings of Design, Automation and Test in Europe. Nice,
France. April 20-24, 2009.

[5] Object Management Group. Action Language for Foundational UML
(Alf), Concrete Syntax for a UML Action Language. OMG document
ptc/2010-10-05, 2010.

[6] http://mast.unican.es/umlmast/marte2mast
[7] M. González Harbour, J.J. Gutiérrez, J.C.Palencia and J.M.Drake,

MAST: Modeling and Analysis Suite for Real-Time Applications, in
Proc. of the Euromicro Conference on Real-Time Systems, June 2001.

[8] http://mast.unican.es/umlmast/uml2ada/
[9] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex

Real-Time Systems. Rational white papers,
http://www.rational.com/products/whitepapers/UML-rt.pdf, March 1998

[10] Domiczi, R. Farfarakis and J. Ziegler. Octopus Supplement Volume 1.
Nokia Research Center. http://www-
nrc.nokia.com/octopus/supplement/index.html, 1999.

[11] Laila Kabous. An Object Oriented Design Methodology for Hard Real
Time Systems: The OOHARTS Approach. Doctoral Theses, School Carl
von Ossietzky, Universität Oldenburg. 2002

[12] F. Terrier, G. Fouquier, D. Bras, L. Rioux, P. Vanuxeem and A.
Lanusse. A Real Time Object Model. Presented in TOOLS Europe'96.
Paris, France. Prentice Hall, 1996

[13] A. Lanusse, S. Gerard and F. Terrier. Real-Time Modeling with UML:
The ACCORD Approach. In Selected papers from the 1st. Int. Workshop
on The Unified Modeling Language UML’98: Beyond the Notation.
Mulhouse, France, June 3-4, 1998. Pp. 319-335. ISBN:3-540-66252-9.

[14] Hassan Gomaa. Designing Concurrent, Distributed and Real-Time
Aplications with UML. ISBN 0-201-65793-7, Addison-Wesley, 2000.

[15] Alan Burns, Andy Wellings. HRT-HOOD, a structured design method
for hard real-time ADA systems. ISBN 0 444 82164 3. Elsevier, 1995

[16] Mazzini S., D'Alessandro M., Di Natale M., Domenici A., Lipari G. and
Vardanega T. HRT-UML: taking HRT-HOOD into UML. In Proc. of
8th Conference on Reliable Software Technologies Ada Europe, 2003

[17] Object Management Group. Semantics of a Foundational Subset for
ExecutableUML Models (fUML), v1.1, OMG Document: ptc/2012-10-
18. http://www.omg.org/spec/FUML/1.1

[18] Object Management Group. Precise Semantics of UML Composite
Structures, Request For Proposals. OMG Document: ad/11-12-07

16

An arbitrarily precise time synchronization algorithm

based on Ethernet Switch serialization

Fabrice Frances, Ahlem Mifdaoui,
ISAE/DMIA

University of Toulouse
Toulouse, France

{fabrice.frances | ahlem.mifdaoui}@isae.fr

Xavier Codogni, Christian Fraboul
ENSEEIHT/IRIT

University of Toulouse
Toulouse, France

{xavier.codogni | christian.fraboul}@enseeiht.fr

Abstract—It turns out that trying to play a worst-case

traversal time (WCTT) scenario on a real experimentation

platform is a Real-Time problem with extremely tight con-

straints. When two packets (with the same destination) arrive

to two different input ports of a network switch within a

time frame of only a few nanoseconds, the order of these

packets in the output port queue will reflect this small

nanoseconds arrival difference. Moreover, failing to emit

packets within this tiny time frame will exhibit a different

scenario than expected, potentially so radically different in

farther places of the network that the behavior of the whole

system seems affected by a butterfly effect. As we were

trying to achieve the most precise clock synchronization

we could with standard hardware, we have had the idea

to turn this butterfly effect to our benefit and develop an

arbitrarily precise time synchronization algorithm that only

requires a standard Ethernet switch connecting the two hosts

to synchronize and a third host on the network that will serve

as a synchronization helper.

Keywords-clock synchronization; Ethernet switch;

I. INTRODUCTION

When trying to exhibit Worst-Case Traversal Time
(WCTT) scenarios on a real network experimentation
platform, we were faced with the problem of playing
scenarios containing synchronized emission of frames in
several End-Systems that do not share a common clock:
most often, these worst case scenarios consist in simulta-
neous arrivals of frames in a switching network element,
for example Ethernet frames on an Avionics Full-Duplex
Ethernet Switch (AFDX).

Let’s consider the simplest example of two frames (A
and B) emitted by two different End-Systems, when these
frames arrive to their connecting Ethernet switch and
have the same destination. We assume tA and tB are the
arrival times of the last bit of these frames in an ideal
FCFS switch running in Store and Forward mode. Then
we can observe that when tB < tA < tB + SizeB/C
(where C is the capacity of the ouput port), then frame
B will be retransmitted first starting from time tB (plus
a small technological latency considered as 0 for this
demonstration), whereas frame A will have to wait until
tB + SizeB/C before starting to be retransmitted. From
a scheduling point of view, we can see that the same
scenario of trafic would be observed on the output port of
the switch, whatever the actual value of tA is in interval
]tB , tB+SizeB/C], i.e. retransmission of frame B starting

at tB , and retransmission of frame A starting at time
tB + SizeB/C (thus frame A will have to wait for the
end of retransmission of a part of frame B). However
from a latency point of view, the worst latency we can
observe is when tA is nearly equal to B (in this case we
get the expected result where frame A has to wait for
the full retransmission of B). So we can see that if we
want to play the worst-case latency scenario, we have to
be extremely precise and have tA very close to tB (but
not tA < tB otherwise frame A would arrive first and be
served without latency).

From this on, our quest was thus to find a way to
synchronize our network End-Systems as much as we
could. As we didn’t want to invest in specialized hardware
like GPS clocks and instead propose a solution easily
reproducible by any researcher, we tested the existing
clock synchronization algorithms. First, Network Time
Protocol [1]: the ntpd daemon is present in every Unix
distribution. However, NTP is targeted for 1 ms synchro-
nization at best, clearly not enough for our requirements.

So, we then tested the Distributed Clocks of the Preci-
sion Time Protocol [2][3], but again we couldn’t reach
a tight enough synchronization: as the 1588 Working
Group claims, microsecond precision shall be attainable
with PTP, but only with dedicated hardware. There exists
IEEE1588 Ethernet interfaces with integrated PTP, but
this is not the case of most standard Ethernet interfaces
found in PCs, where PTP has to be run in software.
So, the software implementations we tested were not
able to give a better than 10 µs synchronization. And
studying the algorithms used in PTP revealed that the
slave synchronization always rely on message exchanges
sent on an Ethernet network, without taking into account
the random latency effect of an eventual traffic arriving
simultaneously on a switch.

Finally, we noticed that even the Robust Absolute and
Difference Clock (RADclock) [4] has not taken benefit of
the synchronization hardware that is available for free in
every Ethernet network: the Switch.

II. THE FOUNDATION IDEA: ETHERNET SWITCH
SERIALIZATION

Whether the switch is in Store and Forward or in Cut-
Through mode, frames relayed to the same output port
have to be serialized (two frames cannot be emitted at

17

the same time). When two frames arrive in a perfectly
simultaneous timing on two input ports, this serialization
process is usually a side-effect of the behavior of a
centralized entity that takes the frames arrived in the input
ports and relay them to the appropriate output queue. Were
the relaying process be distributed among several entities
(one per input port), then frames would also be serialized
into the output port queue with a many-writer/single-
reader scheme.

Since we were trying to have several End-Systems emit
simultaneous frames and we had observed that a very
small variation on the emission time drastically affects
the order of serialized frames after the first switch, why
not interpret this sequencing order as a proof that one
frame arrived later? A general setup can now be given: all
what is needed to synchronize two End-Systems is to have
them connected to two input ports of an Ethernet switch
with a FCFS policy (this is the most common policy in
small and medium-sized switches), and an observer on a
third output port. The two End-Systems just need to try
to send a frame to the observer at the same time, and
the observer will tell them which one was first or second.
This is the only thing the observer is able to say, it is
binary information: this End-System’s frame arrived first
or second. For precise synchronization, it is useless to
extract quantitative timing information: if the two End-
Systems are nearly synchronized, the two frames will be
serialized and arrive in a burst, one after the other, with no
extra delay other than the standard InterFrame Gap (IFG)
of Ethernet.

Now, with such a binary information (the order of
frames is ”A, then B” or ”B, then A”), we will adjust
one of the End-Systems’ clocks by an increment of time,
and repeat the process, iteratively dividing the increment
of time by a modified dichotomy. This is the point of
the arbitrarily precise expression which sounds like an
hyperbole: of course an infinite precision would only make
sense with an ideal switch and ideal End-Systems able
to adjust frame emission times with an infinite precision.
But still, the algorithm proposed here has no limitation by
itself: the precision will only be limited by the actual End-
Systems and switch used, and precision can be arbitrarily
improved by using faster End-Systems and/or switches
when they become available.

III. INFORMAL DESCRIPTION OF THE PROTOCOL

The protocol is composed of only two types of mes-
sages: messages sent by the clients to the synchronization
helper host (the observer mentioned above will take the
role of a synchronization server in this protocol), and
messages sent by the synchronization server to the clients.
The synchronization clients will never exchange messages
together; communications take place only between a client
and the synchronization server (helper).

Messages sent by the clients contain a timestamp value,
denoted tclientn , and n which is a sequence number starting
from 0 (hence n identifies the messages sent by the
clients). Messages sent by the synchronization server to

a client host contain a tuple of four values (�n, �n,
tservern+1 , n + 1), �n being interpreted as a request for
clock adjustment, �n a notification of the current precision,
and the last two values forming a request to emit a client
message numbered n+ 1 at time tservern+1 .

A. Initialization steps for a very rough synchronization
These first steps are required to initialize communica-

tion exchanges between the hosts to synchronize together
and the synchronization helper. They are also used to
reduce the large clock difference that might exist between
the two client hosts at startup.

1) Step 1: Start server process on observer host C, it
waits for two messages coming from client hosts A and
B.

2) Step 2: Start client processes on hosts A and B; they
send a client message to server C. The message contains
the local time on the client host, tclient0 . This is just to let
the synchronization server have a rough idea of what time
it currently is on the client hosts.

3) Step 3: On receipt of each of these first client
datagrams, the synchronization server calculates an ap-
proximated clock difference between the client and the
server: �client = tserverreceipt � tclient0

Please note that tclient0 is not the accurate time of packet
emission on the client. It is a timestamp written by the
client in the message sent to the server. This timestamp
is obtained by reading the current local clock prior to
building and sending the datagram.

Conversely, tserverreceipt is not the accurate time of packet
receipt on the server. It is the current time read on the
server after the message read call returns. The thread that
executes this blocking datagram read is resumed after a
non-predictable amount of time due to slice execution of
the currently active thread, followed by slice execution of
other more prioritized threads.

However, the approximation on �client is anticipated to
be lower than one second on non-overloaded hosts.

4) Step 4: The synchronization server C now plans
a roughly synchronized emission (from both clients) to
occur at time tserver0 = tservercurrent + c

c is a constant delay bigger than the error in the
approximated �client, e.g. two seconds.

Thus, synchronization server C sends a request to each
client, asking for a clock adjustment of �0 = ��client so
that time on both clients becomes roughly equal to time on
server C. In the same request, it also asks for a message
emission at time tserver1 . When the client has adjusted its
clock as requested, this tserver1 time is interpreted as a
local client time, i.e. the client considers that tclient1 ⇡
tserver1 .

B. The arbitrarily precise synchronization scheme
At the beginning of next step, a client has already

received a request to send a datagram to the server at time
tservern , with n being an iteration number (n is 1 when only
the initialization steps above have been executed).

The following step is repeated until the desired syn-
chronization precision is reached. The currently attained

18

precision is denoted �n and has been transmitted in the
last server message alongside with the request for clock
adjustment and the requested time for the next client
message emission. Thus the value of �0 has been sent
to the clients in the last step of the initialization phase.
Chosing a good value for �0 will have an impact on
the number of steps needed to attain a defined precision.
However, it is useless to select a very small value like
1 ms, because in this case there is a possibility that the
altered dichotomy has to do hundreds of 1 ms increments
in the same direction. In the other hand, starting with a
large value (like 1 second) only requires 20 steps to reach
the 1 µs precision.

1) Repeated step: Both clients actively wait for time
tclientn to happen (i.e. with an active loop) and then
immediately send the requested datagram to the server.
The two datagrams are received as Ethernet frames in the
switch that connects the clients, and since the destination
of the two datagrams is the same, the two Ethernet frames
are serialized for retransmission on the output port that
leads to the destination. The serialization process will be
further detailed in next section.

The synchronization server will thus receive the two
messages in one of the two possible orders (either the
message from A followed by the message from B, or
the message from B followed by the message from A).
The received order tells which client host has its clock
in advance compared to the other client host. So the
synchronization server prepares a new request for clock
adjustment: the client host whose message arrived first
will be requested a clock adjustment of �n+1, while the
other will be requested a clock adjustment of 0.

In the same message, the synchronization server also
ask both clients to plan their next message emission at
time tservern+1 = tservercurrent + c.

The last parameter of the message is the precision delta
that will be associated to the next iterated step. This
�n+1 is calculated with the following rule: if the order
of reception is the same as the one observed during the
previous nearly-synchronized emission, then � stays the
same (i.e. �n+1 = �n) ; but if the order of reception is
reversed, then � is divided by two. The rationale for this
altered dichotomy is discussed in next section.

IV. RATIONALE FOR THE PROTOCOL EFFICIENCY

The rationale behind the foundation idea is that the
latencies between each of the synchronizing client hosts
and the switch’s relaying entity are equal for both clients.
More precisely, the delay of interest comes from the
following sequence of events:

• a read of the client’s internal clock that determines
the end of the active wait loop,

• the write of the client synchronization message,
which is a system call that provides the protocol
datagram to the UDP/IP send stack, including the
final Ethernet driver, which in turn provides the
Ethernet frame to the hardware Ethernet card (or
interface),

Figure 1. Measurement of clock difference (in seconds) between two
non-synchronized hosts, over 3600 seconds (1 hour)

• the emission of the Ethernet frame,
• the propagation on the link that connects to the

switch, delaying the reception of the emitted signal
on the switch’s input port,

• the switch algorithm that senses the input ports for
incoming frames and decides at which point a frame
can be relayed to an output port’s queue (e.g. as soon
as the destination address has been received, in Cut-
Through mode).

The synchronization precision that our protocol will be
able to reach is directly affected by variations in any of
these points, so it is worthwhile explaining how jitter will
be controlled. Also, it must be noted that the sequence of
timely-controlled events has been reduced to a minimum:
in other real-time distributed algorithms, large latencies
with uncontrolled jitter exist in the network receiver stack
and in the delivery of a received message to an application
thread. Our solution fully removes these two sources of
latency.

A. Controlling latencies from the client host to the switch

First, we assume the two clients have the same hard-
ware/software combination: the same protocol client pro-
gram is run on the same hardware and operating system.
We will thus assume that the execution delay, between the
read of the client’s internal clock and the I/O command
sent to the hardware interface by the Ethernet driver, is
constant and identical on both clients. This assumption
does not seem unrealistic, even if execution of other pro-
cesses on a synchronizing client will introduce variations:
we will try to reduce these interactions by implementing
an active wait loop around the internal clock read, and no
system call between this read and the datagram write, in
order to reduce eventual thread switches. Of course, we
will guard against clock skew. Our measures have shown
very good consistency in stable conditions of temperature,
as can be seen on Figure 1, showing a constant clock drift.

Also, the execution time cannot be guaranteed to be
exactly the same though, because of possible different
content in the memory caches. However, the tight active
wait loop will also help in keeping these memory caches
filled with the desired content. Still, random hardware
interrupts (disks or other hardware sources) might happen

19

in the synchronizing clients: we will assume that these
random events will be quite infrequent and we will protect
against these events with the altered dichotomy algorithm.

Secondly, the length of the cables that connect the client
hosts to the switch will also be assumed the same, even if
this parameter has a smaller impact on the overall latency.
Finally, the TxC (Transmit Clock) of the Ethernet inter-
faces will be considered equal: any clock skew between
these TxC will be compensated by the receiving switch.

We could also argument that a significant difference in
the delay that separates the read of the client’s internal
clock and the arrival of the frame in the correspond-
ing switch’s input port is acceptable for our Real-Time
application (playing a worst case traffic scenario): the
same difference will exist when synchronously emitting
the scenario, so what is really important for us is how we
can have a fine control over the arrival of frames in the
switch.

In conclusion, the only remaining source of uncon-
trolled latency is the one present in the switch, before
detecting an arrival of a frame and handling that frame
(mainly relaying it to an output port). It is expected
that some switches will scan their input ports in a loop,
giving potential order inversion when frames arrive in a
small time window, but we prefer to consider this switch
behavior as a black box so that the protocol remains
generic.

B. The altered dichotomy algorithm

The altered dichotomy scheme has been designed to
account for transient variations, e.g. additional latency in
the client execution, due to some random event (disk inter-
rupt for example). Also, even if no network application is
executed at the same time as the synchronization protocol,
there are always a few packets sent by daemons from time
to time. In the emission protocol stack on the client host,
such packets could delay a client synchronization message,
affecting the order of arrival of the synchronized messages
on the switch (and thus on the synchronization server). In
such a case, the clock adjustment might take one erroneous
direction which will hopefully be compensated by two half
moves in the other direction (a normal dichotomy would
never compensate a wrong move). This is exemplified by
Figure 2, the upper part shows the case where the clock
adjustment is wrongly halved, and the lower part shows the
case where the clock adjustment should have been halved.
The previous adjustment is depicted in order to show the
last direction and amplitude of adjustment. In both cases,
the next two adjustments will compensate the erroneous
one.

V. CONCLUSION

This is a Work In Progress, the protocol is still in
development as we are still working on the best way to
trigger the emission of frames on the End-Systems so as to
make the most of current hardware/operating system. But
a number of ideas make this work promising, not only
for our needs of synchronizing a network platform that

Figure 2. Robustness of the altered dichotomy algorithm in case of a
wrong decision

aims to play worst case scenarios of traffic in Real Time,
but also for any other distributed real-time application as
soon as the nodes are connected with standard Ethernet
technology:

• the use of the natural serialization that takes place in
standard Ethernet switches, in order to provide binary
information on which client host is late or in advance,

• the reduction of the number and scope of uncon-
trolled sources of latencies: emission latency is con-
trolled and message delivery latency in the destina-
tion observer (synchronization helper) is not an issue.
Moreover, the observer does not need to be connected
to the same switch as the synchronizing clients:
once client messages have been serialized by the
first switch, they can cross any number of cascading
switches before reaching the observer. Conversely,
the observer could be integrated in the switch.

• the robustness to transient errors with an original al-
tered dichotomy that brings further confidence in the
capability of our algorithm to give the most precise
synchronization, with standard operating systems and
no extra hardware.

REFERENCES

[1] David Mills, Jim Martin, Jack Burbank, William Kasch,
Network Time Protocol Version 4: Protocol and Algorithms
Specification, RFC 5905, ISSN: 2070-1721

[2] Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, PTP, IEEE
1588-2002 standard

[3] IEEE Standard for a Precision Clock Synchronization Proto-
col for Networked Measurement and Control Systems, PTP
v2, IEEE 1588-2008 standard

[4] Julien Ridoux and Darryl Veitch, Ten Microseconds Over
LAN, for Free (Extended), IEEE Transactions on Instrumen-
tation and Measurement (TIM) vol. 58(6), pp. 1841-1848,
June 2009

20

End-to-end Timing Challenges in Seamless Tool Chain Development for Vehicular
Embedded Real-Time Systems

Saad Mubeen⇤†, Jukka Mäki-Turja⇤† and Mikael Sjödin⇤
⇤ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
saad.mubeen@mdh.se

Abstract—Often, there exists mismatch among tools that
are used for structural, functional, and execution modeling of
vehicular embedded real-time systems in the industry. Build-
ing a seamless tool chain to support model- and component-
based development of these systems with different, and some-
times independent, tools is challenging. Within this context,
we investigate the challenges related to modeling, analyzing,
and exchanging end-to-end timing information. We target
domain specific models like EAST-ADL supplemented by the
Timing Augmented Description Language; and component
and execution models that are already used in the industry
such as the Rubus Component Model.

Keywords-Automotive embedded real-time systems; tim-
ing model; component-based real-time systems; model- and
component-based development; timing analysis.

I. INTRODUCTION

The industrial requirements on embedded real-time sys-
tems are constantly evolving. With the flexibility offered
by software, the complexity of system designs and the
amount of advanced computer controlled functionality in
products is increasing. Historically, developers of embed-
ded real-time systems have used low level programming
languages to guarantee full control of the system behavior.
Hence, many embedded real-time systems have become
overly complex and hard to manage during functionality
or technology shifts. The variety of functionality in to-
day’s embedded real-time systems requires development
methods and tools that support flexible and efficient de-
velopment.

Within the business segment of construction-equipment
vehicles (and similar segments for heavy special-purpose
vehicles), model-based development of software architec-
tures for embedded real-time systems has had a surge
the last few years. The idea is to use models to describe
functions, structures and other design artifacts. This is in
contrast to the previously used text documents. Benefits
that are sought by this transition in design technology
include simplified communication amongst engineers and
other stake holders, use of precise and unambiguous
notations to describe complex features, faster turn-around
times in early design phases, possibilities to automatically
perform timing analysis and derive test cases, and possi-
bilities to automatically generate code.

In practice, existing tools and languages for model-
based software design for embedded real-time systems
imposes many hinders with respect to information flow
between different abstraction levels and project phases. In
industry, productivity is hampered by incompatible tools

and file formats, in conjunction with the need for non-
trivial, manual and tedious translations between different
model formats. Moreover, these translations are done
in ad hoc fashion making the result of the translation
unpredictable and potentially altered in terms of semantics.
Thus, there is a strong need to investigate how to work
with existing modeling languages and tools in an effective
and efficient way. A solution must entail possibilities to
make tools inter-operable to allow automated (and semi-
automated) translations between modeling languages and
tools with preserved model semantics.

A. Motivation and contribution

The motivation for this work comes from the industrial
needs at the partner companies. Different tools are used for
structural, functional, and execution modeling of vehicular
embedded real-time systems. The translations between
different models of the systems are done manually and in
ad hoc fashion. Hence, there is a need to develop a seam-
less tool chain that should support structural, functional,
and execution modeling of vehicular embedded real-time
systems.

In this paper we identify and discuss the challenges
related to modeling, analyzing, and exchanging the end-to-
end timing information during the development of a seam-
less tool chain for these systems. We focus on the models
and related tools that support model- and component-
based development of these systems in the segment of
construction-equipment vehicles such as EAST-ADL [1],
Timing Augmented Description Language (TADL2) [2],
Rubus Component Model [3] and Rubus-ICE [4].

B. Outline

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the background and related work. In
Section III, we discuss the research challenges. Section IV
discusses the current work.

II. BACKGROUND AND RELATED WORK

A. Structural and functional modeling of vehicular real-
time systems

The structural modeling is concerned with the structure
definition of requirements and high-level architectural
objects. Whereas, the functional modeling refers to the
structured way of representing software functions for the
system to be modeled. In this work, we consider the
structural and functional modeling support of EAST-ADL

21

which supports domain-specific modeling concepts for
modeling product lines of automotive control systems.
Basically, it is an architecture description language that
tends to describe, capture and model the engineering
information of the automotive electronic systems in a
standardized way. It describes the functionality of the
vehicle at four vertical levels of abstraction starting from
requirements capturing to the system implementation as
shown in Figure 1.

B. Execution modeling of vehicular real-time systems

The execution modeling [5] is concerned with the
modeling of run-time properties and/or requirements (e.g.,
end-to-end deadlines and jitter) of software functions.
For example, in resource-constrained and safety-critical
embedded systems, it is simply not enough to have a
high-level view of the system in the models. Instead, the
models need to capture what goes on at the execution
level. The modeling of these systems should extend down
to the execution level to allow precise control of resource
utilization, avoid violation of timing requirements when
the system is executed, and certify systems toward safety
standards [6]. In this work, we focus on the component-
based software development technologies that provide
execution modeling support in vehicular domain and are
actually used in the industry such as the Rubus Component
Model.

C. Abstraction levels during the development of vehicular
real-time systems

In this work, we consider four abstraction levels that
are described by EAST-ADL. These levels are shown in
the Figure 1.

1) Vehicle or end-to-end level: At the vehicle level,
requirements, functionality and features of the vehicle
are captured in an informal (often textual) and solution-
independent way. Basically, this level captures the infor-
mation regarding what the system should do [7]. In the
segment of construction-equipment vehicles, this abstrac-
tion level is better known as end-to-end level because
features and requirements on the end-to-end functionality
of the machine or vehicle are captured in an informal way.

2) Analysis level: At the analysis level, the require-
ments are captured in a formal way. Functionality of
the system is defined based on requirements and features
without implementation details. A high-level analysis may
also be performed for functional verification.

3) Design level: The artifact developed at the analysis
level is refined into design functions at the design level.
The resulting artifact at this level also contains middle-
ware abstraction and hardware architecture. In addition,
software functions to hardware allocation may be present.

4) Implementation level: At the implementation level,
the design-level artifact is refined to software-based im-
plementation of the system functionality. The EAST-ADL
methodology defines the system at this level in terms of
AUTOSAR elements. However, in this work, our focus
is on using the Rubus Component Model and its develop-
ment environment Rubus-ICE at the implementation level.

Hence, the artifact at this level consists of the software
architecture of the system defined in terms of Rubus com-
ponents and their interactions. We choose Rubus instead
of AUTOSAR at the implementation level because of
industrial needs at the partner companies.

Implementation
level

Design level

Analysis level

End-to-end
level

Rubus-ICE

SE Tool

Vehicle or End-to-end level

Rubus Component Model
and Rubus-ICE

EAST-ADL and TADLAnalysis level

Design level

Implementation level

Figure 1. Abstraction levels considered during the development

D. The Rubus concept
Rubus is a collection of methods and tools for model-

and component-based development of dependable embed-
ded real-time systems. Rubus is developed by Arcticus
Systems [4] in close collaboration with several academic
and industrial partners. Rubus is today mainly used for
the development of control functionality in vehicles by
several international companies [8], [9], [10], [11]. The
Rubus concept is based around the Rubus Component
Model (RCM) and its development environment Rubus-
ICE which includes modeling tools, code generators,
analysis tools and run-time infrastructure. The overall
goal of Rubus is to be aggressively resource efficient
and to provide means for developing predictable, tim-
ing analyzable and synthesizable control functions in
resource-constrained embedded systems. The timing anal-
ysis supported by Rubus-ICE includes distributed end-to-
end response-time and delay analysis [12], [13].

E. AUTOSAR, TIMMO, and TADL
AUTOSAR (AUTomotive Open System ARchitecture)

[14] is an industrial initiative to provide standardized
software architecture for the development of software in
the automotive domain. It can be viewed as a standard-
ized distributed component model [15]. In AUTOSAR,
the application software is defined in terms of Software
Components (SWCs). The virtual function bus handles
the distribution of SWCs, their virtual integration and
communication at design time. Furthermore, it hides the
low-level implementation and communication details at
the design time. AUTOSAR provides same interfaces and
services to the connected SWCs irrespective of the type
of communication (intra- or inter-ECU).

TIMing MOdel (TIMMO) [16] is a large EU research
project and serves as an initiative to provide AUTOSAR
with a timing model. It describes a predictable method-
ology and a language Timing Augmented Description
Language (TADL) [17] to express timing requirements
and timing constraints in all design phases during the
development of automotive embedded systems. TIMMO-
2-USE [2] is the follow-up project to TIMMO. It defines
TADL2 language that includes a major redefinition of
TADL.

22

F. AUTOSAR vs RCM

When AUTOSAR was being developed, there was no
focus placed on its ability to specify and handle timing-
related information such as real-time requirements and
properties. On the other hand, such requirements and capa-
bilities were taken into account right from the beginning
during the development of RCM. AUTOSAR describes
embedded software development at a relatively higher
level of abstraction compared to RCM. The software
component in RCM more resembles to the runnable entity
compared to AUTOSAR SWC. The runnable entity is
schedulable part of AUTOSAR SWC.

As compared to AUTOSAR, RCM clearly distinguishes
between the control flow and the data flow among the
software components in a node or Electronic Control Unit
(ECU). AUTOSAR hides the modeling of the execution
environment. On the other hand, RCM explicitly allows
the modeling of execution requirements, e.g., jitter and
deadlines, at an abstraction level close to the functional
specification while abstracting the implementation details.
The Sender Receiver communication mechanism in AU-
TOSAR is very similar to the pipe-and-filter communica-
tion mechanism for component interconnection in RCM.

In conclusion, AUTOSAR is more focussed on the func-
tional and structural abstractions, hiding the implementa-
tion details about execution and communication. Whereas,
RCM is all about modeling, analysis and synthesis of the
execution environment of software functions. Basically,
AUTOSAR hides the details that RCM highlights.

III. RESEARCH CHALLENGES

There are several different types of challenges that are
faced during the development of a seamless tool chain to
support model- and component-based development of em-
bedded real-time systems in the segment of construction-
equipment vehicles. In this section, we identify and discuss
only those challenges that are concerned with the model-
ing, analyzing, and exchanging of the end-to-end timing
information.

A. Mismatch between design and implementation levels

When RCM is used instead of AUTOSAR at the imple-
mentation level, there exists an incompatibility between
the design and implementation levels. We believe, the
main reason behind this incompatibility is the concept of
virtual function bus in AUTOSAR. At the implementation
level, EAST-ADL relies on virtual function bus for the dis-
tribution of software components, their virtual integration
and communication. Further, virtual function bus hides the
low-level implementation and communication details. At
the design time, the components are considered at the same
level irrespective of the communication they need, i.e.,
intra- or inter-ECU.

In RCM, there is no concept of virtual function bus.
It differentiates between intra- and inter-ECU communi-
cation among its software components. It uses network
interface components for inter-ECU communication; oth-
erwise, the components communicate with each other via

data and trigger ports. Hence, the communications should
be explicitly modeled when RCM is used at the imple-
mentation level. Moreover, the timing related information
on the communications should be explicitly specified in
order to perform the end-to-end timing analysis at the
implementation level [18].

The problem is that the design-level model does not dif-
ferentiate between intra- and inter-ECU communications,
whereas these communications are explicitly modeled at
the implementation level when RCM is used. The timing-
related information on communications is also explicitly
available at the implementation level when RCM is used.
One of the main challenges is to make the design and
implementation levels compatible with respect to commu-
nications and the end-to-end timing information.

B. Refinement and translation of timing requirements and
constraints

The timing requirements and constraints on vehicle
features that are captured at the top level may be refined
and broken down into more than one requirement and
constraint at the lower levels. For example, a timing
constraint specified on the braking system feature of the
vehicle requires the brakes to be applied within three mil-
liseconds from the time when the brake paddle is pressed.
This timing constraint may be refined into more than one
constraint at the lower levels. At the implementation level,
these (sub) constraints may be specified on several event
chains that may be distributed over several ECUs that
may be connected to one or more networks. The timing
requirements and constraints should be unambiguously
refined and translated along all abstraction levels without
any loss of timing information.

EAST-ADL supplemented by TADL2 supports the re-
finement and translation of timing requirements and con-
straints along all abstraction levels. However, the EAST-
ADL methodology assumes that the implementation level
is handled by AUTOSAR. When AUTOSAR is replaced
by RCM at the implementation level, the refinement and
translation of timing information between the design and
implementation levels does not hold. Within this context,
the challenge is to unambiguously refine and translate the
timing requirements and constraints between the design
and implementation levels with preserved semantics.

C. Tracing of timing requirements and their verification

Another challenge that we have identified is the need
to support traceability of timing requirements from the
implementation-level entities to the vehicle-level entities,
i.e., following the bottom-up approach. The tracing of
timing requirements is important to perform full coverage
analysis of the requirements and their verification. Often,
a timing requirement at vehicle level may be broken down
into several timing requirements at the implementation
level. If implementation-level timing requirements are sat-
isfied, the corresponding timing requirement at the vehicle
level is considered verified. Hence, the traceability of
timing requirements among all abstraction levels should
be supported by the tool chain.

23

The traceability of timing requirements is supported
by EAST-ADL from the implementation-level entities to
the vehicle level entities. The support for traceability
does not hold when AUTOSAR is replaced by RCM at
the implementation-level. When RCM and Rubus-ICE are
used at the implementation level, the tracing of the timing
requirements from Rubus components to the design-level
entities arises as another challenge.

The support for traceability of timing requirements is
also important for change management. For example, the
user of the tool chain may be interested in finding out how
do changes in timing requirements, constraints, or budgets
at the higher abstraction levels impact on the entities at
the lower abstraction levels. This type of support in the
tool chain may also be useful to perform design-space
exploration during the development of the systems.

D. Raising the end-to-end timing analysis at higher ab-
straction level

The safety-critical nature of many vehicular embedded
real-time systems require evidence that each action by
the systems is taken in timely manner. For this purpose,
the end-to-end response-time and delay analysis [19], [13]
should be supported by the tool chain. In order to perform
the timing analysis, the end-to-end timing model1 should
be extracted from the architecture of the system under
development. The Rubus-ICE tool suite supports the end-
to-end response-time and delay analysis.

When RCM is used at the implementation level, another
challenge is to raise the end-to-end timing analysis support
provided by Rubus-ICE to the design level (i.e., lifting the
analysis one level above). For this purpose, the end-to-
end timing model should also be provided at the design
level. The analysis framework of Rubus-ICE supports the
extraction of end-to-end timing models at the implementa-
tion level. However, raising these timing models one level
above at the design level is another challenge that we have
identified.

IV. CURRENT WORK

Currently, we are conducting questionnaire and inter-
views at the partner companies to identify the patterns,
styles of expression, and subsets of the full expressiveness
of EAST-ADL that are used by the designers during
the development of embedded real-time systems in the
segment of construction-equipment vehicles. During the
identification of these patterns, styles and subsets, we con-
sider only first three abstraction levels which are vehicle,
analysis, and design. After their identification, they will be
integrated with the Rubus-ICE at the implementation level
for the development of seamless tool chain. During the
integration and implementation, we will attack the timing
related challenges that we discussed above.

Currently, we are also identifying the most suitable
use case at the partner companies for the verification
and validation of the tool chain. We specified several
requirements on the selection of the use case. That is,

1[18] should be referred for the details about end-to-end timing model

it should be a distributed real-time system and it should
employ, at least, one CAN bus for communication among
ECUs. Whereas, each ECU should have at least one mode
and three software components (i.e., two components for
network input and output interfaces and at least one
component implementing the functionality).

ACKNOWLEDGEMENT

This work is supported by the Swedish Knowledge
Foundation (KKS) within the projects FEMMVA and
SythSoft. The authors would like to thank the industrial
partners Arcticus Systems and Volvo Construction Equip-
ment (VCE), Sweden.

REFERENCES

[1] “EAST-ADL Domain Model Specification, Deliverable D4.1.1,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[2] “TIMMO-2-USE,” http://www.timmo-2-use.org/.

[3] K. Hänninen et.al., “The Rubus Component Model for Resource
Constrained Real-Time Systems,” in 3rd IEEE International Sym-
posium on Industrial Embedded Systems, June 2008.

[4] “Arcticus Systems,” http://www.arcticus-systems.com.

[5] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Towards efficient
development of embedded real-time systems, the component based
approach,” in International Conference on Embedded Systems &
Applications (ESA), 2006, June 2006.

[6] “ISO 26262-1:2011: Road vehicles Functional safety.
http://www.iso.org/.”

[7] “Hans Blom et. al. EAST-ADL- An Architecture Description Lan-
guage for Automotive Software-Intensive Systems. White paper,
Version M2.1.10, 2012, http://www.maenad.eu.”

[8] “BAE Systems Hägglunds,” http://www.baesystems.com/hagglunds.

[9] “Volvo Construction Equipment,” http://www.volvoce.com.

[10] “Mecel,” web page, http://www.mecel.se.

[11] “Knorr-bremse,” web page, http://www.knorr-bremse.com.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for Holistic
Response-time Analysis in an Industrial Tool Suite: Implementation
Issues, Experiences and a Case Study,” in 19th IEEE Conference
on Engineering of Computer Based Systems (ECBS), April 2012,
pp. 210 –221.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, ISSN: 1361-1384, vol. 10, no. 1, 2013.

[14] “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AU-
Tomotive Open System ARchitecture, Release 3.1, The AUTOSAR
Consortium, Aug., 2008,” http://autosar.org.

[15] H. Heinecke et al., “AUTOSAR – Current results and preparations
for exploitation,” in Proceedings of the 7th Euroforum Conference,
ser. EUROFORUM ’06, May 2006.

[16] “TIMMO Methodology , Version 2,” TIMMO (TIMing MOdel),
Deliverable 7, October 2009, The TIMMO Consortium.

[17] “TADL: Timing Augmented Description Language, Version 2,”
TIMMO (TIMing MOdel), Deliverable 6, Oct. 2009, The TIMMO
Consortium.

[18] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-
to-end timing model from component-based distributed real-time
embedded systems,” in Time Analysis and Model-Based Design,
from Functional Models to Distributed Deployments (TiMoBD)
Workshop. Springer, October 2011, pp. 1–6.

[19] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.

24

Extending real-time networks over WiFi: related issues and first developments

Tony Flores Pulgar, Jean-Luc Scharbarg, Katia Jaffrès-Runser, Christian Fraboul
University of Toulouse, IRIT / ENSEEIHT

2 Rue Charles Camichel - F-31061, Toulouse, FRANCE
firstname.lastname@enseeiht.fr

Abstract—The flexibility of wireless connectivity is appeal-
ing in the context of real-time industrial networks. This
paper discusses the use of wireless communication protocols
to interconnect remotely located fieldbuses. The focus of
this paper is to analyze the feasibility and design issues
related to this type of hybrid real-time network architecture.
Investigations are presented by addressing an interconnection
through the well-mastered WiFi technology. On an example
architecture, we discuss the impact of the different dis-
tributed medium access protocols available (DCF, EDCA)
on the real-time flows. We outline the main design issues
related to these choices and illustrate them on a first case
study where remotely located CAN buses are interconnected
through an IEEE802.11g network in DCF mode. Using this
very simple and cost-effective architecture, we show as a
first result that transmitting soft real-time data over such an
architecture is feasible.

Keywords-Hybrid real-time networks, interconnection,
IEEE802.11, DCF, EDCA

I. INTRODUCTION

Industrial fieldbus technologies are widely rolled out
to offer real-time communication capabilities on the
factory floor. A large set of protocols offer deter-
ministic and timely bounded transmissions using tai-
lored medium access schemes and architectures (e.g.
PROFIBUS, PROFINET, TTEthernet, etc.).

Recent developments for industrial communications
consider introducing wireless transmissions into the global
network architecture [1][2]. First studies have assessed
the capabilities of mainstream wireless technologies
such as WiFi (IEEE802.11 [3]), Bluetooth or ZigBee
(IEEE802.15.4) [2] for real-time communications. In par-
allel, new real-time wireless protocols have been designed
[4][5][6]. Recently, two TDMA-oriented solutions (Wire-
lessHART and ISA100.11a) have been commercialized
for factory automation applications [6]. The main pitfall
of wireless communications is of course the increased
unreliability the medium suffers from due to interference
and pathloss compared to shielded wires.

Among others, one of the interesting benefits of wireless
transmissions is to provide a cost-effective network to
interconnect distant heterogeneous or homogeneous legacy
fieldbuses. The focus of this paper is to discuss this use
case of wireless communications.

A wireless interconnection will benefit architectures
where several fieldbuses, located far from each other, need
a backhaul network to exchange data. Depending on the
application, this data may be time-sensitive in the hard or
in the soft sense. Either legacy wireless technologies such

as WiFi (IEEE802.11 technology) or dedicated wireless
protocols such as WirelessHART may be chosen, depend-
ing on the nature of the traffic exchanged between the
remote buses.

For hard real-time data, a dedicated reliable wireless
solution has to be picked, while for soft real-time data, a
cheaper and probably less reliable wireless technology can
be chosen. This paper focuses on this last case, where of-
the-shelf WiFi controllers are used to interconnect remote
real-time buses. Several Medium Access Control (MAC)
protocols are available with the IEEE802.11 technology.
A first discussion presents the benefits and issues related
to these MAC protocols to carry soft real-time data on an
example hybrid network architecture.

This discussion is then illustrated with a first case
study where remotely located CAN buses [7] are in-
terconnected through an IEEE802.11g network using a
decentralized MAC protocol relying on CSMA/CA (Car-
rier Sense Multiple Access with Collision Avoidance).
Using this very simple and cost-effective architecture, we
show that transmitting soft real-time data over such an
architecture is feasible, provided some design issues are
correctly accounted for (e.g. gateway policies, wireless
network load, interference, . . .).

Section II illustrates the hybrid architecture we consider
with an example network. Then, Section III discusses the
problem of using WiFi to interconnect the remote real-time
networks using different distributed IEEE802.11 MAC
protocols. Next, Section IV presents the first results of
extending CAN networks over IEEE802.11 DCF. Finally,
Section V concludes this paper.

II. TARGET INTERCONNECTION ARCHITECTURE

An example of the type of hybrid architecture of interest
in this paper is described in Figure 1. In this example, four
real-time buses are interconnected through a wireless local
area network that follows the mainstream IEEE802.11
standard [3].

To interconnect the real-time buses of Figure 1, four
dedicated wireless gateways are implemented composed of
a real-time controller and a wireless IEEE802.11 interface.
Additional wireless transmitters are represented in this ar-
chitecture, emitting pure wireless traffic with non real-time
guarantees. All wireless transmitters may be connected
in ad hoc mode (distributed medium access) or using a
central controller localized in an Access Point (AP). Such
an AP is not represented in Figure 1 but may be necessary

25

pure RT flows

IEEE802.11

network

Bus 1 Bus 3

Bus 2 Bus 4

wireless RT flows
wireless RT flows

Real−time controller Wireless gateway Wireless transmitter

Gateway 1 Gateway 3

Gateway 2 Gateway 4

pure wireless flows

pure RT flows pure RT flows

pure RT flows

Figure 1. Interconnection architecture overview

for the study of centralized medium access versions of
IEEE802.11 or even enhanced distributed ones.

A. Transmitted flows

Three types of flows are depicted in Figure 1:
• pure RT flows are periodic real-time flows local to

the real-time bus. They never transit on the wireless
network.

• pure wireless flows are non real-time Poisson flows
local to the wireless network. They are competing for
the medium with the wireless real-time flows emitted
by the gateways.

• wireless RT flows are periodic real-time hybrid
flows transmitted between controllers connected to
different real-time buses: they transit on both wired
and wireless networks via the gateways and are time-
constrained.

Unique to pure and wireless RT flows, all frames have
a critical delay which is the maximum allowed duration
between their generation and reception times at their
destination controllers.

III. INTERCONNECTION VIA WIFI

A. IEEE 802.11 MAC protocol overview

IEEE 802.11-2012 [3] defines several standards to offer
a wireless connectivity at transmission rates ranging from
11Mbps (e.g. legacy versions such as IEEE802.11b) up
to 600Mbps (IEEE802.11n). Bandwidth increase is due
to improvements at the physical layer (OFDM, larger
bandwidth, MIMO transmissions, etc.). Next generation
physical layers are expected to increase data rates beyond
600Mbps (cf. IEEE802.11ac).

The fundamental medium access in IEEE 802.11 is
a Distributed Coordination Function (DCF) which is a
distributed random access scheme based on CSMA/CA.
Additional protocols are defined to meet specific require-
ments but all use the service provided by DCF as shown
on the MAC architecture in Fig. 2. For instance, the Point
Coordination Function is a centralized protocol where an
Access Point (AP) provides a contention-free medium
access. Quality of Service (QoS), where channel access is
differentiated for different classes of service, is introduced
with the Hybrid Coordination Function (HCF) either in a
distributed manner (EDCA protocol) or in a centralized

manner (HCCA protocol). Finally, wireless meshed net-
works architectures can be handled in a controlled fashion
with the MCCA protocol.

MCCA

DCF
Distributed Coordination Function

Hybrid Coordination Function

HCF
Mesh Coordination Function

MCF

Point

Coordination

Function
Access Access

Channel

Distributed

Access

Channel

Enhanced

Controlled

MCFHCF

Controlled

Channel

PCF HCCA EDCA

Figure 2. IEEE802.11 MAC (source: [3])

This paper discusses the use of the distributed medium
access protocols (DCF and EDCA) since they are widely
deployed and available for of-the-shelf designs. Thus,
since these access are random based, only soft-real time
data can be envisioned on this type of architecture. For
more real-time constrained data, it is clear that further
studies using centralized HCCA or even MCCA protocols
should be performed.

B. Distributed medium access with IEEE802.11

This section introduces the main characteristics of the
distributed MAC protocols of IEEE802.11, namely DCF
and EDCA protocols. It discusses their implementation
aspects in the context of real-time bus interconnection.

In DCF mode: a station performs carrier sensing
to detect ongoing communications. If the channel is free
for a period of time called Distributed InterFrame Space
(DIFS), it transmits its frame immediately. If the channel
is sensed busy, it defers its transmission until the end of
the current transmission. Then, the station selects a random
backoff b following an exponential backoff scheme. If the
medium is idle for a DIFS period of time, the backoff
is decremented every aSlotTime duration. The backoff
interval time is decremented as long as the channel is idle
and is frozen as the node detects a transmission. At the
end of this transmission, when the channel remains idle
during DIFS, decrementation resumes. As b reaches zero,
the transmission is attempted immediately by the station.
After a successful transmission, the receiver sends an ACK
after a duration called Short Inter Frame Space (SIFS)
If no ACK is received by the emitter after an Extended
Interframe Space (EIFS), the transmission is tried again.

A new backoff b is then uniformly chosen in the range
[0, w�1] where w is the contention window. This window
depends on the number of failed attempts experienced
by the current transmission. At the first attempt w is
equal to the minimum contention window CW

min

. Each
unsuccessful transmission involves the multiplication of w
by 2 until a maximum value of CW

max

is reached.
DCF mode doesn’t guarantee any prioritized access

for real-time wireless frames. Thus, the real time traffic
created by the gateways is directly competing with the

26

pure wireless flows of non-real time nodes. In order
to achieve a soft real-time guaranty, the interconnection
policies implemented at the wireless gateways have to be
designed with the aim of reducing the number of collisions
of RT flows that occur on the wireless medium with DCF
mode. This can be arranged by selecting, in a timely
manner, the RT frames to be encapsulated in the wireless
RT frames as we will investigate in Section IV.

In EDCA mode: QoS is being introduced on top of
DCF so as to provide different levels of priority to wireless
transmissions. A wireless node requests a transmission
opportunity (TXOP) which is an interval of time when
a particular quality-of-service (QoS) station (STA) has
the right to initiate frame exchange sequences onto the
wireless medium. A TXOP is defined by a starting time
and a maximum duration. The TXOP is obtained by
a station by successfully contending for the channel in
EDCA. During an EDCA TXOP, a STA may initiate
multiple frame exchange sequences.

EDCA defines four access (or traffic) categories ranging
from background (lowest priority), best effort, video to
voice traffic (highest priority). All nodes emitting flows in
the same access category AC contend for TXOPs together
using their own set of EDCA parameters which are given
by the triplet (AIFS[AC], CW

min

[AC], CW
max

[AC]).
The AC with the highest priority has the lowest parameter
values among all ACs so as to have a higher probability
to access channel first if contending with lower priority
AC data frames. If there are frames with different ACs
waiting in the output queue of at the same STA, collisions
between them are resolved within the STA so that the
data frames of higher priority compete for the channel.
Remaining lower priority frames behave as if there was
an external collision on the medium.

Interconnecting real-time buses using EDCA will be
more challenging than using DCF because several options
are available. First, besides defining encapsulation poli-
cies, the wireless RT flows have to be properly allocated to
ACs. This can be done statically by the gateways. Another
more subtile adaptation resides in the development of a
dynamic adjustment of the EDCA parameters for each AC
based on end-to-end delay statistics and missed-deadline
rates, using monitoring. This last issue is an ongoing work
which is not further addressed in this paper.

IV. A FIRST STUDY: CAN OVER DCF

Interconnection of a real-time bus with IEEE802.11 in
DCF mode is investigated in the following. The real-time
bus of interest is the well known Controller Area Network
(CAN) [7] standard.

A. Investigated architecture

CAN is one of the mainstream standards for embedded
communications. Despite the fact that it has been orig-
inally developed for automotive communications, CAN
has found its place in factory automation applications
to handle sensor-actuator communications because of its
ease of use and the low cost of its controllers. We recall

that CAN medium access is based on CSMA/CR (with
Collision Resolution): the start of frame transmissions on
the bus are synchronous. When two or more stations start
a transmission simultaneously, the one with the smallest
frame identifier wins and the others stop their transmis-
sion. This mechanism guarantees strict priority order on
identifiers. It implies limitations on the bandwidth and the
maximal length of the bus (e.g. 1 Mbps for 40 meters). Bit-
stuffing is used to avoid the transmission of long sequences
of bits with identical value. The computation of the frame
length has to take into account these additional bits. In this
paper, we use the upper bound given in [8]. The length C
of a frame carrying x bytes of data is:

C = (55 + 10⇥ x) (1)

In this example, all wireless nodes (gateways, pure
wireless emitters) function in ad hoc mode using DCF
medium access protocol following the specification of the
OFDM-PHY layer of 802.11g (20 MHz channel spacing).
Since WiFi access points are static, we can consider that
they are located at a distance where they can operate at
the highest rate of 54 Mbps. We assume proper channel
assignment has been performed so as to mitigate inter-
node interference. In this ideal case study, transmissions
are error-free and the transmission duration (in µs) at 54
Mbps of a MPDU of x bytes is derived according to [3]:

d(x) = 20 + 4

⇠
22 + 8(34 + x)

216

⇡
(2)

Following timing parameters are assumed: SIFS = 16µs,
DIFS = 34µs, EIFS = 78µs, CW

min

= 16 and
CW

max

= 1024.

B. Wireless gateway policies

As stated earlier, for DCF mode, interconnection poli-
cies at the gateway are crucial to ensure a timely distri-
bution of wireless RT frames. Interconnection is done by
encapsulating CAN frames of the wireless RT flows into
IEEE802.11 frames. Encapsulation is chosen to facilitate
the addressing of flows in the global network, and thus
a basic static switching table is stored at the gateways to
route wireless RT flows.

A gateway encapsulation strategy is characterized by
the following parameters:

• The maximum number N
`,m

of CAN frames which
can be encapsulated by gateway ` for destination
gateway m in one IEEE802.11 frame,

• The maximum time Wmax
j

a frame of a wireless
RT flow fH

j

can wait in its source gateway.

C. Results

Table I summarizes the strategies analyzed in this study
on the illustrative configuration of Figure 1. Each CAN
bus carries 4 pure RT flows. Each bus 1, 2 and 3 are
respectively the source of 8 wireless RT flows each which
are all transmitted to bus 4. These wireless RT flows have a
period and a critical delay of 10ms each. The size in bytes
for each of these 8 flows are equally distributed between
2, 4, 6 and 8 data bytes.

27

The encapsulation strategies of Table I are considered,
where uniform timers are assigned to the flows. T0 denotes
a basic strategy where one CAN frame is encapsulated
in exactly one wireless frame. T2, T3 and T4 are purely
timed strategies where CAN frames wait for at most 2, 3
and 4ms respectively.

T0 N`,m = 1 Wmaxj = 0 ms 8j
T2 N`,m = 100 Wmaxj = 2 ms 8j
T3 N`,m = 100 Wmaxj = 3 ms 8j
T4 N`,m = 100 Wmaxj = 4 ms 8j

Table I
SIMULATED STRATEGIES

A quantitative analysis of the proposed bridging strate-
gies has been conducted. This analysis is based on sim-
ulations. Therefore, a home-made simulation tool has
been developed using QNAP2 [9]. Table II gives results
concerning the utilization of the wireless medium. The
study is conducted with different numbers of identical pure
wireless flows fW (between 4 and 7), all of them with an
average period of 2ms and for packets of 200 data bytes.
Simulations are conducted for multiple instances where
offsets of real-time flows are randomly chosen between 0
and their period.

T0 T2 T3 T4P
fHj

fW1
4.8 1.9 1.4 1.2

4 % Col 2.2 0.8 0.8 0.7
fW flows AvgD 250 169 162 158

5 % Col 1.3 1.2 1.1
fW flows AvgD 199 189 184

6 % Col 2.0 1.8 1.6
fW flows AvgD 242 227 220

7 % Col 2.7 2.5
fW flows AvgD 287 274

Table II
IEEE802.11 RESULTS

The first line of the table shows the relative number
of IEEE802.11 frames generated by wireless RT flows.
The number of IEEE802.11 frames decreases when the
value of the timer increases. Indeed, the average number of
wireless RT frames encapsulated in an IEEE802.11 frame
increases when the timer increases. Table II also shows the
percentage of collisions (% Col) and the average delays
(AvgD) of pure wireless flows for each strategy and each
simulated scenario (i.e. number of pure wireless flows).
Empty values mean that the wireless network is saturated
and transmission delays diverge. It can be noticed that
these percentages of collisions and delays are deeply
linked to the number of contending IEEE802.11 frames.

Table III presents the rates of wireless RT frames which
miss their deadlines. More precisely, each value in Table
III is the average number of wireless RT frames that miss
their deadlines when 106 of such frames are generated
and transmitted. The main result of Table III is that it is
still possible to reach a reasonably low value of missed
deadlines (up to 200 every 106 frames) with the use of

DCF when a limited number of pure wireless flows (up to
7) is present in the network.

It can be inferred from these results as well that there is
a trade-off between the time spent waiting at the gateway
due to Wmax

j

and the time spent contending for the
wireless medium. In this very simple example, it can be
seen that the best trade-off is obtained with T3

nb. of fW flows T0 T2 T3 T4
4 1 0 0 0
5 0 0 3
6 21 19 20
7 200 200

Table III
MISSED DEADLINES FOR WIRELESS RT FLOWS

V. CONCLUSION

The motivation of this paper is to highlight that
IEEE802.11 technology is a credible solution for inter-
connecting remote field buses when soft real-time data are
exchanged between these buses. Future work needs to dis-
cuss the improvements provided by enhanced medium ac-
cess protocols of IEEE802.11, including QoS capabilities
and/or centralized mechanisms. Even though IEEE802.11
is the mainstream wireless technology, it is topical as well
to evaluate the benefits of a dedicated wireless real-time
protocol such as WirelessHART or ISA100.11a.

REFERENCES

[1] F. De Pellegrini, D. Miorandi, S. Vitturi, and A. Zanella, “On
the use of wireless networks at low level of factory automa-
tion systems,” Industrial Informatics, IEEE Transactions on,
vol. 2, no. 2, pp. 129–143, 2006.

[2] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology
in industrial networks,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1130–1151, 2005.

[3] “802.11-2012 - IEEE Standard for Information technology–
Telecommunications and information exchange between sys-
tems Local and metropolitan area networks
Specific requirements Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifica-
tions,” 2012.

[4] W. Ng, C. Ng, B. Ali, and N. Noordin, “Performance
evaluation of wireless controller area network (wcan) using
token frame scheme,” Wireless Personal Communications,
pp. 1–27, 2013.

[5] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, and M. Nixon,
“Wirelesshart: Applying wireless technology in real-time
industrial process control,” in RTAS’08, april 2008, pp. 377–
386.

[6] S. Petersen and S. Carlsen, “WirelessHART versus
ISA100.11a: The format war hits the factory floor,” Indus-
trial Electronics Magazine, IEEE, vol. 5, pp. 23–34, Dec.
2011.

[7] Bosch, “CAN Specification version 2.0,” Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart, 1991.

[8] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area
Network (CAN schedulability analysis: refuted, revisited and
revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.

[9] Simulog, “Qnap2,” http://www.simulog.fr.

28

Towards resilient real-time wireless communications
Jeferson L. R. Souza and José Rufino
University of Lisboa - Faculty of Sciences

LaSIGE - Navigators Research Team
Email(s): jsouza@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract—The use of wireless networks on environments
with real-time constrains requires timeliness and dependability
guarantees to allow the execution of time-restricted networked
operations. The current wireless standards and state-of-the-art
solutions pay no or little attention to dependability aspects of
communications, which are fundamental to secure any timeliness
guarantee. This paper presents an innovative standard-compliant
solution, dubbed Mediator Layer, which extends the MAC sub-
layer with additional components that can be incorporated within
networked simulators and implemented in currently available
hardware platforms. Thus, the Mediator Layer enhances and com-
plements the services traditionally offered by wireless network
standards, providing a set of fundamental abstractions useful for
both system design and application programming.

Index Terms—wireless sensor and actuator networks, real-time
communications, dependability, timeliness, resilience.

I. INTRODUCTION

The use of wireless networks on environments where com-
munications may have real-time requirements is a current
trend [1]. This trend is guided by the needs to reduce system
size, weight, and power consumption (SWaP) without lessen
timeliness and dependability guarantees. Industrial, vehicular,
and aerospace environments are waiting for a solution to
address an effective and efficient real-time support on wire-
less communications. For example, [2] discusses a set of
pressing challenges on the use of wireless sensor networks
(WSNs), more specifically wireless sensor and actuator net-
works (WSANs), in industrial automation, where dependabil-
ity and real-time guarantees are a must.

So far, a lot of work has been done, proposing new medium
access control (MAC) protocols [3]–[10], modifications on the
existent standards [11]–[13], and abstract models [14] trying to
enhance the reliability on wireless communications. However,
all these works focus their analyses in the temporal aspects of
the frame transmission service, paying no or little attention
to the dependability aspects of communications, which are
fundamental to secure any timeliness guarantee. An interesting
conclusion draw in [2] is the necessity of improvements on
the existent standards face to requirements of safe and secure
networked operations.

Thus, this work-in-progress presents an innovative solution
dubbed Mediator Layer [15], which is capable to enhance
the dependability and timeliness of MAC sublayer services.

This work was partially supported: by the EC, through project
IST-FP7-STREP-288195 (KARYON); by FCT/DAAD, through the transna-

tional cooperation project PROPHECY; and by FCT, through the project
PTDC/EEI-SCR/3200/2012 (READAPT), the Multiannual Funding Program,
and the Individual Doctoral Grant SFRH/BD/45270/2008.

In addition, a set of constructs useful to the programming
of distributed applications, such as reliable communications,
node failure detection, membership and clock synchronization
may be offered immediately above the MAC sublayer. In this
sense, our solution enhances and complements the services
traditionally offered by wireless network standards, providing
a set of fundamental abstractions useful for both system design
and application programming. A prototype of the Mediator
Layer is being integrated in the NS2 simulator [16] and in
a commercial off-the-shelf (COTS) platform [17], using the
IEEE 802.15.4 standard as a case study.

The presentation of our advances is organized as follows:
Section II presents the system model. Sections III and IV
describes our work-in-progress solution, including the incor-
poration of the Mediator Layer in the NS2 simulator and
in the hardware platform. Finally, Section V presents some
conclusions and future directions of this work.

II. SYSTEM MODEL

In this section we provide a brief description of our system
model, which establishes a base foundation for our design and
simulations. Our system model is formed by a set of wireless
nodes X = {x1, x2, . . . , xn}, being 1 < n ≤ #A, where A
is the set of all wireless nodes using the same communication
channel. A wireless node is a networked device capable to
communicate with other wireless nodes. The set of nodes
X itself defines a node relationship entity dubbed wireless
network segment (WnS), which is established by all wireless
nodes within X ⊆ A that use a given communication channel
and share a single hop communication range space.

For any WnS we use the following assumptions:
1) the communication range of X , i.e. its broadcast domain,

is given by: BX =
n⋂

j=1
BD(xj), ∀xj ∈ X , where

BD(xj) represents the communication range of node xj ;

2) ∀x ∈ X can sense the transmissions of one another;

3) ∀x ∈ A, x ∈ X ⇐⇒ BD(x)
⋂

BX = BX or,
as a consequence of node mobility, x /∈ X ⇐⇒
BD(x)

⋂
BX '= BX ;

4) ∃x ∈ X which is the coordinator, being unique and with
responsibility to manage the set X;

5) a network component (e.g. a node x ∈ X) either behaves
correctly or crashes upon exceeding a given number

29

Fig. 1: Representation of a wireless network segment

of consecutive omissions (the component’s omission
degree, fo) in a time interval of reference1, Trd;

6) failure bursts never affect more than fo transmissions in
a time interval of reference, Trd;

7) omission failures may be inconsistent (i.e., not observed
by all recipients).

Assumptions 1 to 3 define the physical relationship between
nodes within the WnS. Our system model characterizes the re-
lationship between nodes at MAC sublayer, where nodes must
be in the communication range of each other to communicate,
and are able to sense one another (assumption 2). Mobility
may drive nodes away of the WnS (assumption 3).

In the context of network components, an omission is
an error that destroys a data frame. Establishing a bound
for the omission degree (assumptions 5 and 6) provides a
general method for the detection of failed components. If each
omission is detected and accounted for, the component fails
once it exceeds the omission degree bound, k. The omission
degree is thus a general measure of the reliability of network
components with respect to accidental/intentional transient
errors.

Figure 1 presents a graphical representation of a wireless
network segment. In this figure we can see the communication
range of each node within X , evidencing the intersection
between all communication ranges of all nodes, which delimits
the broadcast domain of X . One node within X assumes the
role of coordinator (assumption 4). The management activities
of the coordinator comprises the assignment of the current
communication channel in use by the WnS, the allocation of
guaranteed slots for frame transmissions, and so on.

1For instance, the duration of a given protocol execution. Note that this
assumption is concerned with the total number of failures of possibly different
wireless nodes.

Fig. 2: The Mediator Layer and its components

III. TOWARDS RESILIENT REAL-TIME WIRELESS
COMMUNICATIONS

Our approach to enhance the dependability and timeliness of
wireless communications consists of an extensible component
layer, dubbed Mediator Layer, build around a standard MAC
sublayer. No modification is required to existing standards,
being the Mediator Layer standard-compliant solution easily
implemented in currently available COTS platforms. In this
sense, the Mediator Layer approach significantly differs from
other solutions described in the literature [3]–[14].

The Mediator Layer provides enhanced frame transmis-
sion and management services through a minimal set of
fundamental components (draw in Fig. 2), which handle the
actions required to secure dependability and timeliness in
communications.

The Real-Time Protocol Suite (Fig. 2) component is respon-
sible for handling frame transmissions, which can be data
or management frames. Different protocols serving requests
with different types of requisites, ranging from unreliable
unicast to reliable broadcast, can be incorporated within
this component. This augments the applicability of wireless
networks to broader class of applications, including those
with mixed-criticality requirements. Our intuition is that re-
placing a classical timeout-based protocol design approach
with a combination of positive and negative confirmations
(acknowledgements) contributes to reduce protocol worst case
termination times, and thus service timeliness. Timeout-based
techniques may still be used but only to detect node crash
failures.

The Timeliness and Partition Control (Fig. 2) component
deals with the temporal aspects related to the frame trans-
mission service. Controlling and monitoring the timing of the
actions within the Mediator Layer relies on an internal Time
Service that ensures the temporal awareness of all networked
operations, including the occurrence of temporary network

30

partitions (i.e., network inaccessibility [18]) or even timeliness
violations of a specific transmission protocol. An example
is the monitoring and verification of a deadline associated
to a data request, which may be disturbed by inaccessibility
incidents. The dynamic control of inaccessibility periods [15]
allows protocol execution to be aware of the real duration of
inaccessibility incidents, and to (self-)adapt its execution to
actual network operating conditions. In particularly, optimal
timeout values can be used in the dimensioning of protocol
timers, which contributes to enhance the timeliness guarantees.

The Configuration and Management Control (Fig. 2) com-
ponent manages and controls the configuration of all param-
eters of the MAC sublayer and the internal parameters of the
Mediator Layer, respecting application requirements, resource
limitations, and environment restrictions. Such requirements,
limitations, and restrictions should be defined in an pro-
file that is utilised to adjust the aforementioned parameters.
Autonomous methods may be utilized by the Configuration
and Management Control components, making configuration
procedures self-adaptive, self-managed, and self-controlled.

IV. BUILDING Mediator Layer COMPONENTS

In order to illustrate how to improve the dependability and
timeliness properties of a standard MAC sublayer, we select
a set of key mechanisms that needs to be included in the
Mediator Layer for that purpose.

The first mechanism we address introduces a minor exten-
sion in the standard frame check sequence (FCS) mechanism.
The native FCS mechanism silently discards every frame
received with errors, meaning omission errors will not be
perceived, nor monitored nor accounted for. Conversely, the
extension specified in Algorithm 1 provides a management
indication of the status of the received frame to the Mediator
Layer, even if the frame was received with errors. The manage-
ment indication highlighted in line 15 signals: the instant the
frame was received, represented by the variable time stamp,
as obtained in line 6; the frame header, represented by the
variable frame header, which is extracted in line 7; and the
FCS error status represented by the variable fcs error. This
simple extension of the native standard mechanism enriches
the monitoring capabilities of the Mediator Layer.

The second mechanism we address takes profit of the FCS
extension mechanism to account for omission errors. The
accounting of omission errors is expressed as a pseudo-code
presented in Algorithm 2. The status of each frame received
by a node is signalled through a MAC management indication
in line 7. If a frame was received with errors, the number
of consecutive omission errors, Odegree, is incremented by
one (line 9). Otherwise, i.e., whenever a frame is received
without errors, the value of Odegree is cleared (line 11). Should
the omission degree bound, k, be exceeded, a management
indication is provided (line 14). This is an indication that the
communication channel in use has failed and that a channel
switch action should be issued to MAC sublayer management
entities.

Algorithm 1 Extending the FCS mechanism
1: Initialization phase.
2: fcs error ←false;
3: Begin.
4: loop
5: when Channel.indication(frame) do
6: time stamp←MLA.get.time();

7: frame header ←MAC.get.header(frame);
8: if MAC.FCS.check(frame) is OK then
9: fcs error ← false;

10: MAC.indication(frame);
11: else
12: fcs error ← true;
13: MAC.discard(frame);
14: end if
15: MAC.Mgmt.indication(time stamp, frame header, fcs error);
16: end when
17: end loop
18: End.

Algorithm 2 Accounting local omission errors
1: Initialization phase.
2: Odegree ← 0;
3: k ← The value of the omission degree bound depends on environment

conditions. The default value utilized within the IEEE 802.15.4 standard
is k = 3.

4: current channel← It represents which is the current channel in use.
5: Begin.
6: loop
7: when MAC.Mgmt.indication(time stamp, frame header, fcs error)

do
8: if fcs error = true then
9: Odegree ← Odegree + 1;

10: else
11: Odegree ← 0;
12: end if
13: if Odegree > k then
14: MLA.Mgmt.indication(time stamp,current channel,

Odegree exceeds k)
15: end if
16: end when
17: end loop
18: End.

The real-time operation of nodes within the WnS is also
monitored by a node failure detection service, which is part
of the Real-time Protocol Suite component. The node failure
detection is presented in Algorithm 3. This algorithm resides
within every node of a WnS, establishing a distributed and
decentralized node failure detection service.

Each node locally accounts omissions from other nodes
of the WnS as follows: an indication representing the status
of a received frame is detected (line 6). The source node
index of the received frame is extracted from the time stamp
and frame header variables (line 7). If a valid node in-
dex is found (e.g., the node source identifier in the frame
header matches the foreseen time slot represented here by the
time stamp variable). If the frame was received with errors,
the omission degree of this node is incremented by one (line
10), otherwise it is reseted to zero (line 12). When the omission
degree of a given source node of a received frame exceeds k,
a local indication is generated by the node failure detection
service (line 15), which can be utilized by a membership

31

Algorithm 3 Node failure detection
* The detection of a node’s crash is intentionally ommitted

1: Initialization phase.
2: k ← 3;
3: nodeindex ← It represents the index of a node.
4: Begin.
5: loop
6: when MAC.Mgmt.indication(time stamp,frame header,fcs error)

do
7: nodeindex ←MLA.Mgmt.getNode(time stamp,frame header);
8: if nodeindex is valid then
9: if fcs error = true then

10: Odegree[nodeindex]← Odegree[nodeindex] + 1;
11: else
12: Odegree[nodeindex]← 0;
13: end if
14: if Odegree[nodeindex] > k then
15: MLA.FD.indication(time stamp,current channel,

nodeindex, Odegree[nodeindex] exceeds k)
16: end if
17: end if
18: end when
19: end loop
20: End.

service to help the update of the view that represents the active
nodes within the WnS.

As a proof-of-concept the Mediator Layer has been imple-
mented and incorporated within both NS2 simulator [16] and
a COTS platform [17], using the IEEE 802.15.4 standard as a
case study. The results achieved so far have shown that these
mechanisms allow to achieve optimal latencies with respect
to the detection of channel failures (Algorithm 2) and node
failures (Algorithm 3). Any violation of the omission degree
bound is also detected as soon as it occurs.

This happens because frame omissions are monitored and
detected at the lowest level of communications (Algorithm 1).
The effectiveness of this approach is illustrated in Fig. 3. In
Fig. 3 the blue color represents the number of frames (621)
received without any error (i.e., indicated with or without the
presence of Mediator Layer), while the orange color represents
the number of frames (270) received with errors, and detected
by Mediator Layer.

V. CONCLUSION AND FUTURE WORK

This paper presented an extensible component layer dubbed
Mediator Layer, which enhances the timeliness and depend-
ability properties of wireless communications. A dependable
and timely service at lowest level of the network protocol stack
helps the higher level protocol designers to keep their solu-
tions as simple as possible, using the easy-to-design building
block approach enabled by the Mediator Layer. Our standard-
compliant approach has been implemented and incorporated
within the NS2 network simulator and a COTS platform.

Future directions include, but are not limited to: adding
protocols to the Real-Time Protocol Suite component to cover
the requirements imposed by real-time environments; finishing
the implementation and incorporation of the Mediator Layer
within the NS2 network simulator and the COTS platform;
performing analyses and evaluation of the Mediator Layer

Fig. 3: Results obtained with the extension of the FCS mech-
anism implemented within NS2 simulator

approach in such both simulator and COTS platform face
to different error conditions and temporal requirements of
environments and applications; and defining relevant real-time
metrics to evaluate the wireless communications with regard
to application requirements and environment restrictions.

REFERENCES

[1] T. Stone, R. Alena, J. Baldwin, and P. Wilson, “A viable COTS
based wireless architecture for spacecraft avionics,” in IEEE Aerospace
Conference, 2012, pp. 1–11.

[2] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research challenges
in wireless sensor and actuator networks targeting industrial automa-
tion,” in 9th IEEE INDIN, July 2011.

[3] A. Sahoo and P. Baronia, “An energy efficient MAC in WSN to provide
delay guarantee,” in 15th IEEE LANMAN, June 2007.

[4] I. Aad, P. Hofmann, L. Loyola, F. Riaz, and J. Widmer, “E-MAC: Self-
organizing 802.11-compatible MAC with elastic real-time scheduling,”
in IEEE MASS, October 2007.

[5] E. E-López, J. V-Alonso, A. M-Sala, J. G-Haro, P. P-Mariño, and
M. Delgado, “A WSN MAC protocol for real-time applications,” Per-
sonal Ubiquitous Computing Journal, January 2008.

[6] P. Bartolomeu, J. Ferreira, and J. Fonseca, “Enforcing flexibility in
real-time wireless communications: A bandjacking enabled protocol,”
in IEEE ETFA, September 2009.

[7] X.-Y. Shuai and Z.-C. Zhang, “Research of real-time wireless networks
control system MAC protocol,” Journal of Networks, April 2010.

[8] T. Zhou, H. Sharif, M. Hempel, P. Mahasukhon, W. Wang, and T. Ma,
“A novel adaptive distributed cooperative relaying MAC protocol for
vehicular networks,” IEEE Journal on Sel. Areas in Comm., Jan 2011.

[9] M. Sha, G. Hackmann, and C. Lu, “Arch: Practical channel hopping for
reliable home-area sensor networks,” in 17th IEEE RTAS, April 2011.

[10] X. Zhu, S. Han, P.-C. Huang, A. Mok, and D. Chen, “MBStar: A real-
time communication protocol for wireless body area networks,” in 23rd
ECRTS, July 2011.

[11] Yu-Kai, Ai-Chun, and Hui-Nien, “An adaptive GTS allocation scheme
for IEEE 802.15.4,” IEEE Trans. on Parallel and Distributed Systems,
May 2008.

[12] M. Hameed, H. Trsek, O. Graeser, and J. Jasperneite, “Performance
investigation and optimization of IEEE 802.15.4 for industrial wireless
sensor networks,” in IEEE ETFA, September 2008.

[13] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “i-GAME: An implicit
GTS allocation mechanism in IEEE 802.15.4, theory and practice,”
Springer Real-Time Systems Journal, August 2008.

[14] F. Kuhn, N. Lynch, and C. Newport, “The abstract MAC layer,” in 23rd
DISC, September 2009.

[15] J. L. R. Souza and J. Rufino, “An approach to enhance the timeliness
of wireless communications,” in 5th UBICOMM, Lisbon, 2011.

[16] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer, 2009.

[17] ATMEL, ATMEL AVR2025: IEEE 802.15.4 MAC Software Package -
User guide, ATMEL Coorporation, May 2012.

[18] J. L. R. Souza and J. Rufino, “Characterization of inaccessibility in
wireless networks - a case study on IEEE 802.15.4 standard,” in 3th
IFIP IESS, September 2009.

32

