

Proceedings
Work-in-Progress Session
of the 24th Euromicro Conference on
Real-Time Systems (ECRTS 12)

July 10-13. 2012
Pisa, Italy

http://ecrts12.ecrts.org/wip

Organised by the Euromicro Technical Committee on
Real-Time Systems

Edited by Julio L. Medina

© Copyright 2012 by the authors

 ii

© Copyright 2012 held by the authors

 iii

Preface

Welcome to Pisa and to the Work-in-Progress (WiP) Session of the 24th Euromicro
Conference on Real-Time Systems (ECRTS 12). This session is dedicated to present
new and on-going promising research into the broad field of real-time systems and
applications. The papers included in these proceedings cover a wide range of topics,
spanning across many areas of real-time systems, including real-time components and
modeling, energy-aware scheduling, multi-core, probabilistic and soft real-time
scheduling analysis, controller area networks, and the real-time and energy management
capabilities in the new versions of the Linux kernel. These WiP papers will be also
published on-line within ACM SIGBED Review (http://sigbed.seas.upenn.edu/)

The primary purpose of this WiP session is to provide researchers with an opportunity
to discuss their evolving ideas and gather feedback from the real-time community at
large. The creative ideas and approaches in the papers here selected are indeed a
prospective view of what the future in our community may bring soon as fresh blood in
our research arena.

I would like to thank the members of the WiP session technical program committee for
their reviewing efforts, and of course the authors for their good submissions and their
confidence in ECRTS as a means to improve and make advance their research. Special
thanks also go to the ECRTS 12 organizers, Giorgio Buttazzo, Rob Davis, and Gerhard
Fohler, for their confidence, support, and guidance.

I hope you all enjoy this session, participate in the discussions, and have the opportunity
to provide your valuable feedback to the authors. Now, if in addition you happen to do
so in front of their posters … that would be really great!!

Julio Medina
Work-in-Progress Session Chair
24th Euromicro Conference on Real-Time Systems (ECRTS 12)
July 2012

 iv

ECRTS’12 Work-in-Progress Technical Program Committee

Program Committee Members

• Moris Behnam, Mälardalen University, Västerås, Sweden
• Sébastien Gerard, CEA-List, France
• Ricardo Marau, Universidade do Porto, Portugal
• Marco Di Natale, Scuola Superiore Sant'Anna, Pisa, Italy
• Oleg Sokolsky, University of Pennsylvania, USA

Work-in-Progress Session Chair

Julio Medina, Universidad de Cantabria, Spain

 1

Table of Contents

Translating End-to-End Timing Requirements to Timing Analysis Model
in Component-Based Distributed Real-Time Systems 3

An Energy-aware Scheduling for Real-time Task Synchronization

Using DVS and Leakage-aware Methods 7

Dynamic Scheduling Algorithm for Parallel Real-time Graph Tasks 11

A New Technique for Analyzing Soft Real-Time Self-Suspending Task

Systems 15

Towards an analysis framework for tasks with probabilistic execution

times and probabilistic inter-arrival times 19

Traffic Shaping to Reduce Jitter in Controller Area Network (CAN) 23

Implementing and Evaluating Communication-Strategies in the

ProCom Component Technology 27

Enhancing the Real-time Capabilities of the Linux Kernel 31

Cleaning Up Linux's CPU Hotplug For Real Time and Energy

Management 35

 2

Translating End-to-End Timing Requirements to Timing Analysis Model in
Component-Based Distributed Real-Time Systems

Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems, Järfälla, Sweden
{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—Often, component-based real-time systems are
modeled with trigger and data chains. The end-to-end timing
requirements on trigger chains are different from those on
data chains. For a trigger chain, the interest lies in the
calculation of holistic response time and its comparison with
end-to-end deadline. Whereas, the schedulability of a data
chain requires a comparison between its end-to-end latencies
and corresponding deadlines. We discuss the problem of
translating end-to-end timing requirements unambiguously
from component-based real-time systems into timing analysis
models which are required as input by the analysis tools. We
also provide preliminary guidelines for such translations in
the existing industrial tool suite.

Keywords-Response-time analysis; end-to-end timing anal-
ysis; timing model; component-based development.

I. INTRODUCTION

Often, component-based real-time systems are modeled
with chains of components that are translated to chains of
tasks at run-time. A task chain is a sequence of more than
one tasks in which every task (other than the first) receives
a trigger, data or both from its predecessor. One way to
classify these chains is as trigger chains and data chains.
In trigger chains, there is only one triggering source (e.g,
event, clock or interrupt) that activates the first task in the
chain which, in turn, triggers the next task and so on. On
the other hand, data chains have independent source of
triggering for every task. Each task (except first) in these
chains receives data from its predecessor. In component-
based real-time systems, the timing requirements such
as end-to-end deadlines on trigger and data chains are
specified in the component model.

The safety-critical nature of many real-time systems
requires evidence that the actions by the system will be
provided in a timely manner, i.e., each action will be taken
at a time that is appropriate to the environment of the
system. Therefore, it is important to make accurate pre-
dictions of the timing behavior of such systems. For this
purpose, a priori analysis techniques such as schedulability
analysis have been developed by the research community.
The analysis tools operate on the timing analysis model
which should be extracted from the modeled application.
The end-to-end timing requirements should be unambigu-
ously translated to the analysis model from the component
model of the real-time application.

In this paper, we discuss the problem of translating
the end-to-end timing requirements into analysis model
from single-node as well as distributed real-time systems
that are developed using component-based approach. We
also provide preliminary guidelines for such translations in
the industrial tool suite, Rubus-ICE, used for component-
based development of distributed real-time systems.

II. BACKGROUND AND RELATED WORK

A. Response Time Analysis (RTA)
RTA [1], [2] is a powerful, mature and well estab-

lished schedulability analysis technique. It is a method
to calculate upper bounds on response times of tasks (or
messages) in a real-time system (or a network). RTA
applies to systems where tasks are scheduled with respect
to their priorities and which is the predominant scheduling
technique used in real-time operating systems today [3].

1) RTA of tasks with offsets: Tindell [4] developed the
response-time analysis for tasks with offsets for fixed-
priority systems. It was extended by Palencia and Harbour
[5]. Mäki-Turja and Nolin [6] reduced pessimism from the
offset-based RTA. In this work we will consider the tighter
version of the offset-based RTA [6] as part of the end-to-
end response-time and latency analysis.

2) RTA of Messages in a Network: In this paper, we
will focus only on Controller Area Network (CAN) [7]
and its high-level protocols. Tindell et al. [8] developed
the schedulability analysis for CAN. It was revisited and
revised by Davis et al. [9]. In [10], Davis et al. extended
the analysis for CAN network with a mix of priority- and
FIFO-queued nodes. In [11], [12], Mubeen et al. extended
the existing analysis to support RTA of mixed messages
in CAN with priority- and FIFO-queued nodes. Later on,
Mubeen et al. [13] extended the existing analysis for CAN
to support mixed messages that are scheduled with offsets.
In this work we will consider all of the above analysis as
part of the end-to-end response-time and latency analysis.

3) Holistic RTA (HRTA): It calculates the upper bounds
on the response times of event chains that may be
distributed over several nodes in a distributed real-time
system. It combines the analysis of tasks in nodes and
messages in a network. We consider the HRTA that
corresponds to the analysis in [14].

B. End-to-End Latency Analysis
Stappert et al. [15] formally described end-to-end timing

constrains in automotive domain. In [16], Feiertag et al.
presented a framework for the computation of end-to-
end latencies for multi-rate automotive embedded systems.
They emphasized on the importance of two end-to-end la-
tencies, i.e., “maximum age of data” and “first reaction” in
control systems and body electronics domains respectively.
A scalable technique for the computation of end-to-end
latencies based on model checking is described in [17]. In
this work, we will consider the analysis discussed in [16].

C. The Rubus Concept
Rubus is a collection of methods and tools for model-

and component-based development of dependable embed-
ded real-time systems. Rubus is developed by Arcticus
Systems [18] in close collaboration with several academic

3

and industrial partners. Rubus is today mainly used for de-
velopment of control functionality in vehicles. The Rubus
concept is based around the Rubus Component Model
(RCM) [19] and its development environment Rubus-ICE
(Integrated Component development Environment), which
includes modeling tools, code generators, analysis tools
and run-time infrastructure. The overall goal of Rubus is to
be aggressively resource efficient and to provide means for
developing predictable and analyzable control functions in
resource-constrained embedded systems.

RCM expresses the infrastructure for software func-
tions, i.e., the interaction between software functions in
terms of data and control flow separately. The control
flow is expressed by triggering objects such as internal
periodic clocks, interrupts, internal and external events.
In RCM, the basic component is called Software Circuit
(SWC). The execution semantics of an SWC is simply:
upon triggering, read data on data in-ports; execute the
function; write data on data out-ports; and activate the
output trigger. Recently, RCM is extended to support the
development of distributed real-time systems [20], [21].

1) The Rubus Analysis Framework (RAF).: The Rubus
model allows expressing real-time requirements and prop-
erties at the architectural level. For example, it is possible
to declare real-time requirements from a generated event
and an arbitrary output trigger along the trigger chain.
For this purpose, the designer has to express real-time
properties of SWCs, such as Worst Case Execution Times
(WCETs) and stack usage. The scheduler will take these
real-time constraints into consideration when producing a
schedule. For event-triggered tasks, response-time calcu-
lations are performed and compared to the requirements.
RAF supports distributed holistic response-time analysis
and shared stack analysis.

III. RESEARCH PROBLEM

A. Problem Statement
A component-based real-time system can be modeled

with trigger chains (see Figure 4), data chains (see Figure
1) or a combination of both. The end-to-end timing
requirements on trigger chains are different from those on
data chains. If the system is modeled with trigger chains
then the interest, from the schedulability point of view, lies
in the calculation of their end-to-end or holistic response
times. Hence, the end-to-end deadline requirements placed
on trigger chains correspond to holistic response times.
In order to check the schedulability of such systems, the
holistic response times are compared to the corresponding
deadlines. If the holistic response times of all trigger
chains are less than or equal to the corresponding dead-
lines, the system is considered schedulable.

On the other hand, merely computing the holistic re-
sponse times and comparing them with corresponding end-
to-end deadlines is not sufficient to predict the complete
timing behavior of the real-time system that is modeled
with data chains. There may be over and under sampling
in a real-time system due to data chains with independent
and varying clock periods for individual tasks. This may
cause some values in the data buffers to be over written
by new values and hence, the effect of the old values
may never propagate to the output. Further, it is also
possible to have several duplicates of the output. In such
systems, the end-to-end timing requirements, especially in
automotive domain [16], are placed on the first reaction
to input and age of the data at output. Hence, it is also
important to compute the end-to-end latencies (or delays)

in such systems. The end-to-end latency refers to the time
elapsed between the arrival of a signal at the first task and
production of actuation signal (in response to the input
signal) by the last task in a data chain [17].

In a real-time system that contains only trigger chains,
tasks in a chain are not activated by independent events, in
fact, there is only one activating event in the chain. Hence,
holistic response times and end-to-end latencies will have
equal values. On the other hand, these values are not the
same for the systems modeled with data chains. Therefore,
a complete analysis of a real-time system modeled with
data chains requires the calculation of not only holistic
response times but also end-to-end latencies.

When real-time systems are modeled with both trigger
and data chains then end-to-end timing requirements are
specified on both types of chains in the component model.
These requirements should be unambiguously translated
into the analysis model which is required by the analysis
tools (implementing end-to-end timing analysis). In such
systems, the translation of modeled timing requirements
and corresponding timing information into a analysis
model is challenging due to several issues.

The first issue is the identification of each individual
chain with respect to its type from the modeled applica-
tion. This issue becomes more challenging in the case of
mixed-type chains, i.e., when some tasks in the chain are
activated by a single trigger while others are activated by
independent triggers as shown in Figure 6. The end-to-end
timing requirements in such task chains can correspond
to both end-to-end response times and latencies. Another
related issue arises when a task chain mimics as a data
chain as well as a trigger chain by means of trigger merges
as shown in Figure 7. A similar ambiguity exists in the
extraction of distributed transactions that contain mixed
messages [11], [12] in the network in distributed real-time
systems.

Not only such chains should be unambiguously iden-
tified, their end-to-end timing requirements should also
be translated to the end-to-end timing analysis model.
Another issue is to extract the tracing information in
each chain (from initiator to the terminator). This can be
challenging in the case of distributed real-time systems
because a distributed transaction may comprise of a data
chain in one node and trigger chain in another while these
chains communicate via network messages. Finally, the
network timing and message-related information should
also be extracted when data chains are distributed over
several nodes.

We proposed a method to trace trigger chains in
component-based distributed real-time systems in [21].
A method is needed for the identification, tracing, and
extraction of data chains from component-based real-time
systems; and unambiguous translations of their end-to-end
timing requirements into the timing analysis model.

Now, we discuss what do we mean by end-to-end timing
requirements in data and trigger chains.

B. End-to-end timing requirements in data chains
A single-node real-time system modeled with three

SWCs in RCM is shown in Figure 1. These SWCs are
activated by independent clocks with different periods,
i.e., 8ms, 16ms and 4ms respectively. SWC A reads the
input signals from the sensors while SWC C produces
the output signals for the actuators. Assume that each
SWC will be allocated to an individual task by the run-
time environment generator. Also assume that WCET of
each task is one time unit.

4

8 ms 16 ms 4 ms

SWC_A SWC_CSWC_B
Sensor Input Data sink

Figure 1. RCM model of a data chain in a single-node real-time system

The time line corresponding to the run-time execution of
the three tasks (corresponding to three SWCs) is depicted
in Figure 2. It can be seen that there are multiple outputs
corresponding to a single input signal. The four end-to-end
latency semantics are identified in Figure 2.

LIFO = 10

5 10 15 20 250 30 40 45 5035

5 10 15 20 250 30 40 45 5035

5 10 15 20 25

τC

0 30 40 45 5035

LILO (Data Age Latency) = 22
FIFO (Data Reaction Latency) = 26

FILO = 38

τB

τA

LIFO = 10

5 10 15 20 250 30 40 45 5035

5 10 15 20 250 30 40 45 5035

5 10 15 20 25

τC

0 30 40 45 5035

LILO (Data Age Latency) = 22

FIFO (Data Reaction Latency) = 26

FILO = 38

τB

τA

Figure 2. End-to-end latencies of a data chain in a real-time system

1) Last In First Out (LIFO): This latency is equal to the
time elapsed between the current non-overwritten release
of task τA (i.e., input) and corresponding first response of
task τC (i.e., output).

2) Last In Last Out (LILO): This latency is equal to the
time elapsed between the current non-overwritten release
of task τA and corresponding last response of task τC .
This latency is identified as “Data Age” in [16]. Data
age specifies the longest time data is allowed to age from
production by the initiator until the data is delivered to
the terminator. This latency finds its importance in control
applications where the interest lies in the freshness of the
produced data.

3) First In First Out (FIFO): This latency is equal to
the time elapsed between the previous non-overwritten
release of task τA and first response of task τC corre-
sponding to the current non-overwritten release of task
τA. This latency is identified as “Data Reaction” in [16].
Data reaction is the longest allowed reaction time for data
produced by the initiator to be delivered to the terminator.
This latency finds its importance in the body electronics
domain where first reaction to input is important.

4) First In Last Out (FILO): This latency is equal to the
time elapsed between the previous non-overwritten release
of task τA and last response of task τC corresponding to
the current non-overwritten release of task τA.

The data chains may also be distributed over more than
one nodes in distributed real-time systems. Consider a
model of a two-node distributed real-time system modeled
with RCM as shown in Figure 3. The nodes are connected
to a CAN network. The internal model of the nodes is also
shown in Figure 3. In Node A, SWC A is triggered by
a clock with a period of 8ms. The OSWC A component
that is responsible for sending a message to the network
is triggered by another clock with a period of 16ms. The
ISWC C is a component that receives a message from
the network and is activated by a clock with a period

of 4ms. Assume that each component is allocated to a
separate task at run-time, i.e., the components SWC A,
OSWC A and ISWC C are allocated to tasks τA, τB

and τC respectively. Since, the system consists of tasks
with similar activation patterns and periods as compared
to the tasks in the single-node real-time system example
discussed above, it can be scheduled in a similar manner
as indicated by τA, τB and τC in Figure 2. The end-to-end
latencies are also defined in a similar fashion.

Node CNode A CAN

Node C
4 ms

ISWC_C SWC_C Actuation
Signal

Node A8 ms

SWC_A OSWC_A
Sensor
Input

Node CNode A CAN

Node C

4 ms

ISWC_C Actuation
Signal

Node A

8 ms

SWC_A OSWC_ASensor
Input

16 ms

Figure 3. RCM model of a data chain in a distributed real-time system

C. End-to-end timing requirements in trigger chains
An example of a trigger chain that consists of three

components is shown in Figure 4. Assume that each
components corresponds to a task at run-time. When
task τSWC A finishes its execution, it triggers τSWC B .
Similarly, τSWC C can only be triggered by τSWC B

after finishing its execution. There cannot be multiple
outputs corresponding to a single input signal. In fact,
there will always be one output of the chain corresponding
to the input trigger. The focus in a trigger chain is on the
calculation of the holistic response-response time only.
Hence, the end-to-end timing requirements correspond
to the holistic response times. In order to provide a
comparison of holistic response time in a trigger chain
with the end-to-end latencies in a data chain, assume that
the trigger chain shown in Figure 4 is the only chain
of tasks in the system. Let the priorities of all tasks be
the same while WCET of each task is 1ms. The holistic
response time of this trigger chain is equal to the response
time of τSWC C which is, intuitively, equal to 3ms.

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation

Signal

Node A

10 ms

SWC_A OSWC_ASensor

Input

Event

Figure 4. RCM model of trigger chain in a single-node real-time system

Distributed real-time systems can also be modeled with
trigger chains. Consider a model of a two-node distributed
real-time system modeled with RCM as shown in Figure 5.
There is only one triggering ancestor in node A that
activates SWC A. The ISWC C in only activated when
an interrupt is raised due to the arrival of a CAN message
at node C. Once again, the end-to-end timing requirements
correspond to end-to-end response times.

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation

Signal

Node A

10 ms

SWC_A OSWC_ASensor

Input

Event

Figure 5. RCM model of trigger chain in a distributed real-time system

IV. GUIDELINES FOR THE SOLUTION

We provide preliminary guidelines for the development
of a method to identify, trace and extract data chains from

5

8 ms 16 ms 4 ms

SWC_A SWC_CSWC_B
Sensor Input Data sink

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

SWC_A SWC_CSWC_B
Sensor Input Data sink

SWC_ESWC_D

8 ms 16 ms 4 ms

Figure 6. RCM model of a mixed-type chain

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

(a)

10 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Node C

Node CNode A CAN

Event

ISWC_C Actuation

Signal

Node A

10 ms

SWC_A OSWC_ASensor

Input

Event

Sensor

Input SWC_A SWC_B SWC_C

10 ms
15 ms

Data sink

Trigger Merge

Figure 7. RCM model of a data chain containing trigger merges

component-based real-time systems. The method will also
support unambiguous translations of the end-to-end timing
requirements specified on data and trigger chains into the
analysis model. The new method will be adapted from the
existing method in Rubus-ICE [21] to extract the complete
tracing information from all data chains.

We will introduce a new object in the component
model called trigger map that will extract the triggering
information for each task in every chain. Based on this
information in the trigger map, an iterative method will
determine whether the triggering of every two neighboring
tasks in a chain is dependent or independent of each other.
If all the triggers are dependent on the initial trigger then
the chain will be identified as a trigger chain. If there exists
at least one trigger, in the signal map of a chain, that is
independent of the rest then the chain will be identified as
a data chain. If trigger merges are identified in the trigger
map of a chain, it will be regarded as the a data chain. This
method will be iterated for all the chains in the system.

The new method will translate the extracted timing
information and the trigger map to the analysis model
that will input to the analysis tools in XML format. Based
on this model, the analysis tools will perform end-to-end
response-time and latency analysis. When this method is
fully developed, we will implement it in Rubus-ICE as a
proof of concept. We believe, this solution will also be
applicable to several other component models for real-
time systems that use a pipe-and-filter style for component
interconnection, e.g., ProCom [22].

V. SUMMARY

We discussed the problem concerning the issues that
arise when end-to-end timing requirements are translated
into the analysis model from component-based real-time
systems that are modeled with data and trigger chains.
The end-to-end timing requirements on trigger chains are
different from those on data chains. We distinctively iden-
tified these requirements in data and trigger chains within
single-node and distributed real-time systems. These tim-
ing requirements should be unambiguously translated into
the analysis model which serves as an input to the analysis
tools integrated with the component model. We provided
preliminary guidelines for the development of a method
to identify, trace and extract data chains and unambiguous
translations of their end-to-end timing requirements into a
analysis model. Currently, we are developing this method
and, in parallel, implementing the end-to-end latency anal-
ysis in Rubus-ICE. We plan to provide a proof of concept
by conducting an industrial case study using Rubus-ICE.

ACKNOWLEDGEMENT
This work is supported by the Swedish Knowledge

Foundation (KKS) within the project FEMMVA. The

authors would like to thank the industrial partners Arcticus
Systems and Volvo Construction Equipment, Sweden.

REFERENCES

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[2] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K.
Mok, “Real Time Scheduling Theory: A Historical Perspective,”
Real-Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

[3] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial
Strength Timing Predictions of Embedded System Behavior,” in
ESA, 2008, pp. 173–178.

[4] K. W. Tindell, “Using offset information to analyse static priority
preemptively scheduled task sets,” Dept. of Computer Science,
University of York, Tech. Rep. YCS 182, 1992.

[5] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium,
IEEE International, p. 26, 1998.

[6] J. Mäki-Turja, , and M. Nolin, “Tighter response-times for tasks
with offsets,” in Real-time and Embedded Computing Systems and
Applications Conference (RTCSA). Springer-Verlag, August 2004.

[7] Robert Bosch GmbH, “CAN Specification Version 2.0,” postfach
30 02 40, D-70442 Stuttgart, 1991.

[8] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time
communications: controller area network (CAN),” in Real-Time
Systems Symposium (RTSS) 1994, pp. 259 –263.

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and
revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.

[10] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller
Area Network (CAN) Schedulability Analysis with FIFO queues,”
in 23rd Euromicro Conference on Real-Time Systems, July 2011.

[11] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedula-
bility analysis of controller area network (CAN) for mixed (peri-
odic/sporadic) messages,” in 16th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), sept. 2011.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Response-time analysis
of mixed messages in controller area network with priority- and
FIFO-queued nodes,” in 9th IEEE International Workshop on
Factory Communication Systems (WFCS), may 2012.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Worst-case response-
time analysis for mixed messages with offsets in controller area
network,” in 17th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), sept. 2012.

[14] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.

[15] F. Stappert, J. Jonsson, J. Mottok, and R. Johansson, “A Design
Framework for End-To-End Timing Constrained Automotive Ap-
plications,” in Embedded Real-Time Software and Systems (ERTS),
2010.

[16] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Com-
positional Framework for End-to-End Path Delay Calculation of
Automotive Systems under Different Path Semantics,” in Workshop
on Compositional Theory and Technology for Real-Time Embedded
Systems (CRTS), dec. 2008.

[17] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and
S. Ramesh, “Schedulability and end-to-end latency in distributed
ecu networks: formal modeling and precise estimation,” in Pro-
ceedings of the tenth ACM international conference on Embedded
software, ser. EMSOFT ’10. ACM, 2010, pp. 129–138.

[18] “Arcticus Systems,” http://www.arcticus-systems.com.
[19] K. Hänninen et.al., “The Rubus Component Model for Resource

Constrained Real-Time Systems,” in 3rd IEEE International Sym-
posium on Industrial Embedded Systems, June 2008.

[20] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable
modeling of legacy communication in component-based distributed
embedded systems,” in 37th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Sep. 2011, pp.
229–238.

[21] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-
to-end timing model from component-based distributed real-time
embedded systems,” in Time Analysis and Model-Based Design,
from Functional Models to Distributed Deployments (TiMoBD)
workshop. Springer, October 2011, pp. 1–6.

[22] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,
“A Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008).

6

An Energy-aware Scheduling for Real-time Task Synchronization Using DVS
and Leakage-aware Methods

Da-Ren Chen
Department of Information Management, National
Taichung University of Science and Technology

Taichung, Taiwan, R.O.C.

danny@nutc.edu.tw

You-Shyang Chen
Department of Information Management,Hwa Hsia

Institute of Technology
Taipei, Taiwan, R.O.C.

ys_chen@cc.hwh.edu.tw

Abstract-Due to the importance of resource allocation and
energy efficiency, this paper considers minimizing priority
inversion and energy consumptions in the embedded real-time
systems. While dynamic voltage scaling (DVS) is known to
reduce dynamic power consumption, it also causes increased
blocking time of lower priority tasks and leakage energy
consumption due to increased execution. We proposed a
concept of latency locking to prevent priority inversion using
sleeping mode and define a block-free interval in which both
DVS and leakage-aware methods can be applied. In order to
compute the optimal sleeping time and its duration and to
meet the timing constraints, we also propose a weighted
directed graph (WDG) to obtain additional task information.
By traversing WDG, task information can be updated online
and the scheduling decisions could be done in linear time
complexity.

Keywords-real-time scheduling; priority ceiling protocol;
priority inversion.

I. INTRODUCTION
The power-aware real-time scheduling problem has been
well studied, relatively few work address energy-efficient
real-time task synchronization. Most embedded real-time
applications have shared resources in the system and
mutually exclusive access to shared resources. On such a
system, real-time tasks can lead to priority inversion if a
task is blocked by a lower priority task due to non-
preemptive resource sharing. The recent related work is an
extension of Priority Ceiling Protocol (PCP) [7] in
frequency inheritance. Zang and Chanson [9] proposed a
dual-speed (DS) algorithm: One is for the execution of a
task when it is not blocked, and the other is adopted to
execute the task in the critical section when it is blocked.
Jejurikar and Gupta [5] computes two slowdown factor,
which can be classified into static slowdown, computed
offline based on task properties, and dynamic slowdown,
computed using online task execution information. Chen et
al. [2] proposed a DVS method using frequency locking
concept which can be used to render energy-efficient to the
existing real-time task synchronization protocols. The work
which is designed with DVS capability to slowdown or
speedup the blocked or blocking tasks in the critical section.
These methods may receive additional priority inversion,
and thus increase the difficulties of schedulability. Our goal
is to propose a energy-aware task synchronization protocol,
which can minimize the priority inversion and reduce the
energy-consumption of the processor. The basic idea is to
postpone the intention to the locking on resources invoked
by lower-priority tasks, and to construct a blocking-free

interval in which the tasks’ speed can be reduced using
DVS. Additionally, the extended execution due to DVS
does not increase the priority inversion.

II. TASK MODEL
This paper studies periodic real-time tasks that are
independent during the runtime. Let T be the set of input
periodic tasks, and n denotes the number of tasks. Each task
i is an infinite sequence of task instances, referred to as
jobs and indexed in order of decreasing priorities. A three-
tuple i ={Ti, Di, Ci} represents each task, where Ti is the
period of the task, Di is the relative deadline with Di = Ti,
and Ci denotes the worst-case execution time (WCET). The
length of Ti is unique in order to have each task a unique
priority index in the rate-monotonic (RM) scheduling. The
jth invocation of task i is denoted as Ji,j whose actual start
and finish times are denoted as S(Ji,j) and F(Ji,j),
respectively. Notation si,j denotes the available static slack
time for job Ji,j. Job Ji,j could be completed early at time
EC(i, j) during its WCET.
All tasks are scheduled on a single processor which
supports two modes: dormant mode and active mode. When
the processor is switched to the dormant mode, the power-
consumption of the processor is assumed Sdorm=0 by scaling
the static power consumption [1], while the system clock
and chipset retain necessary functions to support motoring
and waking up processor at right time. To execute jobs, the
processor has to be in the active mode with speed Sactive.
The time and power overhead required to switch the
processor to the dormant mode can be neglected by treating
them as a part of the overhead to turn on the processor. Let
Esw and tsw denote the energy and time overhead,
respectively, for switching from dormant mode to active
mode. When the processor is idle in the active mode, the
processor executes NOP instruction at processor speed Sidle
for low-power consumption. Additionally, when the idle

interval is longer than break-even time
ாೞೢ

ሺௌሻ
, turning it to

the dormant mode is worthwhile. The DVS model is similar
to those in lpWDA [6] and can be abridged here.
We assume that semaphores are used for task
synchronization. All tasks are assumed to be preemptive,
while the access to the shared resources must be serialized.
Therefore, task can be blocked by lower priority tasks.
When a task has been granted access to a shared resource, it
is said to be executing in its critical section [8]. The kth
critical section of task i is denoted as zi,k which is properly

7

nested. Each task specifies the access to the shared resource
types and the required WCETs. With the given information
in [4], we can compute the maximum blocking time for a
task. In the different resource synchronization protocol,
such as PCP [7], each job might suffer from a different
amount of blocking time from lower-priority task, due to
access conflict. The goal of this paper is to propose an
energy-aware real-time scheduling with task
synchronization based on PCP, which can minimize the
priority inversion while reducing the energy-consumption
of the processor. We propose a data structure called
weighted directed graph (WDG) which expresses possible
priority inversion online. By traversing WDG, we can not
only postpone the intention of locking on the resources
invoked by lower-priority tasks but also construct a
blocking-free interval to slowdown the tasks speed using
DVS methods.

III. MOTIVATING EXAMPLE
Suppose that we have three jobs J1 , J2 and J3 , and two
shared data structures protected by the binary semaphores
z1 and z2 in the system. In accordance with PCP, the
sequence of events is depicted in Fig. 1(a). A line at a lower
level indicates that the corresponding job is in blocked or
preempted by a higher-priority job while the processor
mode is active. A line raised to a higher level denotes that
the job is executing, and the absence of a line denotes that
the job has not yet been initiated or has completed. A bold
line at low level denotes that the processor has been
switched in dormant mode. Suppose that
 At time t0, J3 is initiated and it then locks semaphore

z1.
 At time t′1, J2 is initiated and preempts J3.
 At time t2, J2 cannot lock z1, and J3 inherits the

priority of job J2 and resumes execution.
 At time t3, J1 preempts J3 in the critical section of z1

and executes its noncritical section code.

 At time t4, J1 attempts to enter its critical section z1
and is blocked by J3 due to priority ceiling, and J3
inherits the priority of job J1.

 At time t5, J3 exits its critical section z1 and returns to
its original priority. J1 is awakened and locks z1.

The priority inversions are [t2, t3] and [t4, t5].

This research work is motivated by the significant priority
inversion and power consumption due to unused slack time
and context switches. The objective is to minimize the
priority inversion while reducing energy-consumption.
When the available static slack time (unused time in the
WCET schedule) or dynamic slack (occurred in the early-
completed task) is larger than break-even time, the lower-
priority task intent to lock a semaphore can be postponed
until the start time of a higher-priority task. A practical
approach is to postpone the task execution by switching
processor to dormant mode. During the sleeping time,
system still has awareness of the arrival of other jobs, and
awakes processor at proper time. The example in Fig.1(b)
postpones the request of lower-priority task intent to a lock
semaphore. At time t1, J3 has available slack in interval [t9,
t10] with length longer than break-even time. When a
system is conscious that J3 has intent to lock z1, it computes
the upcoming start time of higher priority tasks that might
be blocked by J3 according to PCP. In the example, J1 and
J2 could be blocked by J3 due to z1, and the lengths of
interval [t1, t1'] are less than the available slack. Therefore,
processor switches to dormant mode at time t1 until the start
time of J2. At time t1', processor becomes active and J2
preempts J3 such that J3 is still unable to lock z1, and thus J2
could lock z2 at time t2. However, J1 could be blocked when
it intends to lock z1 if J2 successfully lock z2 at t2. To
further reduce priority inversion, job J2’s intent to lock z2
should be postponed after t3. Therefore, comparing to the
result of Fig. 1(a), the idea eliminates all priority inversions
in intervals [t3, t7].

Fig.1. The task synchronization of (a) primitive PCP and (b) latency locking method

8

IV. LATENCY LOCKING PCP
In this research work, PCP is extended with the concept of
latency locking, referred to as LL-PCP. The idea is to do
pre-analysis of possible priority inversion and available
slack time in the schedule. The objective is to derive the
best timing and duration for switching processor to dormant
mode, and thus minimize priority inversion. To understand
and control the sequence of intent to lock resources, tasks
are organized as a WDG reduced from the resource
allocation bipartite graph in [4]. Let G=(U, V, E) denote a
bipartite graph whose partition of vertices has two subsets
U and V. E denotes the set of edges of G, and U denote a
task set T. Let WDG(T, A) denote a weighted directed
graph whose vertices in T U are arranged according to
their task indices. For each edge eu,vE, uU and zvV,
the set of arcs A in WDG are generated as follows

Step1. For any pair of vertices x,yU and x>y, a solid arc
a(x, y) A is directed from x to y if there exists two or
more edges ex,v and ey,v in G where zvV.

Step2. For any pair of vertices x,wU and x>w, a dotted
arc a(x, w)A is directed from x to w if there exists a
vertex yU, w>y, and x and y satisfy Step1.

Step3. In WDG, for any pair of vertices with multiple arcs,
eliminate the dotted arcs having the same blocking time as
that of one of their solid arcs.

Fig.(2) illustrates the graph reduction from bipartite to
WDG. In the bipartite graph, each indirect edge is labeled
with the time required to access the resources. Different
from the bipartite graph, WDG has a vertex for each task
but resources. A task L directly blocks a higher-priority
task H is represented by an solid arc a(L, H) from task
vertex L to H, while an indirect block is represented by an
dotted arc. In Fig. 2(a), the bipartite graph is derived from
Fig.1(a) and can be reduced to the WDG in Fig.2(b). The
maximum priority inversion of J2 is an indirect blocking
incurred by J3. We may label each arc by a 3-tuple, the first
element of each 3-tuple give the actual starting time of
higher-priority tasks and defined as S(H), while the second
element gives the locking time of L on semaphore z and
denoted as L(L, z). The last element specifies the duration
of the maximum priority inversion and denoted as I(L, H).
The first two elements are updated during runtime while
the third element is derived directly from the arcs in WDG.

The example of the 3-tuple labels is illustrated in Figure
2(b), we have the following definitions.

Fig.3 An example using DVS scheduling

Definition 1. In order to prevent job JL from blocking job
JH, the expected sleep interval (ESI) for JL is defined as

ESIL, H=[L(JL, z), S(JH))–⋃ ఒܥܰ
ሾ,ுሿ

∀ఛഊ∈Ա,ఒழ . (1)

Algorithm LL-PCP
Input: a set of task T, a set of resources R

(Offline part)

1. Reduce bipartite graph to WDG(T , A);
2. Compute the value of I(L, H) with respect to each arc a(L,

H) in WDG;

(Online part)

On arrival of a job Ji
3. Identify a set of tasks TH containing higher priority task H

than that of Ji;
4. Compute the value of REW(i, H) for each arc a(i, H) in

WDG and HTH;
5. Construct a set Ai'of outgoing arcs of i, Ai'={ a(i, H)| αi,H

౩౭
ሺୗౚౢሻ

}

6. Compute the static available slack sH for each job in TH;
7. Compare each sH to the corresponding α value of the arcs in

Ai' ;
8. Construct an arc set Ai'' Ai' where Ai'' ={a(i, x)| sH

≥αx,i , a(i, x) Ai' and xTH };
9. Search for an arc a(i, x) in Ai'' with the maximum value of

REW(i, x) where xTH;
On beginning of one of the intervals in ESIL,x
11. Switching the processor to Sdorm until the end of the interval;
On turning the processor to the active mode at time t
12. Schedule the highest priority job in the ready queue; On

early-completion of a job at time t;
13. Compute dynamic slack time due to early completion;
On completing or beginning a job Ji at time t
14. IF completes early THEN

obtain dynamic slack si
d from F(Ji)–EC(Ji);

15. Set BFI=[S(Jx), F(Jx)] according to the recently carried out
ESIL,x;
16. Slowdown the speed of tasks whose deadlines are earlier

than F(Jx) using lpWDA[6];

9

where ܰܥఒ
ሾ,ுሿ denotes the set of noncritical-section

intervals of job J in interval [L(JL, z), S(JH)). The length of
ESIL, H denotes as

αL, H=S(JH)–L(JL, z).–∑ ቚܰܥఒ
ሾ,ுሿቚ	∀τ_λ∈୍,λழ (2)

Definition 2. defines the expected reduction of priority
inversion (RPI) due to the processor sleeping in the ESIL, H.
The value of RPI is derived from

βL, H= I(L, H)–αL, H . (3)

According to equations (1), (2) and (3), we define a reward
function for each arc in WDG.

Definition 3. A reward function for each arc in WDG is

REW(L, H)=	
ఉಽ,ಹ
ఈಽ,ಹ

. (4)

The reward for an arc is referred to the reduction of priority
inversion time if the processor is switched to sleep during
the interval ESIL, H. Whenever a new job Ji arrives, the
value of REW(L, i) with respect to each arc is refreshed.
The larger the value of REW, the longer the priority
inversion will be avoided. For example, in Fig.2(b), the
values of α3,1 and α3,2 are set respectively x= t3–t1–(t2–t1)
and y= t1–t1, and the values of β3,1 and β3,2 are respectively
4–x and 4–y. In accordance with equation 4, the values of

REW(3,1) and REW(3,2) are 	ସି௫
௫

 and 	ସି௬
௬

 , and obviously

REW(3,1) < REW(3,2). Assuming that available slack for 3
is larger than the values of x and y, the proposed algorithm
switchs the processor to sleep in the duration of [t1, t1], and
traverses from vertex J3 to J2. In the vertex J2, we can
traverse from J2 to J1 by switching the processor to sleep
mode in interval [t2, t3].

Definition 4. (Blocking-free interval, BFI)

A time interval BFIt, l is said to be blocking free in the real-
time task synchronization if the interval [t, t+l] does not
have any priority inversion.

Lemma 1. When the time at which JL has intent to lock z is
later than the S(JH), they do not give rise to priority
inversion during interval [S(JH), F(JH)].

Proof sketch: In accordance with WDG, JH has higher
priority than JL, as soon as JL begins after S(JH), JL cannot
lock z until JH completes. Therefore, JH is not preempted by
JL until the completion time of JH.

Obviously, jobs JH and JL do not give rise to the priority
inversion in the interval [F(JH), DH] when JH completes
before F(JH). Therefore, when the processor sleeps in
interval ESIL,H, the value of BFI can be derived from

BFIt, l=[S(JH), DH] (5)

for all jobs JH are successors of JL in WDG.

The purpose of BFI is to identify the jobs for saving more
energy using DVS. The jobs whose deadlines are in the BFI
interval can compute their available slack time to decrease

their speed and satisfy their timing constraints. The slack
computation such as lpWDA [6] can be applied without
modification to our method. An example is presented in
Fig.3. By updating the information of arcs in WDG during
runtime, we can traverse the WDG by following the current
job and make decisions on switching the processor to active
or dormant mode.

V. CONCLUSIONS
This work-in-progress continuously improves energy-
efficiency of real-time task synchronization with speed
switching overhead consideration. By using DVS and
leakage-aware techniques, we decrease not only the priority
inversion but also energy consumption in the real-time
systems. The objective is to minimize the priority inversion
and reduce both dynamic and leakage energy, provided that
the schedulability of tasks is guaranteed. By traversing the
vertex of WDG, the scheduling decisions can be done
efficiently during the runtime. Another characteristic is that,
in the proposed concept, DVS does not worsen the situation
of inevitable priority inversion.

For further study, we shall explore an evaluation function
that provides suggestions on how to use DVS or leakage-
aware technique during runtime. Future research and
experiments in these areas may benefit several mobile
system designs.

VI. REFERENCES
[1] Butts, J. Adam, and Sohi, G. S. 2000. A Static Power Model for

Architects. In Proceedings. of the 33rd Annual International
Symposium on Microarchitecture (In Monterey, California from Dec.
10 - 13). MICRO-33, 191-201.

[2] Chen, J.-J., and Kuo, T.-W. 2006. Procrastination for leakage-aware
rate-monotonic scheduling on a dynamic voltage scaling processor.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (Ottawa, June 14-16, 2006).
LCTES 06. ACM, 153–162.

[3] Irani, S., Shukla, S., and Gupta, R. 2003. Algorithms for power
savings. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (On the Inner Harbour Baltimore,
MD, USA Jan. 12-14, 2003). DA 03. ACM, New York, NY, 37–46.

[4] Jane W. S. Liu. Real-time systems. Prentice Hall PTR Upper Saddle
River, NJ, USA, (2000), ISBN:0130996513.

[5] Jejurikar, R., and Gupta, R. K. 2005. Dynamic slack reclamation
with procrastination scheduling in real-time embedded systems. In
Proceedings of the 42nd Design Automation Conference (San Diego,
CA, USA, June 13-17). DAC 05. ACM, New York, NY, 111–116.

[6] Kim, W., Kim,J., and Min, S. L. 2003. Dynamic voltage scaling
algorithm for fixed-priority real-time systems using work-demand
analysis. In Proceedings of the 2003 International Symposium on
Low Power Electronics and Design (ISPLED’03), ACM Press, New
York, NY, 2003, pp. 396–401.

[7] Sha, L., Rajkumar, R., and Lehoczky,J. P. 1990. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE Trans.
on Computers, 39 (Sept. 1990), no.9, 1175-1185.

[8] Silberschatz, A. P., Galvin, B., and G. Gagne. 2011. Operating
System Concepts. John Willey and Sons, Inc., (2011).

[9] Zhang, F., and Chanson, S. T. 2002. Processor voltage scheduling
for real-time tasks with non-preemptible sections. In 23rd
Proceedings IEEE Real-Time Systems Symp., (Austin, TX, Dec.
2002). RTSS 02. IEEE, 235–245.

10

Dynamic Scheduling Algorithm for Parallel Real-time Graph Tasks

Manar Qamhieh, Serge Midonnet
Université Paris-Est, France

{manar.qamhieh,serge.midonnet}@univ-paris-est.fr

Laurent George
ECE-Paris, France

lgeorge@ece.fr

Abstract—In this paper, we propose a dynamic global
scheduling algorithm for a previously-presented specific
model of real-time tasks called “Parallel Graphs” [1], based
on the Least Laxity First priority assignment policy “LLF”,
we apply LLF policy on each subtask in the graphs individ-
ually, taking in consideration their precedence constraints.
This model of tasks is a combination of graphs and par-
allelism, in which each subtask in the graph can execute
sequentially or parallel according to its number of processors
defined by the model. So we study parallelism possibilities
in order to find the best structure of the tasks according to
the practical specifications of the system.

I. INTRODUCTION

Physical constraints such as chip size and continu-
ous heating forced processors’ manufacturers to produce
multi-processor systems, and as they are constantly grow-
ing, software parallelism has been widely studied and
applied in practice.

However, parallelism in real-time embedded systems is
still a rising challenge with many open questions to be
studied. There are parallel task models exist in practice,
such as the fork-join model used in OpenMP [2] and
has been studied in [3], and a more general model of
parallel tasks has been proposed recently in [4] which
overcomes the restrictions of the fork-join model. Those
models consider the tasks as a sequence of parallel and
sequential tasks.

The graph model of real-time tasks is a general rep-
resentation of the models described previously. In our
previous work [1], we proposed a new model of real-time
tasks called “Parallel Graphs”, which is a combination
of graphs and parallel tasks. By this we added an inner
parallelism level to the graph as will be described in II. In
this paper, we will extend our previous work by proposing
parallelizing options a dynamic scheduling algorithm for
the parallel graphs.

In this paper, firstly we will describe our task model
in section II. In section III we will discuss the various
parallelizing possibilities for parallel graphs. Section IV
will present our dynamic scheduling algorithm. Finally in
section V, we will finish the paper by concluding and
giving perspectives.

II. TASK MODEL

In [1] we presented previously a new model of real-time
tasks called “parallel graphs”. In this model, Each parallel
real-time task is represented by a directed acyclic graph
(DAG), which is a collection of subtasks and directed
edges representing the execution flow of the subtasks and
the precedence constraints between them.

Each parallel graph task τi consists of a set of qi
subtasks and it is denoted as:
τi = ({τi,1, τi,2, ..., τi,qi

}, Di, Pi), where Di is the dead-
line of the graph and Pi is its period. Each subtask τi,k is
represented as the following:
τi,k = {ci,k,mi,k}, where ci,k is the total worst execution
time of the subtask, and mi,k is the maximum degree of
parallelism of τi,k, which means that τi,k can be scheduled
on mi,k parallel processors at the most.

Figure 1 shows an example of parallel graph task.
Precedence constraint means that each subtask can start

its execution when all of its predecessors have finished
theirs. If there is an edge from subtask τi,u to τi,v , then
we can say that τi,u is a predecessor of τi,v , and τi,v has
to wait for τi,u to finish its execution before it can start
its own. Each subtask in the graph may have multiple
predecessors, and multiple successors as well, but each
graph should have a single source and a single sink vertex.
!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

Figure 1. Example of the parallel graph model.

In this work, we study the global scheduling of n syn-
chronous periodic parallel real-time graphs with implicit
deadlines on m identical processor system. A task set is
denoted as Γ = {τ1, τ2, ..., τn}, where each graph has
period equals to its deadline. The schedulability is studied
on the hyper period of each taskset.

A. Notation

Definition 1: Critical path [1] of a graph τi is the
longest path in the graph through its subtasks when
respecting their dependencies.

CPi =
∑

j∈critical subtasks

ci,j

The critical path of the graph τ1 from Figure 1 is
(τ1,1, τ1,2, τ1,6) and CP1 = 8.

Definition 2: The worst case execution time of a graph
Ci is the total execution time of all the subtasks in the

11

graph τi when executed sequentially.

Ci =

qi∑
j=1

ci,j

Definition 3: Laxity of a parallel graph Li is the differ-
ence between its deadline and its critical path execution
time.

Li = Di − CPi

III. DIFFERENT PARALLELIZING ALGORITHMS

In our previous paper [1], we described a parallelizing
algorithm which finds the best structure of the parallel
graph according to the response time of the graph, by max-
imizing the number of parallelized subtasks in the graph.
This algorithm does not consider the number of processors
in the system, so there might be better structures of the
parallel graphs when considering the actual specifications
of the system like the number of processors, the scheduling
policy, etc.

In this section we will discuss 2 possible parallelizing
algorithms, a maximizing and minimizing algorithms ac-
cording to the level of parallelism.

A. Maximizing parallelism

The parallelizing algorithm proposed in [1] is an iter-
ative algorithm whose aim is to parallelize the maximum
number of necessary subtasks in the graph up to their max-
imum level of parallelism, on the basis of the following
algorithm:
• Find the critical path of the graph using the depth-first

search algorithm.
• Parallelize all the subtasks in the critical path up to

their maximum level of parallelism.
• Repeat the 2 previous steps until there is a critical

path with no parallelizable critical subtasks.

B. Minimizing parallelism

Another approach can be considered for this type of
graph which is the reverse of the one in III-A. We can find
the best structure of the graph according to the number of
processors in the system, by trying to stretch the graph
as long as possible in order to execute on a minimum
number of processors without missing their deadline, and
by filling the laxity of the graph with a maximum number
of subtasks.

According to the following equation, a parallel graph τi
can execute sequentially on 1 processor if:

Di

Ci
≥ 1 (1)

Where Di is the deadline of the graph task, and Ci is
defined in II-A.

If this test fails, then we have to reduce the sequential
execution time of the graph by parallelizing some of its
subtasks using the following algorithm:
• Apply equation 1 on the parallel graph τi.
• If the test succeeds, then τi can execute on a mini-

mum number of processors without missing its dead-
line.

• If the test fails, we calculate the critical path of τi,
parallelize the critical subtasks in order to reduce its
sequential worst case execution time Ci.

• Repeat the first step on the newly parallelized graph
τi until the test succeeds.

C. Other possibilities

Choosing the best structure of the parallel graph is not
an easy process. It is controlled by a lot of restrictions and
limitations of the system, for example, using the maximiz-
ing parallelism algorithm will reduce the response time of
the graph if executed on a system with a large number of
processors, and theoretically, it will increase the number of
preemptions and job migrations while scheduling (depends
on the used priority assignment algorithms).

The minimizing algorithm will increase the response
time of the graph while reducing the number of processors
needed, which will decrease the energy consumption as a
result.

There is a large number of parallelizing structures for
the parallel graph task, which affects the schedulability
of the tasks, the migration and preemption costs. In the
future we aim to study those various possibilities and their
effects by comparing them using a real-time simulation
tool, and taking into account the different characteristics
of embedded systems, such as the number of processors,
energy consumption, etc.

IV. SCHEDULING PARALLEL GRAPHS

In this section, we propose a global preemptive schedul-
ing algorithm on an implicit-deadline parallel graph task
set Γi of n graphs, on the hyper period of the taskset:

hyper(Γi) = LCM(τj),∀j : 1 ≤ j ≤ qi1

Since the active subtasks of each graph share the
same period and deadline, we decided to use a dynamic
priority assignment policy based on the least laxity first
technique (LLF), which gives higher priority to tasks with
lower laxity (slack time). Scheduling algorithms based on
this priority assignment are optimal on mono-processor
systems but not on multiprocessor systems, unless laxity
priorities are verified all the time during the scheduling
process to make sure delayed tasks gain higher priorities
in time.

A. Scheduling algorithm

After applying a parallelizing algorithm on each graph
τi in Γi, the generated graph task contains both sequential
and parallel subtasks. A sequential subtask needs one
processor to execute on, while parallel subtasks execute on
multiple processors at the same time. Here we should say
that we are interested in input-data parallelism, in which
the same code is repeated on multiple processors while
only the input data are changed.

As described in Section II, each graph task τi consists
of qi real-time subtask each has a WCET of ci,j , and
due to the precedence constraint on the subtasks of the

1LCM is the Least Common Multiple

12

same graph, a subtask τi,j cannot be activated unless all
of its predecessor subtasks finish their execution. Because
of that not all of the subtasks in the graph are activated
at the same time or at the very instant of activating the
graph.

There are 2 types of laxity in τi, a general laxity of the
graph as whole, denoted as Li and described in II-A, and
a subtask laxity for each subtask τi,j ∈ τi.

As explained in our previous work in [1], when a
parallelizing algorithm is applied on a graph task τi, we
can also calculate the laxity of each subtask in τi, by
calculating the earliest and the latest finishing time of the
execution time of each of them, the difference between
those 2 time values is the laxity of the subtask. A subtask
with laxity equaling to 0 is a critical subtask in the graph.

In order to organize the scheduling process of the graph
set, we will consider 3 types of subtasks: active jobs,
executing jobs and completed jobs. The active list contains
the jobs that are activated either by the activation of the
original graph (jobs of the starting subtask in the graph),
or when the predecessors of a subtask complete their
execution. When a job starts its execution, it will be moved
to the executing list until its execution is over when it
will be moved to the completed list. If an executing job is
interrupted by a higher priority job, it will be moved back
to the active list.

For each instant in time t where

0 ≤ t ≤ hyper(Γi),

we calculate the dynamic priority Pri,j(t) for each
active job of subtask τi,j of each graph task in Γi, where:

Pri,j(t) = Li + Li,j − (t−Ai,j) (2)

where Ai,j is the activation time of τi,j , subtasks with
lower Pr(t) values have higher priorities.

The scheduling algorithm:
• At t = 0:

Each graph task τi ∈ Γ is activated (since we consider
synchronous activation), which means all the starting
subtasks τi,1 are activated as well and added to the
active list. Then we calculate Pr(0) for all of the
subtasks in the active list using Equation 2.
According to the number of processors in the system,
we start executing the subtasks with the highest
priority which are moved to the executing list at the
same time.
If an executing subtask τi,j is a parallel subtask
according to the parallelizing algorithm, then it will
need mi,j available processors in order to enable all
of its parallel parts to execute concurrently.

• ∀t where 0 < t ≤ hyper(Γi):
If an executing job finishes its execution at this instant
of time, it will be moved to the completed list. And if
all the predecessors of a subtask are in the completed
list, then its job will be activated at this instant of time
and added to the active list.

Since we use dynamic priority assignment, at each in-
stant of time we re-calculate Pri,j(t) for all subtasks
τi,j in the active list. By this, the priority of delayed
active subtasks will be increased in time since their
laxity decreased.
According to the newly assigned priorities of the
active subtasks, we fill the processors available in the
system, and if there are active subtasks with higher
priority than the ones already executing, they are
allowed to interrupt their execution.

• The scheduling algorithm of the graph set Γ will fail
if -at any instance of time t- a job in the active list
reaches a Pr(t) = 0 without having an available
processor to execute on, since at t + 1 this job will
have a negative laxity and miss its deadline.

In the case of equal priorities between 2 active jobs,
we choose the executing one randomly, but if an active
job and an executing job have the same priority, we
give the priority to the executing job to continue its
execution without allowing the active one to interrupt the
execution of the other. In that way we reduce the number
of unnecessary cost of preemptions and migration.

Using this dynamic global scheduling algorithm, we
scheduled each subtask in the graphs individually, by
assigning priorities as shown in the previous algorithm.
Precedence constraints between the subtasks due to the
structure of the graph were visible only in the activation
process. However, this scheduling algorithm was different
from the previous scheduling techniques applied on the
real-time tasks of the graph model seen in the literature.
For example in [4], the authors propose to use a decom-
position algorithm in order to assign local deadlines to the
subtasks in the task, and to schedule each segment of tasks
as independent tasks on multi-processor systems.

B. Scheduling example

In this section, we will apply the above-mentioned
scheduling algorithm described in IV-A on a graph task
set consisting of 2 graphs on a 2-processor system.

graph task set Γ = {τ1, τ2}
τ1 = ({τ1,1(1, 1), τ1,2(3, 1), τ1,3(2, 2), τ1,4(1, 1)}, 10, 10)
τ1 = ({τ2,1(1, 1), τ2,2(1, 1), τ2,3(1, 1), τ2,4(1, 1)}, 5, 5)

The graphs in the task set have implicit deadlines, and
all subtasks of the same graph share the same period
and deadline. The scheduling algorithm is studied on the
hyper period of the task set:

hyper(Γ) = LCM(10, 5) = 10

Figure 2 shows the graphs of the task set with the
precedence constraints.

Graph τ1 has a parallel subtask τ1,3 which needs 2
processors available at the same time in order fo it to
execute, or its execution will be delayed otherwise. All
the other subtasks in this example are sequential.

By applying the critical path calculations described
previously in [1], we find that the laxity of the graph τ1
equals to 5, and 2 for τ2, and all the subtasks of both

13

Table I
SCHEDULING TABLE OF 2 GRAPH TASKS

Active subtasks in order of priority
Time Highest Lowest
t=0 Pr2,1 = 2 Pr1,1 = 5
t=1 Pr2,2 = 2 Pr2,3 = 2 Pr1,2 = 5 Pr1,3 = 6
t=2 Pr2,4 = 2 Pr1,2 = 4 Pr1,3 = 5
t=3 Pr1,2 = 4 Pr1,3 = 4
t=4 Pr1,3 = 3 Pr1,2 = 4
t=5 Pr2,1 = 2 Pr1,2 = 3 Pr1,3 = 3
t=6 Pr2,2 = 2 Pr2,3 = 2 Pr1,3 = 2
t=7 Pr1,3 = 1 Pr2,4 = 2
t=8 Pr2,4 = 1 Pr1,4 = 1
t=9
t=10

!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

!1,1
(1,1)

!1,2
(3,1)

!1,3
(2,2)

!1,4
(1,1)

D1 = T1 =10
C1 = 9

CP1 = 5

!2,1
(1,1)

!2,2
(1,1)

!2,4
(1,1)

!2,3
(1,1)

D2 = T2 =5
C2 = 4

CP2 = 3

Figure 2. Graph taskset example.

graphs don’t have local laxities (they are critical subtasks),
except for subtask τ1,3 which has a laxity L1,3 = 1.

At t = 0, the first subtasks of the each graph are
activated (τ1,1& τ2,1), according to the mentioned-above
equation 2, we can calculate the priority of the subtasks
as the following:

Pr1,1 = 5 + 0− (0− 0) = 5

Pr2,1 = 2 + 0− (0− 0) = 2

According to the results, τ2,1 has higher priority than
τ1,1, but since we have 2 processors available, both
subtasks will be scheduled. Those calculations will be
repeated at each instant of time in the hyper period of
the task set, unless a deadline miss occurs before the
end of the period. Table IV-B shows the priorities of the
active subtasks of both graphs over the hyper period of
the task set, while Figure 3 shows the final scheduling
of the subtasks on the 2 processors of the system. We
can notice that our proposed global preemptive scheduling
algorithm based on LLF has succeeded in scheduling the
taskset without any subtask misses its deadline.

V. PERSPECTIVE AND CONCLUSION

In this paper, we have introduced a dynamic global
scheduling algorithm on multi-processor systems, for a

!

!1,1
(1,1)

!1,2
(6,2)

!1,3
(2,2)

!1,4
(3,3)

!1,5
(2,1)

!1,6
(1,1)

D1 =T1

!1,1
(1,1)

!1,2
(3,1)

!1,3
(2,2)

!1,4
(1,1)

D1 = T1 =10
C1 = 9

CP1 = 5

!2,1
(1,1)

!2,2
(1,1)

!2,4
(1,1)

!2,3
(1,1)

D2 = T2 =5
C2 = 4

CP2 = 3

!1,1 !1,2

!1,3 !1,3

!1,4

!2,1

!2,2

!2,3 !2,4

 1 2 3 4 5 6 7 8 9 10

!1,2

Figure 3. Graph taskset scheduled using LLF.

specific real-time task set of parallel graph models, based
on the Least Laxity First “LLF” job priority assignment
in order to schedule each subtask in the graphs according
to their laxity while considering the global deadline and
period of the original graph with no need to assign a local
deadline for them, we have also shown by an example the
schedulability of this algorithm on a task set of the graph
model.

The graph model of tasks has been studied recently
in the literature, but adding the parallelism constraint
to this model has raised a schedulability challenge and
made it more complicated. That is why we presented
2 parallelizing algorithms in this paper, both algorithms
depending on the constraints of the embedded systems
which we aim to study in more details in the future.

In order to provide valid results to show the perfor-
mance of our proposed scheduling algorithm, we started
implementing it on a simulation tool called “YARTISS”
[5], developed by a real-time team in the research lab-
oratory of Universit Paris-Est. By using this simulator
we will be able to compare the performance of our own
scheduling algorithm with other techniques and algorithms
used in the literature, which will allow us to enhance its
performance with respect to the practical issues of real
embedded systems such as a limited number of processors,
optimizing the schedulability in order to reduce the energy
consumption by reducing the number of migrations and
preemptions.

In parallel, we would like to study real-time scheduling
anomalies and provide real-time feasibility tests for the
proposed algorithm, in order to support the simulation
results.

Finally, we hope to apply our model of tasks on real
embedded systems, and propose adjustable techniques in
order to enhance their performance such as schedulability
and energy consumption.

REFERENCES

[1] M. Qamhieh, S. Midonnet, and L. George, “A Parallelizing
Algorithm for Real-Time Tasks of Directed Acyclic Graphs
Model,” in RTAS Work-In-Progress Session, 2012.

[2] “Openmp.” [Online]. Available: http://www.openmp.org

[3] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar, “Schedul-
ing Parallel Real-Time Tasks on Multi-core Processors,” in
Proceedings of the 31st IEEE Real-Time Systems Sympo-
sium, 2010.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
Real-time Scheduling for Generalized Parallel Task Models,”
in The 32nd IEEE Real-Time Systems Symposium, 2011.

[5] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and
M. Qamhieh, “YARTISS: A Tool to Visualize, Test, Com-
pare and Evaluate Real-time Scheduling Algorithms,” in
WATERS, 2012.

14

A New Technique for Analyzing Soft Real-Time Self-Suspending Task Systems ∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We consider the problem of globally scheduling soft real-
time sporadic self-suspending task systems on multiproces-
sors. Existing analysis methods are pessimistic, yielding
O(n) utilization loss where n is the number of tasks in the
system. Unless the number of tasks is small and suspen-
sion delays are short, such methods entail significant capac-
ity loss. We identify the fundamental sources that cause pes-
simism in existing methods, and propose a new analysis tech-
nique that entails only O(m) suspension-related utilization
loss, where m is the number of processors.

1 Introduction
In many real-time systems, suspension delays may occur

when tasks interact with external devices such as I/O devices.
Unfortunately, schedulability in real-time systems is nega-
tively impacted by such delays if deadline misses cannot be
tolerated [4]. In this paper, we consider whether, on multipro-
cessor platforms, such negative impacts can be ameliorated if
task deadlines are soft. Our focus on multiprocessors is moti-
vated by the advent of multicore platforms. There is currently
great interest in providing operating-system support to enable
real-time workloads to be hosted on such platforms. Many
such workloads can be expected to include self-suspending
tasks. Moreover, in many settings, such workloads can be
expected to have soft timing constraints. The soft timing con-
straint considered in this paper pertains to implicit-deadline
sporadic task systems and requires that deadline tardiness be
bounded.

Two analysis approaches can be applied to analyze soft
real-time (SRT) sporadic self-suspending (SSS) task systems
on multiprocessors. Perhaps the most commonly used is the
suspension-oblivious approach [3], which simply integrates
suspensions into per-task worst-case-execution-time require-
ments. However, this approach clearly yields O(n) utiliza-
tion loss where n is the number of self-suspending tasks in
the system. The alternative is to explicitly consider suspen-
sions in the task model and the corresponding schedulability
analysis; this is known as suspension-aware analysis. Al-

∗Work supported by NSF grants CNS 0834270, CNS 0834132, and CNS
1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-
0549; and AFRL grant FA8750-11-1-0033.

though suspension-aware analysis can improve schedulabil-
ity in many cases compared to the suspension-oblivious ap-
proach, existing suspension-aware analysis [2] still entails
significant utilization loss.

To analyze SSS task systems more efficiently, we propose
a new suspension-aware analysis technique that yields O(m)
suspension-related utilization loss, where m is the number of
processors. Our technique is derived by identifying and then
eliminating the fundamental sources that cause pessimism
(i.e., O(n) utilization loss) in previous analysis. Specifically,
we derive a schedulability test under the proposed technique
showing that any given SSS task system can be supported un-
der global-earliest-deadline-first (GEDF) with bounded tardi-
ness if Usum +

∑m
j=1 v

j ≤ m holds, where Usum is the total
system utilization and vj is the jth maximum ratio of a task’s
suspension time over its period among tasks in the system.

The rest of this paper is organized as follows. In Sec. 2,
we present the SSS task model. Then, in Sec. 3, we identify
the fundamental sources causing pessimism in prior analy-
sis and present our new analysis technique and a resulting
schedulability test. We conclude in Sec. 4.

2 System Model
We consider the problem of scheduling a set τ =

{τ1, ..., τn} of n independent SSS tasks on m ≥ 1 identical
processors {M1,M2, ...,Mm}. We assume n > m; other-
wise we can simply assign each task to one processor. Each
task is released repeatedly, with each such invocation called
a job. Jobs alternate between computation and suspension
phases. We assume that each job of τl executes for at most
el time units (across all of its execution phases) and suspends
for at most sl time units (across all of its suspension phases).
We place no restrictions on how these phases interleave (a
job can even begin or end with a suspension phase). The jth

job of τl, denoted τl,j , is released at time rl,j and has a dead-
line at time dl,j . Associated with each task τl is a period pl,
which specifies both the minimum time between two consec-
utive job releases of τl and the relative deadline of each such
job, i.e., dl,j = rl,j + pl. The utilization of a task τl is de-
fined as ul = el/pl, and the utilization of the task system τ
as Usum =

∑
τi∈τ ui. An SSS task system τ is said to be an

implicit-deadline system if di = pi holds for each τi.1 In this

1τ is said to be a constrained-deadline system if, for each task τi ∈
τ , di ≤ pi, and an arbitrary-deadline system if, for each τi, the relation

15

15

paper, we consider implicit-deadline SSS task systems.
Successive jobs of the same task are required to execute in

sequence. If a job τi,j completes at time t, then its tardiness is
max(0, t−di,j). A task’s tardiness is the maximum tardiness
of any of its jobs. Note that, when a job of a task misses its
deadline, the release time of the next job of that task is not
altered. We require that ei + si ≤ pi and ui ≤ 1 hold for
any task τi ∈ τ , and that Usum ≤ m holds for τ ; otherwise,
tardiness can grow unboundedly.

Under GEDF, released jobs are prioritized by their abso-
lute deadlines. We assume that ties are broken by task ID
(lower IDs are favored).

3 An O(m) Analysis Technique
In this section, we present our proposed O(m) analysis

technique and a resulting schedulability test for SRT SSS task
systems. We first provide brief summaries of existing anal-
ysis approaches and highlight sources of pessimism in them.
Efforts to overcome such pessimism will drive the design of
the proposed new technique.

There are two existing approaches for dealing with
globally-scheduled SRT multiprocessor SSS task systems:
the suspension-oblivious approach, denoted SC, which con-
verts all suspensions to computation [3], and a suspension-
aware analysis approach presented by Liu and Anderson in
[2], denoted LA.

Overview of the SC approach. The SC approach converts
all suspensions into computation. After transforming all SSS
tasks into ordinary sporadic tasks with only computation,
prior SRT schedulability analysis [1] can be applied, result-
ing a utilization constraint of Usum +

∑n
i=1

si
pi
≤ m.

Overview of the LA approach. The LA test is built around
the following general strategy, first introduced by Devi and
Anderson [1]. First, let τl,j be a job of a task τl in τ , and S
be a GEDF schedule for τ with the following property: the
tardiness of every job τi,k with priority greater than τl,j is at
most x+ ei + si, where x ≥ 0. Then, determine the smallest
x such that the tardiness of τl,j is at most x + el + sl. This
by induction implies a tardiness of at most x+ ei + si for all
jobs of every task τi in τ . The smallest x is determined by
computing an upper and a lower bound on the pending work
at dl,j for tasks in τ that can compete with τl,j after its dead-
line dl,j . Next, we briefly summarize the process of obtain-
ing such upper and lower bounds, and then identify sources
causing pessimism in them.

The upper and lower bounds are obtained by comparing
the allocations to jobs with priority at least that of τl,j in
S and a processor share (PS) schedule, both on m proces-
sors, and quantifying the difference between the two. The
PS schedule is an ideal schedule where each job of each task
in τ completes exactly at its deadline. In the PS schedule,
each task τi executes with a rate equal to ui in any job ex-
ecution window [ri,j , di,j), which ensures that each job τi,j

between di and pi is not constrained (e.g., di > pi is possible).

completes exactly at its deadline. (Note that suspensions are
not considered in the PS schedule.) A valid PS schedule ex-
ists for τ if Usum ≤ m holds.

The upper bound on the pending work at dl,j can be ob-
tained by bounding the pending work at time tn, where tn is
defined to be the end of the latest non-busy interval (i.e., at
least one processor is idle at any instant within this interval).
This is because the amount of pending work (in comparison
to the PS schedule) cannot increase throughout a busy inter-
val (as all processors are busy at any instant within this in-
terval). To bound the pending work at tn, we have to bound
the number of tasks that have enabled tardy jobs at tn.2 For
ordinary task systems with no self-suspensions, the number
of such tasks can be upper bounded by m− 1, for otherwise
tn would be busy. For SSS task systems, however, all n tasks
can have enabled tardy jobs suspending at tn and tn can still
be non-busy. Since such a worst-case scenario may happen
and thus must be considered in the analysis, significant pes-
simism is incurred in the obtained upper bound.

In lower-bounding the pending work at dl,j , we need to
bound the least amount of the pending work that executes
within [dl,j , fl,j), where fl,j is the completion time of our
analyzed job τl,j . For ordinary task systems with no self-
suspensions, such a bound is straightforward to obtain be-
cause within [dl,j , fl,j)

3 a non-busy time instant could exist
if and only if there are fewer than m tasks that have enabled
jobs waiting for execution after dl,j . For SSS task systems,
unfortunately, idle intervals could exist within [dl,j , fl,j) due
to suspensions even if at least m tasks have enabled tardy
jobs. Thus, to lower bound the pending work, we need to
upper bound the idleness that could possibly exist within
[tl,j , fl,j). The worst-case scenario as mentioned above,
where all tasks have multiple tardy jobs suspending simul-
taneously within [tl,j , fl,j), is the main source causing pes-
simism in the obtained lower bound.

The fundamental cause of pessimism in prior analysis.
By the above discussion, we can identify the fundamental
source causing pessimism in prior analysis, which is the fol-
lowing worst-case scenario: all n self-suspending tasks have
tardy jobs that suspend at some time t simultaneously, thus
causing t to be non-busy; this creates idleness that results in
pessimism in the analysis.

Key observation that motivates this research. Inter-
estingly, the suspension-oblivious approach eliminates the
worst-case scenario just discussed, albeit at the expense of
pessimism elsewhere in the analysis. That is, by converting
all n tasks’ suspensions into computation, the worst-case sce-
nario is avoided because then at most m − 1 tasks can have
enabled tardy jobs at any non-busy time instant. However,
converting all n tasks’ suspensions to computation is clearly

2Job τi,v is enabled at t if ri,v ≤ t, τi,v has not completed by t, and its
predecessor job τi,v−1 (if any) has completed by t. Job τi,v is tardy at t if
di,v < t.

3Note that all jobs considered here have deadlines no later than dl,j since
their priorities are at least that of τl,j .

16

16

3

th
.

suspension of τi,j

ri,j-c
Mk

di,jdi,j-c ri,jfi,j-c-1 fi,jdi,j-c-1

after converting suspensions of jobs
of τi into computation in non-busy
intervals on Mk in [ri,j-c, th)

computation of jobs of τi,j suspensions of jobs of τi
turned into computation

jobs of τi get preempted

Figure 1: The transformation method.

5

computation of some
job of τi that originally
happens on Mk’ in [ta, tb)

Mk

ta tb

Mk’

thri,j-c

Mk

ta tb

Mk’

thri,j-c

switch

computation that originally
happens on Mk in [ta, tb)

Figure 2: Switching the computation of τi originally executed on
Mk′ to Mk.

overkill when attempting to avoid the worst-case scenario;
rather, converting at most m tasks’ suspensions to computa-
tion should suffice. This observation motivates the new anal-
ysis technique we propose, which yields a much improved
schedulability test with only O(m) suspension-related uti-
lization loss.

New Analysis Technique. We now sketch the new O(m)
analysis technique. Motivated by the above discussion, the
key idea behind our new technique is the following: At any
non-busy time t, if k processors (1 ≤ k ≤ m) are idle at t
while at least k suspending tasks have enabled tardy jobs that
suspend simultaneously at t, then, by converting suspensions
of k jobs of k such tasks into computation at t, t becomes
busy. Converting the suspensions of all such tasks into com-
putation is clearly unnecessary and pessimistic.

Similar to [2], our analysis draws inspiration from the
seminal work of Devi and Anderson [1], and follows the
same general framework (which has been described earlier).
Due to space constraints, we cannot provide every detail con-
cerning the derivations of the upper and lower bounds. In-
stead, we focus on explaining how the proposed analysis
technique eliminates the worst-case scenario and thus leads
to a schedulability test with only O(m) suspension-related
utilization loss.

As described earlier, we apply the same proof setup to de-
fine our analyzed job τl,j and the GEDF schedule S. The
part of the schedule S that needs to be analyzed is [0, fl,j).
We transform this part of the schedule from right to left (i.e.,
from time fl,j to time 0) to obtain a new schedule S as de-
scribed next. The goal of this transformation is to convert
certain tardy jobs’ suspensions into computation in non-busy
time intervals to eliminate idleness as discussed above. For
any job τi,k, if its suspensions are converted into computation
in a time interval [t1, t2), then τi,k is considered to execute
in [t1, t2). We transform S to S by applying the following

6

computation of
jobs of τi on Mk

Mk

Mk’

thri,j-c

move

computation of jobs
of tasks other than τi

idle

Mk

Mk’

thri,j-c

suspensions of
jobs of τi on Mk

Figure 3: Moving the computation of tasks other than τi from Mk

to some idle processor Mk′ .

transformation method to each processor in turn (ordered by
processor ID). In the following, Mk denotes the current con-
sidered processor (initially M1). For simplicity, we use “S”
to denote the updated schedule after each intermediate trans-
formation step (the final transformed schedule S is obtained
after the whole transformation process completes).

Transformation method. Moving from fl,j to the left in
S on Mk, let th denote the first encountered non-busy time
instant on Mk where at least one task τi has an enabled job
τi,j suspending at th where

di,j < th. (1)

Let j−c (0 ≤ c ≤ j−1) denote the minimum job index of τi
such that all jobs {τi,j−c, τi,j−c+1, ..., τi,j} are tardy, as illus-
trated in Fig. 1. We assume that all the computation and sus-
pensions of jobs of τi occurring within [ri,j−c, th) happen on
Mk. This can be achieved by switching any computation of
τi in some interval [ta, tb) ∈ [ri,j−c, th) originally executed
on some processor Mk′ other than Mk with the computation
(if any) occurring in [ta, tb) on Mk, as illustrated in Fig. 2,
which is valid from an analysis point of view. Then for all
intervals in [ri,j−c, th) on Mk where jobs not belonging to τi
execute while some job of τi suspends, if any of such inter-
vals is non-busy (at least one processor is idle in this interval),
then we also move the computation occurring within this in-
terval on Mk to some processor Mk′ that is idle in the same
interval, as illustrated in Fig. 3. This step guarantees that all
intervals in [ri,j−c, th) on Mk where jobs not belonging to
τi execute are busy on all processors. (Note that after per-
forming the above switching and moving steps, the start and
the completion times of jobs remain unchanged.) Due to the
fact that all jobs of τi enabled in [ri,j−c, th) are tardy, inter-
val [ri,j−c, th) on Mk consists of three types of subintervals:
(i) those in which jobs of τi are executing, (ii) those in which
jobs of τi are suspending (note that jobs of tasks other than
τi may also execute on Mk in such subintervals; if this is the
case, then note that any such subinterval is busy on Mk), and
(iii) those in which jobs of τi are preempted. Thus, within
any non-busy interval on Mk in [ri,j−c, th), jobs of τi must
be suspending (for otherwise this interval would be busy on
Mk). Therefore, within all non-busy time intervals on Mk in
[ri,j−c, tk), we convert the suspensions of all jobs of τi that
are enabled within [ri,j , th) (i.e., {τi,j−c, τj−c+1, ..., τi,j})
into computation, as illustrated in Fig. 1. This transforma-
tion guarantees that Mk is busy within [ri,j−c, tk). Note that
when applying the rule on the next processor Mk+1 (if any),

17

17

τi clearly cannot be chosen again for the same transformation
process (i.e., converting suspensions into computation in idle
intervals) within [ri,j−c, th). Moreover, since all intervals
within [ri,j−c, th) onMk where jobs not belonging to τi exe-
cute are busy on all processors, any later switch or move does
not change the fact that [ri,j−c, th) is busy on Mk in the final
transformed schedule S. Next, further moving from rl,j−c to
the left in S onMk, find the next th, τi,j , and τi,j−c following
the same definitions given above, transform the schedule in
the newly defined interval [ri,j−c, th) on Mk using the same
approach. This process is repeatedly performed on Mk until
th = 0. As mentioned earlier, this process will be applied on
each processor in turn, after which we obtain the transformed
schedule S.
Analysis. By transforming S into S according to the above
rule, we are able to eliminate the worst-case scenario where
at least m tasks have enabled tardy jobs suspending at the
same non-busy instant, as formerly presented by the follow-
ing claim.

Claim 1. At any non-busy time instant t ∈ [0, fl,j) in the
transformed schedule S, at most m − 1 tasks can have en-
abled jobs with deadlines before t.

Proof. For any non-busy time instant ta ∈ [0, fl,j) in S, there
is at least one processor that is idle at t. Let Mk denote such
a processor. Assume more than m − 1 tasks have enabled
jobs at ta with deadlines before ta. If m such jobs execute
at ta, then ta would be busy. Thus, at most m − 1 such jobs
execute and at least one such job is suspending at ta. Since ta
is non-busy onMk, by our transformation method, one of the
tasks that has an enabled job suspending at ta with a deadline
before ta would be chosen at ta such that the suspension of
the enabled job of this task at ta is converted to computation
at ta,4 which makes ta busy on Mk, a contradiction.

Our analysis proceeds by comparing the allocations to
jobs with priority at least that of τl,j in S and the correspond-
ing PS schedule PS after the transformation.5 A crucial step
for our analysis to be valid is to show that such a PS exists.
That is, we need to guarantee that at any time t in PS, the to-
tal utilization of τ is at mostm. The following claim provides
a necessary condition that can provide such a guarantee.

Claim 2. If Usum +
∑m
j=1 v

j ≤ m, then after the transfor-
mation, a PS schedule PS exists.

Proof. Consider any processor Mk. Moving from right to
left in [0, fl,j) on Mk, whenever we first choose a task τi for
the transformation process, we use tardy jobs of this same

4If there are h processors that idle at ta, then at least h such tasks have
enabled jobs suspending at ta, and hence each processor is guaranteed to
have one task available at ta for the transformation

5Note that in PS, any job of any task still completes exactly at its dead-
line. To ensure this, each task τi executes with a rate between ui and
ui + si,j/pi in any job execution window [ri,j , di,j), where si,j ≤ si

is the amount of suspension time of job τi,j that is converted into computa-
tion in S.

task until ri,j−c (which is the earliest job release time among
all tardy jobs of τi used in one transformation step). Clearly
all these jobs have non-overlapping periods since they belong
to the same task. Next, moving further left from ri,j−c in the
schedule on Mk to a new time th (as defined in the trans-
formation method), if we use some task τj other than τi for
the next transformation step on Mk, then the enabled job of
τj at th must satisfy (1). Since this new th occurs before
ri,j−c, the enabled job of τj at th must have a deadline be-
fore ri,j−c. This implies that jobs of τj whose suspensions
are converted into computation have non-overlapping periods
with those jobs of τi used for the transformation with respect
to Mk. By applying the same reasoning to the rest of the
schedule S on Mk, it follows that all jobs whose suspensions
are converted into computation on Mk do not have overlap-
ping periods. This same reasoning can be applied to all other
processors. Since there are m processors and the jobs used
for the transformation on each processor do not have overlap-
ping periods, at any time t in PS, there exist at most m jobs
with overlapping periods whose suspensions are converted
into computation, which can increase total utilization by at
most

∑m
j=1 v

j . This implies that at any time t in PS, the
total utilization of τ is at most Usum +

∑m
j=1 v

j , which is at
most m according to the claim statement.

In order to correctly apply the transformation technique as
described above, the expense we have to pay is the potential
utilization loss of at most

∑m
j=1 v

j due to the conversion of
any m tasks’ suspensions into computation. Thus, any SRT
SSS task system that can accommodate this expense can be
proved to be GEDF-schedulable, which is formerly described
by the following schedulability test.

Theorem 1. Any SRT SSS task system τ is GEDF-
schedulable with bound tardiness onm processors if Usum+∑m
i=1 v

j ≤ m.

4 Summary
In this paper, we presented a new multiprocessor schedu-

lability analysis technique for globally-scheduled SRT SSS
task systems. By identifying and eliminating the sources
causing pessimism in prior analysis, our proposed analysis
technique achieves a much improved schedulability test with
only O(m) suspension-related utilization loss. Given that m
is often small in practice (typically two, four, or eight cores
per chip), this technique is significant and is applicable to real
systems.

References
[1] U. Devi. Soft real-time scheduling on multiprocessors. In Ph.D. Dis-

sertation, UNC Chapel Hill, 2006.
[2] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft

real-time multiprocessor systems. In Proc. of the 30th RTSS, pp. 425-
436, 2009.

[3] J. Liu. Real-time systems. Prentice Hall, 2000.
[4] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling

independent hard real-time tasks with self-suspensions. In Proc. of the
25th RTSS, pp. 47-56, 2004.

18

18

Towards an analysis framework for tasks with
probabilistic execution times and probabilistic

inter-arrival times
Dorin Maxim

INRIA Nancy Grand Est
615 rue du Jardin Botanique

54600 Villers les Nancy
dorin.maxim@inria.fr

Liliana Cucu-Grosjean
INRIA Nancy Grand Est

615 rue du Jardin Botanique
54600 Villers les Nancy

liliana.cucu@inria.fr

Abstract—In this paper we investigate the problem of calculat-
ing the response time distribution for real-time tasks with prob-
abilistic worst-case execution times, probabilistic inter-arrival
times and probabilistic deadlines. We propose a definition for
the probabilistic deadlines and a first discussion on the response
time calculation.

Index Terms—probabilistic real time, probabilistic execution
time, probabilistic inter-arrival times, probabilistic deadlines

I. INTRODUCTION

In embedded real-time systems there is a strong demand
for new functionality that can only be met by using advanced
high performance microprocessors. Building real-time systems
with reliable timing behavior on such platforms represents
a considerable challenge. Deterministic analysis for these
platforms may lead to significant over-provision in the system
architecture, effectively placing an unnecessary low limit on
the amount of new functionality that can be included in a
given system. An alternative approach is to use probabilistic
analysis. Probabilistic analysis techniques rather than attempt-
ing to provide an absolute guarantee of meeting the deadlines,
provide the probability of meeting the deadlines.

In this paper we investigate the problem of calculating the
response time distribution for real-time tasks with probabilistic
worst-case execution times, probabilistic inter-arrival times
and probabilistic deadlines. The scheduling policy is a pre-
emptive fixed-priority one and it is considered as given. The
tasks are scheduled on one processor.

In this paper we propose a definition for the probabilistic
deadlines and a first discussion on the response time calcula-
tion for a task. As future work we leave the proposition of a
general formulation for n tasks and the associated proof.

II. MODEL AND NOTATIONS

A. Model

In this paper, we consider a task set of n synchronous
tasks {τ1, τ2, . . . , τn}. Each task τi is characterized by three
parameters (Ci, Ti,Di) where Ti is the minimal inter-arrival
time (commonly known as period), Di the relative deadline (to

be defined in Section II-B), and Ci the worst-case execution
time. The parameters are described by random variables1.

A random variable Xi describing a parameter of τi is
assumed to have a known probability function (PF) fXi

(·)
with fXi(x) = P (Xi = x) giving the probability that the
respective parameter of τi is equal to x. The values of Xi are
assumed to belong to the interval [xmin

i , xmax
i].

For instance the worst-case execution time Ci can be written
as follows:

Ci =

(
C0

i = Cmin
i C1

i · · · Cki
i = Cmax

i

fCi(C
min
i) fCi(C

1
i) · · · fCi(C

max
i)

)
, (1)

where
∑ki

j=0 fCi(C
j
i) = 1.

For example for a task τi we might have a worst-case ex-

ecution time Ci =

(
2 3 25

0.5 0.45 0.05

)
; thus fCi

(2) = 0.5,

fCi(3) = 0.45 and fCi(25) = 0.05.
Each task τi generates an infinite number of successive

jobs τi,j , with j = 1, . . . ,∞. All jobs are assumed to be
independent of other jobs of the same task and those of other
tasks, hence the execution time of a job does not depend on,
and is not correlated with, the execution time of any previous
job.

The set of tasks is scheduled according to a preemptive
fixed-priority policy, i.e., all jobs of the same task have the
same priority.

B. Deadline

In this section we provide an answer to the question ”how do
we define the deadline of a task with probabilistic periods?”.

Given a task set with one task, τ , with probabilistic period

described by the random variable T =

(
3 2

0.7 0.3

)
, we

show that its probabilistic deadline should have the same
distribution as the period of the same task.

We analyze the possible scenarios and extract the corre-
sponding probabilities.

1In this paper we will use a calligraphic typeface to denote random
variables.

19

For the first job τ0, released at t = 0, we have two possible
scenarios:

Scenario 1: a new job τ1 will be released at t = 2.
This moment becomes the deadline of τ0. The probability
associated to this scenario is 0.3. This scenario is depicted
in Figure 1a.

Scenario 2: if τ1 does not arrive at t = 2 but it arrives at
t = 3, then this is considered to be the deadline of τ0. The
probability associated to this scenario is 0.7. This scenario is
depicted in Figure 1b.

(a) Scenario 1

(b) Scenario 2

Fig. 1: The two possible release scenarios of τ1

Combining the two scenarios we obtain a distribution of the

deadline of the first job equal to D0 =

(
3 2

0.7 0.3

)
= T ,

which was expected and somewhat obvious.
Let us now analyze what happens in the case of the second

job of τ .
For the second job there are four release scenarios, two

for each scenario of the previous job.
Scenario 1, i.e. τ1 arrived at t = 2, has two possible

continuations: τ2 can arrive either at t = 4 or at t = 5,
i.e. 2, respectively 3 units of time after the release of τ1.
Subtracting the two already passed units of time we obtain

a relative deadline of
(

3 2
0.7 0.3

)
. *

These two possibilities are depicted in Figure 2.
Scenario 2, i.e. τ1 arrived at t = 3, has two possible

continuations: τ2 can arrive either at t = 5 or at t = 6, i.e. 2,
respectively 3 units of after the release of τ1. Subtracting the
three already passed units of time we obtain a relative deadline

of
(

3 2
0.7 0.3

)
. **

These two possibilities are depicted in Figure 3.
From * and ** we conclude that the relative deadline of τ1

is D1 =

(
3 2

0.7 0.3

)
= T .

Continuing this reasoning, we obtain that the relative dead-
lines of all jobs of a task with probabilistic period have the
same probability distribution as the period.

(a) τ2 has a probability of 0.3 to be released at t = 4

(b) τ2 has a probability of 0.7 to be released at t = 5

Fig. 2: Scenario 1 continued with its two sub-scenarios

(a) τ2 has a probability of 0.3 to be released at t = 5

(b) τ2 has a probability of 0.7 to be released at t = 6

Fig. 3: Scenario 2 continued with its two sub-scenarios

III. SOLUTION FOR A SINGLE TASK

A. The case of a single task - the step by step approach

Given a task
τ =

((
2 3

0.8 0.2

)
,

(
3 2

0.7 0.3

))
,

where
(

2 3
0.8 0.2

)
is the distribution of its probabilistic

execution time and
(

3 2
0.7 0.3

)
is the distribution of its

probabilistic period, one has to compute the response time
distributions of its jobs.

We also know about the task that its first job τ1 is released
at t = 0 and that its deadline is implicit, i.e., the release of a
job determines the deadline of the previous job.

1) Response time and deadline miss probabilities: For the
first job τ0, which is released at t = 0, its response time has
a distribution equal to the distribution of the execution time.

In order to obtain the probability of τ0 missing its deadline,
we analyse the two scenarios given by the deadline.

In the first scenario, when τ1 is released at t = 2 we have
two possibilities:

If its execution time is C = 2, then τ0 reaches its deadline.
The probability of this happening is 0.3 × 0.8 = 0.24, i.e.,

20

the probability of the job having an execution time of 2 and
a deadline of 2.

If its execution time is C = 3, then τ0 misses its deadline.
The probability of this happening is 0.3 × 0.2 = 0.06, i.e.,
the probability of the job having an execution time of 3 and
a deadline of 2.

In the second scenario, when the deadline is equal to 3, τ0
reaches its deadline regardless if it has an execution time of
2 or of 3. This two sub-scenarios summed have a probability
of 0.7× 0.8 + 0.7× 0.2 = 0.7.

Combining the two scenarios, we obtain that τ0 has a 0.06
probability of missing its deadline and a 0.94 probability of
finishing before the next release, i.e. reaching its deadline.

For the second job there are the following possible sce-
narios:

Scenario 1: τ1 arrives at t = 2, has a probability of 0.3
of happening. There are two possibilities:

a) τ0 finishes execution at t = 2. This has a 0.8 probability
of happening. In this case there is no backlog and there are
once more two possible outcomes: τ4 arrives at t = 4, in which
case τ1 reaches its deadline if it has an execution time of 2
or it misses its deadline if it has an execution time of 3. The
probability of having an execution time of 3 is 0.2 which gives
a probability of τ1 missing its deadline equal to 0.3 × 0.8 ×
0.3×0.2 = 0.0144, i.e., the multiplication of, respectively, the
probability that τ1 arrives at t = 2, the probability that τ0 has
an execution time of 2, the probability that τ2 arrives at t = 4
and the probability that τ1 has an execution time of 3.

b) τ0 finishes execution at t = 3. There are here multiple
possibilities:

If τ1 has an execution time of 2 (0.8 probability) and τ2
arrives at t = 5 (probability 0.7) then τ1 finishes its execution
before its deadline. The probability of this happening is 0.3×
0.8× 0.2× 0.7 = 0.0294.

If τ1 has an execution time of 2 (0.8 probability) and τ2
arrives at t = 4 (probability 0.3) then τ1 misses its deadline.
The probability of this happening is 0.3 × 0.8 × 0.2 × 0.3 =
0.0144.

If τ1 has an execution time of 3, then it misses its deadline
no mater if τ2 arrives at t = 4 or at t = 5. This has a
probability of happening of 0.06× 0.2 = 0.012

Summing up all the deadline miss probabilities obtained for
Scenario 1, we get a partial probability of 0.0144 + 0.0144 +
0.012 = 0.0408 that τ1 misses its deadline.

Scenario 2: τ1 arrives at t = 3. In this scenario there is
no backlog, which means that everything happens as for the
first release (at t = 0) just that the probabilities are multiplied
by 0.7.

We get that τ1 has a 0.06 × 0.7 = 0.042 probability of
missing its deadline and a 0.7 × 0.94 = 0.658 probability of
reaching it.

Combining the two scenarios we obtain that τ1 has a total
probability of 0.0408+0.042 = 0.0828 of missing its deadline.

2) Discussion: The value obtained for the deadline miss
probability of a job is an upper bound and not and exact value,

since it is the summation of two probabilities, the ones resulted
in the two scenarios.

One could argue towards not summing the two scenarios
since this gives pessimistic results. Another option would be
to do the average of the resulting scenarios. this is not a valid
option though, since it can produce optimistic results. For
example, by doing the average of the two scenarios obtained in
the previous example, we would get a value of 0, 0414 which
is less than the probability computed for the first scenario
(0.0444). One could argue that this second value is the real
and the only value one should take into account.

Keeping the probabilities for each possible scenario sepa-
rated has its own drawbacks. The first and obvious one is the
fact that the number of scenarios could be very big, and not
to mention storing them, it can be very complex to work with
so many values.

Another drawback is, one could argue, that each scenario
in itself can be optimistic. For example, for the second job
(τ1), second scenario, one could argue that the respective
probabilities are exactly the ones obtained for the first job
(τ0), and not multiplied with 0.7 as we did in computing
the probabilities of the scenario. This would mean that its
deadline miss probability in the scenario would be 0.06, which
is greater than 0.042. Fortunately, the upper bound (summation
of all the scenarios) covers the value 0.06, so it is a safe
(pessimistic) bound.

B. The case of a single task - The analytical approach

We recall here the task system that is under analysis. This
task system has only one task characterized by:

τ =

((
2 3

0.8 0.2

)
,

(
3 2

0.7 0.3

))
,

where
(

2 3
0.8 0.2

)
is the distribution of its probabilistic

execution time and
(

3 2
0.7 0.3

)
is the distribution of its

probabilistic period.
We also know about this task that its first release occurs

at t = 0, i.e., r0 = 0. This, in turn, implies that there is no
backlog at the moment of its arrival, which we denote with
B0 = 0, backlog at the arrival of job τ0.

The release distributions of subsequent jobs can be com-
puted using the formula ri = ri−1 ⊗T . We would have r1 =(

3 2
0.7 0.3

)
= r0⊗T and r2 =

(
6 5 4

0.39 0.42 0.09

)
=

r1 ⊗ T .

The response time of the first job is R0 =

(
2 3

0.8 0.2

)
.

Knowing that the deadline of τ0 is D =

(
3 2

0.7 0.3

)
, we

can compute the backlog at the release of the next instance
of τ and also the deadline miss probability of τ0, by using an
operation similar to the convolution, which, instead of doing
addition of the values, does subtraction. The probabilities are
multiplied the same as in a convolution. We call this operation
a ”subtracting convolution”.

21

For example, the backlog at the release of τ2 can be
computed as:

B1 = D 	 R0 =

(
3 2

0.7 0.3

)
	
(

2 3
0.8 0.2

)
=(

1 0 0 −1
0.56 0.24 0.14 0.06

)
.

By gathering all the non-negative values in zero, we obtain

B1 =

(
0 −1

0.94 0.06

)
. This random variable implies that

there is a 94% chance that there will be 0 backlog at the
arrival of τ1 and a 6% chance that 1 more unit of time is
necessary for τ0 to finish its execution.

In the distribution of the backlog, the deadline miss prob-
ability of τ0 is the (summed) probability corresponding to
the negative values of the distribution, in this case 0.06, the
probability corresponding to −1.

By using the backlog and the execution time distributions,
the response time distribution of the next instance of the task
can be computed using the formula
Ri = |Bi| ⊗ C.

The response time of τ0 is, indeed, R0 = |B0| ⊗ C =(
0
0

)
⊗
(

2 3
0.8 0.2

)
=

(
2 3

0.8 0.2

)
.

For τ1 we have that R1 = |B1|⊗C = |
(

0 −1
0.94 0.06

)
|⊗(

2 3
0.8 0.2

)
=

(
2 3 4

0.752 0.236 0.012

)
.

The response time distribution can be compared with the

relative deadline, D =

(
3 2

0.7 0.3

)
, in order to see which

are the combinations that would lead to a deadline miss,
i.e., the situations when the response time is (strictly) larger
than the deadline. Those situations are given by the following
combinations:

• when the response time is 3 and the deadline is 2, which
has a probability of 0.3× 0.236 = 0.0708;

• when the response time is 4 and the deadline is 2, which
has a probability of 0.7× 0.012 = 0.0084;

• and also when the response time is 4 and the deadline is
3, which has a probability of 0.012× 0.3 = 0.0036.

Summing up the above probabilities, we obtain that τ1 has
a probability to miss its deadline equal to 0.0708 + 0.0084 +
0.0036 = 0.0828, which is exactly what we got from the step-
by-step verification in the previous section.

By computing the backlog with the formula
Bi = D 	 Ri−1 we obtain that B2 = D 	 R1 =(

3 2
0.7 0.3

)
	

(
2 3 4

0.752 0.236 0.012

)
=(

1 0 0 −1 −1 −2
0.5264 0.2256 0.1652 0.0708 0.0084 0.0036

)
After gathering all the non-negative values in zero, we

obtain that the backlog at the release of τ2 is B2 =(
0 −1 −2

0.9172 0.0792 0.0036

)
, where the probabilities of the

negative values give the deadline miss probability DMP of
τ1, i.e., DMP1 = 0.0792 + 0.0036 = 0.0828, which is,

once more, exactly the value obtained trough the step-by-step
verification in the previous section.

In conclusion, we have that the backlog at the release of a
job can be computed using the formula

Bi = D 	Ri−1, with B0 =

(
0
1

)
,

and the response time can be computed using the formula

Ri = |Bi| ⊗ C, where |Bi| is the modulo of the backlog,
meaning that each value of the backlog is taken in the positive.

This way we may compute for example that the response
time of τ2 is
R2 = |B2| ⊗ C =(

2 3 4 5
0.73376 0.2468 0.01872 0.00072

)
We can compute also the backlog at the release of τ3, which

is
B3 = D	R2 =

(
0 −1 −2 −3

0.90652 0.087144 0.00612 0.000216

)
,

which means that τ2 has a probability of missing its deadline
of 0.087144 + 0.00612 + 0.000216 = 0.09348 and a
probability of 0.90652 to finish execution in time.

IV. RELATED WORK

There has been a significant work devoted to probabilistic
real-time analysis the last years. However, and to our best
knowledge, there are no comparable results so far. In fact, there
are a few related works which consider special scheduling
models providing isolation between tasks [1], or assuming a
known (a priori) maximum number of arrivals, thus introduc-
ing an unnecessary level of pessimism in the analysis [2], [3].

For the problem where the worst-case execution times are
probabilistic the approach in [4] is the most general. However,
to our best knowledge their approach is not extended to the
case of random inter-arrival times.

The closest work to our contribution is described in [5],
but the results are only valid for particular cases of random
variables.

V. CONCLUSION

In this paper we propose a definition for the probabilistic
deadlines and a first discussion on the response time calcula-
tion for a task. As future work we leave the proposition of a
general formulation for n tasks and the associated proof.

REFERENCES

[1] L. Abeni and Buttazzo, “QoS guarantee using probabilistic deadlines,” in
IEEE Euromicro Conference on Real-Time Systems (ECRTS99), 1999.

[2] A. Burns, G. Bernat, and I. Broster, “A probabilistic framework for
schedulability analysis,” in Third International Embedded Software Con-
ference (EMSOFT03), 2003, pp. 1–15.

[3] I. Broster and A. Burns, “Applying random arrival models to fixed priority
analysis,” in Proceedings of the Work-In-Progress of the 25th of the IEEE
Real-Time Systems Symposium (RTSS04), 2004.

[4] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M., and O. Mirabella,
“Stochastic analysis of periodic real-time systems,” in 23rd of the IEEE
Real-Time Systems Symposium (RTSS02), 2002, pp. 289–300.

[5] J. Lehoczky, “Real-time queueing theory,” in 10th of the IEEE Real-Time
Systems Symposium (RTSS96), 1996, pp. 186–195.

22

Traffic Shaping to Reduce Jitter in Controller Area Network (CAN)

Robert I. Davis
Real-Time Systems Research Group, Department of

Computer Science,
University of York, YO10 5DD, York, UK

rob.davis@cs.york.ac.uk

Nicolas Navet
INRIA / RTaW

615, rue du Jardin Botanique
54600 Villers-lès-Nancy (France)

nicolas.navet@inria.fr

Abstract— When a message is transferred from one CAN
bus to another via a gateway, variability in the response time
of the message on the source network typically translates
into queuing jitter on the destination network. This jitter
inheritance accumulates across each gateway and can
significantly impact the schedulability of lower priority
messages. In this paper, we show that the real-time
performance of the network can be enhanced by a simple
method of traffic shaping that eliminates this inherited
queuing jitter. This method does not require access to global
time, nor does it require precise time-stamping of when
messages are received at the gateway or blocking read calls.
It can also be extended to account for clock drifts between
networks.

Keywords-Controller Area Network (CAN); traffic
shaping; jitter; response time analysis; scheduling.

I. INTRODUCTION
In automotive applications, Controller Area Network

(CAN) [1], [4] is typically used to provide high speed
networks (500Kbits/s) connecting chassis and power-train
Electronic Control Units (ECUs), for example engine
management and transmission control. It is also used for
low speed networks connecting body and comfort
electronics. Data required by nodes on different networks
is transferred between different CAN buses by a gateway
connected to both.

Schedulability analysis for CAN [3] computes upper
bounds on the worst-case response times of messages on a
single network, and thus can be used to provide guarantees
that messages will meet their deadlines during normal
operation. When messages are transferred from one
network to another by a gateway, then holistic analysis [5]
can be used to determine the overall end-to-end response
time of each message, and thus determine if end-to-end
deadlines will be met.

If the gateway forwards messages for transmission on
the destination network as soon as they have been received
from the source network then this can result in those
messages exhibiting significant queuing jitter on the
destination network. Effectively all of the variability in the
message’s response time on the source network can
manifest itself as queuing jitter with respect to
transmission of the message on the destination network. In
the worst-case, multiple instances of the same message that
were originally queued periodically with only a small
amount of jitter on the source network, may end up being
transmitted back-to-back on a destination network, causing
increased delays to lower priority messages.

Holistic analysis [5] assumes that messages inherit all
of the response time up to their reception at a gateway plus

the maximum delay in being processed by the gateway as
queuing jitter on the destination network. This analysis can
be improved by considering the time at which messages
are queued on the destination network as a dynamic offset
[8] which can vary between some minimum and maximum
values. This model eliminates jitter equivalent to the best-
case response time. Techniques for reducing variability in
the length of messages caused by stuff-bits can also
eliminate some jitter [12], [13]; however, the difference
between best-case and worst-case response times can still
be large and so significant jitter remains. The use of offset
release times [11] between messages sent by the same
node can reduce worst-case response times on the source
network, again reducing but not eliminating queuing jitter
on the destination network.

The problem is that gatewayed messages with large
queuing jitter can have a significant impact on the
schedulability of lower priority messages on the
destination network. With two networks, the interference
from gatewayed messages can easily be doubled, with two
instances of a gatewayed message being sent during the
response time of a lower priority message, rather than just
one. Response time upper bounds for non-pre-emptive
scheduling highlight this effect – see equation (33) in [9].

In this short paper, we introduce a simple traffic
shaping technique that can be used in gateways to
eliminate all of the jitter due to variability in message
response times up to the point at which they are received
by the gateway. This technique builds upon the No Global
Time (NGT) method [2]. Thus it does not require the use
of global time, and the source and destination networks are
assumed to be unsynchronised. However, unlike NGT, it
does not require information about when each message
was received from the source network, nor does it assume
the use of a blocking read call, necessitating the use of a
separate task per gatewayed message. Instead, this
technique assumes only that there is a free-running timer
that may be read by a single periodic communications task
in the gateway. The technique proposed is related to the
leaky bucket / token bucket method [6], [10], [15] of traffic
shaping. In particular, it is a greedy method of traffic
shaping [14] which comes for free, in the sense that it does
not introduce any additional end-to-end delays. It also has
some similarities to the use of servers to shape flows on
Ethernet described in [17].

Other methods of reducing jitter include synchronising
networks and then using offsets to determine message
release times on the destination network [16]. The work on
FTT-CAN [7] is an example of this approach; however,

23

requiring synchronisation and effectively using TDMA on
top of CAN’s priority based arbitration has the
disadvantage of adding complexity and overheads. De-
coupling source and destination networks via periodic
message activation on the destination network is another
way of reducing jitter [19]; however, unlike the approach
taken in this paper, this reduction in jitter comes at a cost
of significantly increased end-to-end latencies.

Due to space constraints, we do not describe the CAN
protocol or its schedulability analysis in this paper. The
interested reader is referred instead to [3].

II. GATEWAYS AND TRAFFIC SHAPING
In automotive applications, there is often a

communications task that is responsible for the forwarding
of gatewayed messages. Let Δ be the maximum delay
between an event occurring (e.g. a message instance being
received) and the communications task recognising it.
Typically, Δ corresponds to the period (COMT) plus
worst-case response time (COMR) of the communications
task; assuming that it can execute as early as possible in
one period and then as late as possible in the next.

With a simple immediate forwarding policy, each time
the communications task runs, it checks for any received
messages from the source network and queues the
corresponding message on the destination network. Here,
as described in [5], the message m on the destination
network inherits queuing jitter from both the message on
the source network, and the communications task:

Δ++= SRC
m

SRC
m

DEST
m RJJ (1)

Where SRC
mJ and DEST

mJ are respectively the queuing
jitter on the source and destination networks, and SRC

mR is
the worst-case response time of the message on the source
network. (Note, here we assume that SRC

mR is made up of
the queuing delay and transmission time of message m on
the source network, but not its queuing jitter SRC

mJ which
is included separately). The inherited jitter DEST

mJ impacts
negatively schedulability on the destination network. It is
therefore interesting to consider ways in which this
inherited jitter can be eliminated. We note that in practice
not all of the response time on the source network
contributes to jitter, only the variability between the worst-
case and the best-case response time; however, we use the
simpler model here.
A. Jitter reduction policies

The No Global Time (NGT) policy introduced in [2]
removes jitter, without the need for global time or clock
synchronisation between different nodes.

With the NGT policy (see Algorithm 1), it is assumed
that the read is a blocking call that waits until the next
instance of the message is available from the source
network, if it has not already been received. The time t is
the local time at which the message instance was received,
period is the message period, and next is the earliest
time at which the next message may be queued onto the
destination network.

The effect of the NGT policy is to enforce a minimum
delay of period between the queuing of instances of the
message on the destination network, thus eliminating jitter

due to variability in the message response time on the
source network.

1 next = 0
2 read msg from source network
3 returning the time t at which it was
4 received
5 loop
6 queue output to destination network
7 next = max(next, t) + period
8 delay_until next
9 read msg from source network
10 returning t
11 end loop

Algorithm 1: NGT Policy for message m

One of the drawbacks of the NGT policy is that it
requires the time at which each message instance was
received to be available. This is not necessarily possible
with all CAN controller hardware. A second drawback is
that the read call is assumed to be blocking, and so
requires a separate task per forwarded message.

We now adapt the NGT policy making it more suited
to gateway nodes connecting networks using CAN. We
refer to the new policy as NJR for Non-blocking Jitter
Reduction. With the NJR policy, instead of a blocking read
call, we assume a single communications task that
executes periodically and has a maximum delay of Δ as
explained earlier. We do not require precise recording of
the times at which message instances are received from the
source network, instead this will be done approximately by
the communications task. We assume that instances of
gatewayed message m are placed in a FIFO buffer by the
CAN controller or interrupt handler, ready for processing
by the communications task.

In the following, we assume that the event initiating the
queuing of message m on the source network occurs
sporadically with a minimum inter-arrival time of mT
referred to as the message period. (We assume that the
maximum delay Δ of the communications task is less than
the message period mT).

1 if the message m FIFO buffer is empty
2 return
3 get local time t
4 if t < mX // too early to process message m
5 return
6 get instance of message m from buffer
7 queue instance on destination network
8 mX = max(mX , Δ−t) + mT

Algorithm 2: NJR Policy for message m

Algorithm 2 illustrates the policy implemented in the
body of the periodic communications task for instances of
message m. mX represents the next time at which it is
permissible to queue an instance of message m on the
destination network. mX is assumed to be initialised to
zero, and the local incrementing free-running timer t
started at zero, before the task first runs. (Note that the
same communications task can deal with forwarding
multiple messages).

24

The NJR policy operates as follows. When the first
instance of message m arrives, it can be forwarded
immediately, and is queued on the destination network by
the communications task as soon as the task executes. As
the task has a maximum delay of Δ in detecting that there
is a message instance to process, the policy assumes that
all of this delay may have happened, and that it is therefore
permissible to queue the next instance of the message on
the destination network at a time mm TtX +Δ−= or later.
If one or more subsequent instances of message m arrive
before this time, then they will wait in the FIFO buffer for
later processing, with queuing of the kth subsequent
instance of the message now only permitted at or after time

mm kTX + .
The remaining behaviour of the NJR policy, and the

fact that reading and using the local time obtained on line 3
is sufficient to correctly determine the next permissible
queuing time, can be seen by considering what happens
when the communications task runs and first finds an
instance j of message m at the head of the FIFO buffer.
There are two cases to consider:

Case 1: The local time mXt < . In this case, we can be
certain that the time at which instance j was received is not
relevant for setting the earliest permitted queuing time for
the next instance (j+1). Instance j will be processed by a
subsequent invocation of the communications task that
obtains a local time t: Δ+≤≤ mm XtX . On that
invocation, line 8 will set mmm TXX += , without needing
a value of t that reflects when instance j was actually
received.

Case 2: The local time mXt ≥ . In this case, instance j
cannot have been in the FIFO buffer when the
communications task previously ran; otherwise we would
have Case 1. (Trivially, it cannot have been at the head of
the buffer. Further, it cannot have been behind any
previous instances in the buffer, because as mT<Δ , mX
advances by more than Δ for each instance of message m
processed, and so any instance that is received while a
previous instance is in the buffer must belong to Case 1).
Instance j must therefore have been received at some time
between Δ−t and t, and so t is a valid time to use in
computing the earliest permissible queuing time for
instance j+1, via line 8.

The effect of the NJR policy is to ensure that the period
or minimum inter-arrival time of message m on the
destination network is mT and its queuing jitter is

COM
DEST
m RJ +Δ= . Note, the additional COMR term

arises because there could be a delay of at most COMR
between the timer being read (i.e. time t on line 3 of
Algorithm 2) and the message being queued (line 7), yet
the next instance of the message may be queued at time

Δ−+ mTt . The longest possible delay between the event
triggering the sending of an instance of message m on the
source network and its processing by the communications
task being permitted is SRC

k
SRC
k RJ + (i.e. the same as the

maximum delay between the initiating event and the
reception of the corresponding message instance at the
gateway). This is the case because processing of an
instance of message m can only ever be delayed if it
arrives less than mkT after the kth previous instance.

Hence processing of message instances with the maximum
delay SRC

k
SRC
k RJ + is unconstrained by the NJR policy,

and processing of instances which are received after a
delay of yRJ SRC

k
SRC
k −+ is only constrained (not

permitted) for at most an interval of time y. The NJR
policy therefore adds nothing to the worst-case delay with
which gatewayed messages are queued onto the destination
network. Recall that with immediate forwarding, such
messages need to be considered as having jitter of

Δ++= SRC
m

SRC
m

DEST
m RJJ . Instead with the NJR Policy,

they can, in the worst-case, be considered as having been
subject to a fixed delay of COM

SRC
m

SRC
m RRJ −+ , before

being queued with a period of mT and a queuing jitter of
COM

DEST
m RJ +Δ= . We note that while there may be little

if any difference in the overall worst-case end-to-end
response time for a single gatewayed message, compared
to an immediate forwarding policy, there can be significant
differences in the response times of lower priority
messages, including other gatewayed messages. This is
because the elimination of the majority of the queuing
jitter reduces the number of instances of messages that can
be queued onto the destination network in a short interval
of time.
B. Jitter reduction policy experiments

We conducted some simple experiments to
demonstrate the jitter reduction that occurs with the NJR
policy.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900

Message Instance

D
el

ay
 fr

om
 in

iti
at

in
g

ev
en

t (
m

s)

Constraint on delay
No Jitter Elimination
Jitter Elimination

Figure 1: Overall delay in queuing messages onto the destination

network

The results of one of these experiments is shown in
Figure 1. This experiment is based on a typical 125Kbit/s
body electronics network configuration generated by
NETCARBENCH [18] with 145 messages. We selected
the lowest priority message with a period of 200ms, as an
example of a gatewayed message. This message has a
worst-case response time of just under 140ms. The period
(COMT) of the communications task was set to 6ms and its
worst-case response time (COMR) to 3ms, giving a value
for Δ of 9ms.

The bottom line in Figure 1 shows the delay from the
initiating event for each message instance to the time at
which it was queued on the destination network, assuming

25

an immediate forwarding policy. The middle line shows
the same delay using the NJR policy. The top line shows
the bound on this time (147.5ms in this case). It is notable
that the delay is far more consistent with the NJR policy.

It is noticeable in Figure 1 that there is a transient
behaviour for the first 300 or so message instances, this
happens as the observed delay since the initiating event
increases up to a maximum value. The small overshoot
evident at around 300 is due to using Δ−+ mTt as the
next permitted queuing time when the communications
task has not actually exhibited a delay as long as Δ .

100

120

140

160

180

200

220

240

260

280

300

0 100 200 300 400 500 600 700 800 900
Instance

G
ap

Queuing interval (no jitter reduction)

Queuing interval (jitter reduction)
Constraint with jitter reduction

Figure 2: Time between queuing message instances (with / without jitter

reduction)

Figure 2 shows the time interval between queuing two
instances of the same message on the destination network
with and without jitter reduction. Figure 2 illustrates how
the NJR policy ensures that the queuing of 2≥k instances
of message m can only take place in an interval whose
length is at least mCOMm TkRT)2(−+−Δ− (i.e.
respecting the period mT and queuing jitter

COM
DEST
m RJ +Δ= of the message on the destination

network) This constraint is shown as a horizontal line on
the graph.

III. SUMMARY AND CONCLUSIONS
The simple traffic shaping policy Non-blocking Jitter

Reduction (NJR) introduced in this paper significantly
reduces the amount of queuing jitter on gatewayed
messages forwarded onto a destination network. The
policy is particularly suited to CAN for the following
reasons:
o It does not require the use of global time. The source

and destination networks can be unsynchronised.
o It does not require the precise time-stamping of when

messages are received. Instead only access to a local
free-running timer is needed.

o The gatewaying of messages can be performed by a
single, simple periodic task that does not block, and
can therefore be implemented on a single stack
operating system (e.g. OSEK BCC1).

The approach can easily be adapted to cater for clock
drifts by simply assuming a slightly smaller period on the
destination network, thus ensuring that the long term rate
at which messages are gatewayed onto that network does
not fall below the rate at which they arrive from the source

network. We note that the NJR policy could also be
applied to messages forwarded onto other types of
network.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC

funded Tempo project (EP/G055548/1), the EU funded
ArtistDesign Network of Excellence. The authors would
like to thank Ralph Eastwood for his work on simulating
the traffic shaping policy.

REFERENCES
[1] Bosch. “CAN Specification version 2.0”. Robert Bosch GmbH,

Postfach 30 02 40, D-70442 Stuttgart, 1991.
[2] A. Burns, Y. Chen, “Implementing Transactions in a Distributed

Real-Time System without Global Time”. In proceedings Work-in-
Progress session, RTSS 2009.

[3] R.I. Davis, A. Burns, R.J. Bril, J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Volume 35, Number 3, pp. 239-
272, April 2007.

[4] ISO 11898-1. “Road Vehicles – interchange of digital information
– controller area network (CAN) for high-speed communication”,
ISO Standard-11898, International Standards Organisation (ISO),
Nov. 1993.

[5] K.W. Tindell, J.A. Clark, Holistic schedulability analysis for
distributed hard real-time systems, Microprocessing and
Microprogramming, Vol. 40, Issues 2-3, pp 117-134, April 1994.

[6] J.S. Turner. New directions in communications (or which way to
the information age?). IEEE Communications Magazine,
24(10):8{15, October 1986.

[7] P. Pedreiras, L. Almeida, "Message routing in multi-segment FTT
networks: The Isochronous Approach" In proceedings WPDRTS
2004.

[8] J.C. Palencia, M. González Harbour, “Schedulability Analysis for
Tasks with Static and Dynamic Offsets”. In proceedings RTSS
1998.

[9] R.I. Davis, A. Burns. "Response Time Upper Bounds for Fixed
Priority Real-Time Systems" . In proceedings RTSS 2008

[10] J. Löser and H. Härtig. Low-Latency Hard Real-Time
Communication over Switched Ethernet. In proceedings ECRTS,
pp 13–22, 2004.

[11] M. Grenier, L. Havet, and N. Navet. Pushing the limits of CAN -
scheduling frames with offsets provides a major performance
boost. In proceedings ERTS 2008.

[12] T. Nolte, H. Hansson, C. Norstrom, S. Punnekkat. Using Bit-
Stuffing Distributions in CAN Analysis. In proceedings RTES
2001.

[13] T. Nolte, H. Hansson, C. Norstrom. “Minimizing CAN response-
time analysis jitter by message manipulation”. In Proceedings
RTAS, pp 197-206, 2002.

[14] E. Wandeler , A. Maxiaguine , L. Thiele, “Performance analysis of
greedy shapers in real-time systems”, In proceedings DATE, 2006.

[15] S.-K.Kweon, K.G. Shin, “Achieving real-time communication over
Ethernet with adaptive traffic smoothing”. In proceedings RTAS
2000.

[16] P. Pedreiras, L, Almeida, “Minimizing the end-to-end latency in
multi-segment time triggered networks”, INCOM 2004.

[17] R. Santos, P. Pedreiras, M. Behnam, T. Nolte, L. Almeida. “Multi-
level Hierarchical Scheduling in Ethernet Switches”. In
proceedings EMSOFT 2011.

[18] C. Braun, L. Havet, and N. Navet, “NETCARBENCH: a
benchmark for techniques and tools used in the design of
automotive communication systems,” in proceedings FET 2007.
Available at http://www.netcarbench.org.

[19] M. Di Natale, W. Zheng, C. Pinello, P. Giusto, A.S. Vincentelli,
“Optimizing end-to-end latencies by adaptation of the activation
events in distributed automotive systems”, pp. 293-302 RTAS
2007

26

Implementing and Evaluating Communication-
Strategies in the ProCom Component Technology

Rafia Inam, Mikael Sjödin
Mälardalen Real-Time Research Centre,

Västerås, Sweden
Email: {rafia.inam, mikael.sjodin}@mdh.se

Abstract—This paper presents two strategies to support com-
munication between real-time executable Runnable Virtual Node
(RVN) components in the ProCom component technology. We
describe the currently implemented server-based communication
strategy which uses a dedicated server for communication. We
compare the server-based technique with a direct (RVN-to-RVN)
communication strategy. The paper also describes how these
strategies could be evaluated for real-time performance, and
the real-time analysis technologies needed to perform such an
evaluation.

Index Terms—real-time software components; hierarchical de-
sign

I. INTRODUCTION

ProCom is a component technology for development of hard
real-time embedded control-systems [1]. We have previously
presented the ProCom-concept of a runnable virtual node that
allows a two-step deployment process [2]. The first-step is
an initial virtual deployment to a virtual node and in the last-
phase step virtual nodes are deployed on physical nodes. In this
paper we focus on the communication strategies among virtual
nodes. We explain how ProCom realizes the communication
today, and outline how an alternative strategy for commu-
nication could be designed. We also propose an evaluation
metric to allow comparison of the real-time performance of
two different communication strategies.

In ProCom the realization of a piece of functionality can
follow a flow through many software components. Data may
originate at one component (e.g. a sensor) and passes through
various other computational components, before terminating at
the final component (e.g. an actuator). Hence, the data follows
a chain of components (C1, C2, . . . , Cn), each potentially
having its own periodicity and timing properties. For an
embedded system with real-time constraints, the end-to-end
timing behavior is not only dependent on the timing properties
of its constituent components but also on the message-chains
among those components. ProCom provides a hierarchy of
component types, where the top-level component-type is called
a virtual node. The virtual node (typically) contains a set of
other ProCom components and can be synthesized to become
an independent executing unit called a runnable virtual node
(RVN) [3].

In ProCom today, communication inside an RVN is imple-
mented with shared buffers and semaphore-locks. In this paper
we focus on the communication between RVNs, which is im-
plemented using a communication server. The communication

server provides temporal isolation between RVNs and buffers
all communication, making the execution of each RVN very
predictable. However, the buffering incurs delays which could
adversely affect the fulfillment of real-time requirements.
Hence, an interesting approach would be to use a more direct
communication strategy, where RVNs communicate with each
other directly without an intermediate node. In this paper we
describe how a comparison study of the server-based and direct
approaches could be performed.

The main contributions of this paper are:
• We present the current server-based implementation for

predictable communication between RVNs in ProCom.
• We present an alternative communication strategy using

a direct communication method.
• We propose how these two strategies could be evaluated

and compared for their real-time performance.
Outline: In Section II, we describe the RVN, how it em-
beds hierarchical scheduling using the two-level deployment
process, and how it is used within the ProCom technology.
Section III presents the inter-RVN communication strategies
and their performance evaluation criteria are provided in Sec-
tion IV. Finally, Section V concludes the article and describes
future work.

II. THE RUNNABLE VIRTUAL NODE (RVN)

A runnable virtual node is an execution platform concept
that preserves functional as well as temporal properties of the
software executed within it [3]. The idea is to encapsulate the
real-time properties into model-driven reusable component-
based systems to achieve predictable integrations and reusabil-
ity of those components along with maintainability, testability,
and extendibility.

A. An RVN-server

An RVN is implemented as a server within a two-
level Hierarchical Scheduling Framework (HFS) (an RVN-
server), and includes a set of tasks, a resource allocation
(〈budgetQ, periodP 〉 of server), and a real-time scheduler as
shown in Figure 1. The scheduler is local-level, and schedules
the task set according to allocated resources using a scheduling
policy (currently fixed-priority preemptive scheduling FPPS).
The final executables that can be downloaded and executed on
the physical node consists of a set of RVNs and a top-level
real-time scheduler linked together. The top-level scheduler

27

in the HSF is responsible for dispatching the RVN-servers
according to their bandwidth reservations. Thus, once a server
has been configured for the RVN, its non-functional (timing)
properties are preserved along with its functional properties
when the RVN is integrated with other RVNs on a physical
node, or when it is reused in another context [3]. Further it
reduces the efforts related to testing, and validation.

RVN-120419

RVN
1

RVN

Local
Scheduler

T1 Tn. . .

ProSys
Runnable

OS task set

VN

Final Executables on
Physical Node

RVN
1

RVN
n

Global
Scheduler <Q, P>

. . .

Fig. 1. An RVN encapsulates and preserves functional and non-functional
(timing) properties.

In our implementation, the RVN is executed by a server
in the HSF running on-top of FreeRTOS [4]. Using HSF, the
functionality of different servers can be isolated from each
other for, e.g., fault containment, compositional verification,
validation and certification, and unit testing [5]. The official
release of FreeRTOS only supports a single level fixed-priority
scheduling. We have, however, previously presented an imple-
mentation of two-level HSF for FreeRTOS [6] with associated
primitives for hard real-time sharing of resources both within
and between servers [7]. The HSF implementation supports
two kinds of servers, idling periodic [8] and deferrable
servers [9]. The implementation uses FPPS for both global
and local-level scheduling. For local resource-sharing (within
a server) the Stack Resource Policy (SRP) [10] is used, and
for global resource-sharing (between servers) the Hierarchical
Stack Resource Policy (HSRP) [11] is implemented. The HSF
supports CPU resource reservations by associating a tuple
〈Q, P 〉 to each server, where P is the server period and the
server budget Q (0 < Q ≤ P) is the allocated portion of CPU
resources every P . Given Q, P , and information on resource
holding times, the schedulability of a server and/or a whole
system can be calculated with the methods presented in [7].

B. The RVN Concept in The ProCom Component Model

The ProCom component technology targets control-
intensive embedded systems like software used in trains,
airplanes, cars, industrial robots, etc. The ProCom component
model [12] is specifically developed to address the reuse of de-
sign artefacts (e.g., extra-functional properties, analysis results,
and behavioral models) as well as predictable integration and
reuse of the executable components [3]. The PROGRESS Inte-
grated Development Environment (PRIDE) tool [13] supports
modeling and automatic-synthesis of components at different
levels [1].

The RVN concept uses a two-level deployment process
rather than a single big deployment: i.e. deploying functional
entities to RVNs in a first-step (during which, e.g., the timing

properties of RVNs are validated), and then, deploying RVNs
to the physical nodes in a second-step (integrating RVNs along
with their preserved timing properties) [3]. The two-level pro-
cess gives development benefits with respect to composability,
system integration, testing, validation, certification, and reuse.

The RVN is an integrated concept in ProCom. From the
modeling perspective, a virtual node (VN) is equivalent to a
set of ProSys components with an added resource reservation.
In the executable form, the RVN is constructed by mapping the
set of tasks (synthesized from ProSys-runnable components)
to a server and assigning scheduling parameters (assignment
of task-priorities) during the first-step of deployment. Internal
validity of the timing-constraints of the RVN can then be
assessed using, e.g., simulation, testing or a local scheduling-
analysis provided in [7]. In this manner, after configuration
the RVN-server preserves its timing properties within it. It
also adds an implementation of message channels used to send
messages among virtual nodes. The final binaries are generated
for a hardware node during the second-step of deployment by
connecting different RVNs together with a global scheduler,
assigning server-priorities, and using a middleware API for
inter-RVN communications.

III. THE INTER-RVN COMMUNICATION

The RVN provides main benefits of predictable integration
and increased reuse of executable real-time components. It
leads up to the necessity to make the communication among
RVNs not only fast and predictable but the communication
should also support the reuse of the executable components.
To achieve these benefits, the inter-component or inter-RVN
communication is implemented independently from the under-
lying platform as a middleware API by moving the information
about system and communication outside the component code.
Later the middleware interface functions are integrated into the
layered ProCom model.

A. Middleware API

The inter-RVN communication is a combination of data and
trigger ports and is based on messages. The middleware API
is implemented a-synchronously via message passing and the
cyclic shared buffers, where channels are used to distribute the
messages to other RVNs using a defined set of connections.
The communication is independent of the underlying operating
system (HSF implementation in our case). It includes the
support for transparent communication within RVNs mapped
on the same hardware node, called local-RVN communication,
and among RVNs mapped on different hardware nodes through
a communication media or channel (e.g. CAN bus), called
distributed-RVN communication. Both types of communication
can be synthesized before generating the final binaries for the
target platform.

The middleware API is well-integrated with the layered
deployment process of the ProCom model. The main commu-
nication code (including data structures) is initialized and two
periodic tasks sender and message-port updater are created at
every physical node during the first-step of deployment. These

28

tasks are responsible to send and receive messages among
RVNs respectively.

The inter-RVN communication could be realized in two
different ways: either integrating the middleware API directly
into the communicating RVNs, called Direct Communication,
or using a server to embed the middleware tasks in it, called
a Server-based Communication. Both strategies are explained
here.

B. Server-based Communication Strategy

Since RVNs are implemented as servers within a two-level
HSF, it makes sense to embed the middleware API within
a server. A Communication (also called a system) server
along with its timing properties is automatically generated for
inter-RVN communications (if needed), at the second-step of
deployment. Both communication tasks, sender and message-
port updater, are automatically assigned to the server as shown
in Figure 2. Additionally there can be a hardware-driver task in
it if needed. The communication server has the highest priority
among all the servers in the system, with a very small budget
and its only functionality is to copy the messages from the
sender port of one component to the receiver port of another
component, by executing the middleware API tasks within it.

This method provides benefits of (1) increased reuse of RVN
by keeping the communication separated from the RVN code
and (2) predictability by executing the communication API in
a server within the HSF implementation. However, it has some
overhead of server execution. Moreover, it also increases (3)
maintainability and flexibility to change the communication
code without affecting the timing properties of RVNS.

VN1

Server-based inter-RVN Communication at modeling and execution levels

VN2

msg

Model
Executable

Input message port

Output message port

Message channel

Local-RVN / distributed-
RVN communication

Legend:

Runnable VN1

T1 Tn
. . .

Local Scheduler

Communication server

Sender
Message-

port
Updater

Local Scheduler

Runnable VN2

T1 Tn
. . .

Local Scheduler

Fig. 2. Server-based inter-RVN communication at modeling and executable
levels.

The final executables are generated by resolving the local-
RVN communication by mapping it to middleware API, and
synthesizing the distributed-RVN communication among hard-
ware nodes (if needed). All synthesis is done by generating
C-code, so the final step is compiling the generated code, and
linking all code with the operating system and middleware
binaries.

The local-RVN communication is provided by the middle-
ware where the output and input message ports write and read
the data respectively. One-step shared cyclic buffers that can
be accessed by multiple tasks, are added to these ports for
reliable message delivery and efficient memory usage. The
only additional requirement is a communication channel to

be generated for the distributed-RVN communication. (At this
stage the PRIDE tool provides the distributed-RVN commu-
nication in the form of a TCP/IP connection over Ethernet. A
real-time distributed-RVN communication is not automatically
generated by the tool and has to be provided manually).

Since inter-RVN communication is implemented as a server
within a two-level HSF, simple semaphores cannot be used to
protect shared buffers. Thus some synchronization protocols
for hierarchical schedulers are required to access the buffers
in a safe manner. SRP and HSRP protocols are implemented
in the HSF implementation [7]. The shared buffers among the
tasks of same RVN and among tasks of different RVNs are
arbitrated using SRP and HSRP respectively. HSF leverages
the communication among components with the advantages
of short and predictable global blocking, and predictable and
well-defined communication.

C. Direct Communication Strategy

Inter-RVN communication can also be done directly among
RVNs (i.e. RVN-to-RVN) without using the communication
server. Shared message queues which are accessed via SRP
and HSRP APIs [7] can be used for this purpose. The RVN can
encapsulate the middleware API within it to send and receive
the data and/or messages (see Figure 3) at the first-step of de-
ployment. It requires a separate configuration of RVN for each
communication. The final binaries are generated from RVNs
along with the code for the communication mechanism used
(local- or distributed-RVN) at the final-step of deployment.

Direct inter-RVN Communication at execution level

msg

Runnable VN1

T1 Tn. . .

Local Scheduler

Middle
ware
API

Runnable VN2

T1 Tn. . .

Local Scheduler

Middle
ware
API

Fig. 3. Direct inter-RVN communication at executable level.

The direct communication is fast as compared to the server-
based communication. However, it reduces the reusability of
executable RVNs since RVNs need to be configured for each
system separately, depending on that system’s communication
requirements. Further, any change in the middleware commu-
nication code will not only require a code-change in all RVNs
but will also affect the timing properties of all RVNs involved
in that communication.

IV. PERFORMANCE EVALUATION

We plan to evaluate and compare the costs of the server-
based strategy with that of the direct communication strategy.
To perform the evaluation, we plan to implement a simulator,
generating random subsystems and tasks in subsystems, both
types of communication, and measuring the costs of server-
based and direct communication methods among RVNs. For
evaluation, the end-to-end latencies of inter-RVN communica-
tion should be measured for both strategies and then compared.

29

30

A. Evaluation Criteria

We propose the use of a metric Worst Case Reaction Time
(WCRT) as the total time taken by a message-chain from
message-originator until the message reaches its message-
terminator component. For hard real-time systems, of course,
the worst case is a more interesting metric than any statistical
metric. Also, metrics like worst-case response-time for tasks
do not help us to evaluate end-to-end delays.

B. Evaluating the Server-based Strategy

When using the communication server, there is no direct
control-flow between components. Instead, data flows through
buffers inside the communication server.

The originator, the communication server, and the termi-
nator are running asynchronous, each with its own period.
This makes the traditional scheduling analysis technique very
difficult to use to obtain the WCRT. Instead, data-path analysis,
like the technique proposed by Feiertag et al. [14], could be
used. A prerequisite to use their technique is that the worst-
case response-times of each task in the RVNs are known. The
response-times can be calculated using the analysis techniques
proposed in [7].

C. Evaluating the Direct Communication Strategy

When using direct communication, control-flow is direct
between the RVNs and we could use existing scheduling-
analysis techniques to calculate WCRTs. However, different
analysis techniques would likely give different results – and
there are no analysis techniques that provide a perfect fit for
our strategy, rather a complicated task-model.

Real-time calculus could be used to summarize delays from
the different components [15]. This could take into account
the potential difference in periodicity between an RVN and
the components executing inside the RVN. However, it would
be difficult to model the explicit control-flow between RVNs
in real-time calculus. To improve the precision it would be
desirable to use more exact analysis techniques based on
the holistic scheduling analysis by Tindell [16] with explicit
modeling of precedence constraints [17]. These techniques
cannot be used right out of the box though, instead they would
have to be incorporated into the existing scheduling analysis
applicable to the RVNs [7].

V. CONCLUSIONS AND FUTURE WORK

We have presented two different strategies to support com-
munication among real-time executable components RVNs,
and plan to evaluate and compare them. We have imple-
mented the server-based technique as a means to encapsulate
the middleware API to provide a predictable communication
mechanism to preserve the RVN’s timing properties at run-
time and for better RVN reuse.

For future work, we plan to compare the cost of the server-
based method with the cost of the direct communication
method (among components/subsystems). We plan to present
the simulated results of our evaluation for both methods and
their comparison. The direct communication can be evaluated

by incorporating the scheduling analysis of [16], [17] into
the analysis techniques provided in [7], while the server-
based method will be evaluated using the techniques provided
in [14].

At the moment the message passing mechanism is im-
plemented using periodic tasks for receiving and sending
messages. This may cause delays in the system and inefficient
use due to unnecessary idle time. It would be interesting to see
how much performance can be gained by making the message
passing mechanism event-triggered. For example, we expect a
better response time, less context switching.

REFERENCES

[1] Etienne Borde and Jan Carlson. Towards verified synthesis of procom, a
component model for real-time embedded systems. In 14th International
ACM SIGSOFT Symposium on Component Based Software Engineering
(CBSE). ACM, June 2011.

[2] R. Inam, J. Mäki-Turja, J. Carlson, and M. Sjödin. Virtual Node – To
Achieve Temporal Isolation and Predictable Integration of Real-Time
Components. International Journal on Computing (JoC), 1(4), 2012.

[3] Rafia Inam. Towards a Predictable Component-Based Run-Time System.
Number 145. Licentiate thesis, January 2012.

[4] FreeRTOS web-site. http://www.freertos.org/.
[5] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open

environment. In IEEE Real-Time Systems Symposium(RTSS’97), pages
308–319, 1997.

[6] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and
Sara Afshar. Support for Hierarchical Scheduling in FreeRTOS. In
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’ 11).

[7] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS. In 7th
Annual Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[8] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[9] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server
algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[10] T. Baker. Stack-based scheduling of real-time processes. Journal of
Real-Time Systems, 3(1):67–99, 1991.

[11] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06),
pages 389–398, 2006.

[12] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In 11th International Symposium on Component
Based Software Engineering, pages 310–317, October 2008.

[13] PRIDE Team. PRIDE: the PROGRESS Integrated Development Envi-
ronment, 2010. ”http://www.idt.mdh.se/pride/?id=documentation”.

[14] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A
Compositional Framework for End-to-End Path Delay Calculation of
Automotive Systems under Different Path Semantics. In Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’08), November 2008.

[15] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time
calculus for scheduling hard real-time systems. In IEEE International
Symposium on Circuits and Systems, pages 101–104 vol. 4, Geneva,
May 2000.

[16] K. Tindell and J. Clark. Holistic Schedulability Analysis For Distributed
Hard Real-Time Systems. Technical Report YCS197, Real-Time Sys-
tems Research Group, Department of Computer Science, University of
York, November 1994. URL ftp://ftp.cs.york.ac.uk/pub/realtime/papers/-
YCS197.ps.Z.

[17] J.C. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting Prece-
dence Relations in the Schedulability Analysis of Distributed Real-Time
Systems. In Proc. 20th IEEE Real-Time Systems Symposium (RTSS),
December 1999.

Enhancing the Real-time Capabilities of the Linux Kernel

Paulo Baltarejo Sousa, Nuno Pereira, and Eduardo Tovar
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

4200-072 Porto, Portugal
{pbs,nap,emt}@isep.ipp.pt

Abstract—The mainline Linux Kernel is not designed for
hard real-time systems; it only fits the requirements of soft real-
time systems. In recent years, a kernel developer community
has been working on the PREEMPT-RT patch. This patch
(that aims to get a fully preemptible kernel) adds some real-
time capabilities to the Linux kernel. However, in terms of
scheduling policies, the real-time scheduling class of Linux is
limited to the First-In-First-Out (SCHED_FIFO) and Round-
Robin (SCHED_RR) scheduling policies. These scheduling poli-
cies are however quite limited in terms of real-time perfor-
mance. Therefore, in this paper, we report one important
contribution for adding more advanced real-time capabilities
to the Linux Kernel. Specifically, we describe modifications
to the (PREEMPT-RT patched) Linux kernel to support
real-time slot-based task-splitting scheduling algorithms. Our
preliminary evaluation shows that our implementation exhibits
a real-time performance that is superior to the scheduling
policies provided by the current version of PREMPT-RT. This
is a significant add-on to a widely adopted operating system.

I. INTRODUCTION

Multiprocessors implemented on a single chip, called mul-
ticores, are a mainstream computing technology. Multicores
with 8 cores are common on desktops today and it is already
possible to find commercial chips with up to 100 generic
processing cores [1]. With chip manufacturers focused on
improving performance by increasing the number of cores,
it is expected that the number of cores per chip will continue
to increase.

Due to its wide adoption, Linux is well positioned to take
an important role leveraging the processing power of large
multicores and its wide adoption is also driving develop-
ments towards enabling real-time computing by using the
Linux kernel. The main objective of such efforts is reducing
the unpredictability sources that exist in the mainline Linux
kernel, as these can cause arbitrary delays to the real-time
tasks running on the system.

There are many sources of unpredictability in the Linux
kernel: (i) interrupts are generated by the hardware often
in an unpredictable manner and when an interrupt arrives,
the processor execution switches to handle it; (ii) multiple
kernel threads running on different processors in parallel can
simultaneously operate on shared kernel data structures, re-
quiring serialization of the access to such data; (iii) disabling
and enabling preemption features used in many parts of the
kernel code can postpone some scheduling decisions.

Currently, the PREEMPT-RT patch1, is the foremost de-
velopment effort towards supporting the execution of real-
time tasks using the Linux kernel. The PREEMPT-RT patch
addresses these sources of unpredictability by making most
of the Linux kernel preemptible, by implementing priority
inheritance (to avoid priority inversion phenomena), and
by converting interrupt handlers into preemptible kernel
threads. These are important properties to enable real-time
computing. However, appropriate real-time scheduling poli-
cies are also needed.

The real-time scheduling class implemented in the
PREEMPT-RT patch supports the same scheduling poli-
cies of the mainline Linux kernel: the First-In-First-Out
(SCHED_FIFO) and Round-Robin (SCHED_RR) scheduling
policies. While these scheduling policies are appropriate
for unicore processors, they are not adequate for multicore
(or multiprocessor) systems because (i) their performance
is poor on multiprocessors - there exist task sets where
a system with a load a little over 50% will fail to meet
deadlines and (ii) they adopt an active push-pull approach
for balancing tasks across processors - since the Linux kernel
uses a per-processor runqueue (a runqueue stores ready
tasks), such push-pull operations require locking multiple
processor runqueues, which are an additional source of
unpredictability.

This paper describes the modifications of the (PREEMPT-
RT patched) Linux 3.2.11-rt20 kernel to support real-time
task-splitting scheduling algorithms where the time is di-
vided into timeslots (called slot-based task-splitting). Slot-
based task-splitting scheduling algorithms [2], [3] assign
most tasks (called non-split tasks) to just one processor and
a few (called split tasks) to only two processors and have a
utilization bound of 65%, configurable up to arbitrarily close
to 100% at the cost of more preemptions and migrations.

Among existing slot-based task-splitting scheduling al-
gorithms, the Notional Processor Scheduling – Fractional
capacity (NPS-F) [3] is notable for its high utilization
bound (configurable from 75% up to arbitrarily close to
100%) and is the focus of the implementation reported
in this paper. NPS-F is a semi-partitioned multiprocessor
scheduling algorithm: tasks are partitioned to servers (termed
notional processors), in turn mapped onto the (physical)

1Available online at http://www.kernel.org/pub/linux/kernel/projects/rt/

31

31

Pm rq

P2 rq

P1 rq

RT

99

1

0

Pr
io

ri
ty

le
ve

ls

FIFO RR RR

RR RR

FIFO RR

Tasks

Figure 1. RT scheduling class Runqueue

processors. Some notional processors use just one physical
processor; others use two processors and migrate between
them in a controlled manner.

This work is an evolution of [4], which implements
the same scheduling algorithms by modifying the mainline
Linux Kernel. In that previous work, a scheduling policy
module – ReTAS (Real-time TAsk-Splitting) – was added
on top of the native Linux module hierarchy, making ReTAS
the highest priority module. However, such approach cannot
be employed in conjunction with the PREEMPT-RT patch
because important functionalities, such as timer interrupt
handlers, needed by the ReTAS scheduler, are implemented
within the real-time scheduling class and thus ReTAS cannot
have a higher priority than the real-time scheduling class
implemented in the PREEMPT-RT patch.

II. BACKGROUND ON REAL-TIME SCHEDULING IN THE
LINUX KERNEL AND PREEMPT-RT

The linux kernel scheduler consists of a scheduler core
(or dispatcher) and various modules, where each module
implements a scheduling class encapsulating a scheduling
policy. These scheduler modules are hierarchically organized
by priority and the dispatcher looks for a runnable task of
each module in a decreasing order of priorities. Currently,
the Linux kernel implements three native scheduler modules:
RT (Real-Time), CFS (Completely Fair Scheduling) and
Idle. The dispatcher first inquires the RT module for a
runnable task and, if this module does not have any ready
task, the dispatcher then inquires the CFS module. The Idle
module is used for the idle task, executed when there is no
other runnable task.

As depicted in Figure 1, tasks in the RT scheduling
class are organized by priority level. Inside each pri-
ority level, the RT module implements two scheduling
heuristics: SCHED_FIFO and SCHED_RR. SCHED_FIFO
is based on the first-in-first-out heuristic: whenever a
SCHED_FIFO task is executing, it continues until pre-
empted (by a higher-priority task) or blocked (e.g., by
an I/O operation). SCHED_RR implements the round-robin
heuristic: a SCHED_RR task executes (if it is not preempted
or blocked) until it exhausts its timeslice.

The mainline Linux defines one runqueue (an instance
of struct rq, where all ready tasks are stored) per-

Pm rq

P2 rq

P1 rq
ReTAS

ncpu1 ncpu1 ncpu1

res len

x
res len

N
res len

y

Notional Processors

NPk runqueue

NP2 runqueue

NP1 runqueue

NPS F NPS F

Ta
sk

s

Figure 2. ReTAS Runqueue

physical processor and, at any time instant, the processor is
executing one task stored in its runqueue. This may result in
unbalanced workloads across processors. In order to balance
the workload across processors, the RT module adopts an
active push-pull strategy as follows: whenever the dispatcher
inquires the RT module, it first tries to pull the non-executing
highest-priority task from the other runqueue (if it is not in
its runqueue) and, after selecting the next running task, it
checks if it can push the (freshly) preempted task to another
processor which is executing a task with lower priority than
the preempted task. Observe that, moving tasks between two
runqueues requires locking both runqueues and this may
introduce considerable overheads.

The PREEMPT-RT patch reduces the kernel latencies
by reducing its non-preemptible sections. This is done by
replacing most kernel spinlocks by mutexes, which sup-
port priority inheritance, and by transforming all interrupts
handlers into preemptive kernel threads, scheduled by the
RT scheduling class. These kernel threads have assigned a
priority level (50 by default) and, therefore, they can be pre-
empted by other RT tasks with higher-priority. As mentioned
before, the RT scheduling class does not implement any
scheduling algorithm suitable for multiprocessor systems
and the PREEMPT-RT patch does not add any scheduling
algorithms suitable for multiprocessor systems.

III. IMPLEMENTING SLOT-BASED TASK-SPLITTING

Achieving an effective implementation of NPS-F in the
Linux Kernel is a challenging task, as it requires efficient
mechanisms to: (i) handle migrations; (ii) manage ready
tasks; (iii) handle reserves and (iv) mapping of notional
processors to physical processors. The following section
discusses these challenges and Section III-B describes how
the ReTAS scheduler module was integrated into the RT
scheduling class.

A. Issues in implementing NPS-F

As explained before, the mainline Linux kernel may incur
in overheads due to the way task migrations are imple-
mented. In NPS-F, migrations involve the entire notional
processor. As this would typically imply moving multiple
tasks, adopting a similar strategy for the implementation
of NPS-F would be inefficient. Indeed, our implementation

32

32

employs a different arrangement that largely solves these is-
sues. Namely, we opt for one runqueue per notional (not per
physical) processor (see Figure 2 - ReTAS is used to denote
the implementation of slot-based task-splitting scheduling
algorithms). Under this approach, all ready tasks assigned to
a notional processor are always stored on (i.e. inserted to/d-
equeued from) the same respective (per-notional-processor)
runqueue. Then, when a notional processor migrates (i.e.
with all its tasks) from processor Pp to processor Pp+1, we
simply change the runqueues used by Pp and Pp+1.

To implement NPS-F, each physical processor needs
to be configured with its timeslot composition. For this
purpose, we introduce the following set of variables that
store information about the processor reserves. The vari-
able begin_curr_timeslot stores (as suggested by
its name) the beginning of the current timeslot and it is
incremented by S (the timeslot length). Observe that no
synchronization mechanism is required for updates to this
variable. The timeslot composition is defined by an array
of 2-tuples <res_len, ncpu1> (see Figure 2). Each
element of this array maps a reserve of length (res_len)
to the notional processor (ncpu1). A timer is used to trigger
scheduling decisions at the beginning of each reserve.

If one observes two consecutive timeslots, whenever a
split notional processor consumes its reserve on processor
Pp, whichever task was executing at the time has to “imme-
diately” resume execution on another reserve on processor
Pp+1. However, due to many sources of unpredictability,
common in a real operating system, arbitrary levels of time
precision are not possible. Consequently, the dispatcher of
processor Pp+1 can be prevented from selecting the task in
consideration from execution because processor Pp has not
yet relinquished (the runqueue associated with) that task.

One solution could be for processor Pp+1 to send an inter-
processor interrupt (IPI) to Pp to relinquish (the runqueue
associated with) that split task. Another could be for Pp+1

to set up a timer x time units in the future to force the
invocation of its dispatcher. We chose the latter option
for two reasons: (i) we know that if a dispatcher has not
yet relinquished the split task it was because something is
preventing it from doing so (e.g. the execution of an interrupt
service routine (ISR)); (ii) using an IPI solution introduces
a dependency between processors that can compromise the
scalability of the dispatcher.

B. Adding ReTAS to the RT Scheduling Class

Apart from the required code to manipulate notional
processors (enqueue and dequeue of ReTAS tasks as
well as getting the task with earliest absolute dead-
line) and the timeslot infrastructure, incorporating Re-
TAS into the RT scheduling class implies a set of
modifications in functions implemented in the sched_
rt.c file. Those functions are enqueue_task_rt,

dequeue_task_rt, check_preempt_curr_rt, and
pick_next_task_rt.

The enqueue_task_rt is called whenever a RT task
enters into a runnable state. If the runnable task is a ReTAS
task (ReTAS tasks are also RT tasks, with a priority level, but
are scheduled according to the SCHED_NPS_F scheduling
policiy), then it is enqueued into the respective notional
processor runqueue. When a RT task is no longer runnable,
then the dequeue_task_rt function is called to remove
the task from the respective notional processor runqueue.

As the name suggests, the check_preempt_curr_rt
function (Listing 1) checks whether the currently running
task must be preempted or not (e.g. when a RT task wakes
up). It receives two pointers, one for the processor runqueue
that is running this code (rq) and another to the woken up
task (p). If the priority of the woken up task is higher or
equal than (lower prio values mean higher priority) the
currently executing task (pointed by rq->curr), it checks
if p is a ReTAS task and if the current reserve is mapped
to task p notional processor. If that is the case, then the
currently running task is marked for preemption.

s t a t i c vo id
c h e c k p r e e m p t c u r r r t (s t r u c t rq ∗rq , s t r u c t t a s k s t r u c t ∗

p , i n t f l a g s)
{

i f (p−>p r i o <= rq−>c u r r−>p r i o)
i f (r e t a s p o l i c y (p−>p o l i c y))

i f (c h e c k p r e e m p t c u r r r e t a s (rq)){
r e s c h e d t a s k (rq−>c u r r) ;
re turn ;

}
. . .

}

Listing 1. Changes on the check_preempt_curr_rt function.

The pick_next_task_rt function also needs a small
modification. This function selects the task to be executed
by the current processor and is called by the dispatcher
whenever the currently executing task is marked to be
preempted or finishes its execution. It first gets the highest-
priority RT task, then it gets the highest-priority ReTAS task.
After, it selects the highest-priority task between them, if
there is some, otherwise it returns NULL, which forces the
dispatcher to inquiry the CFS scheduling module.

IV. EVALUATION

In order to compare the performance of our implementa-
tion2 of the NPS-F scheduling policy with the Linux native
real-time scheduling policies, we have conducted a range of
experiments with a 4-core platform (Intel(R) Core(TM) i7
CPU @ 2.67GHz). A set of implicit-deadline task sets was
generated as follows. We have defined four types of tasks:
“normal”, ‘heavy”, “medium”, and “light”, where normal
tasks have a ui (the individual task utilization) in the range
0.05 to 0.95. Heavy tasks have a ui in the range 0.65 to

2The implementation is available at http://webpages.cister.isep.ipp.pt/
∼pbsousa/retas/

33

33

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et
(a) SCHED FIFO

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et

(b) SCHED RR

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et

(c) SCHED NPS F

Light; Medium; Heavy; Normal;

Figure 3. Success (deadlines met) Ratio of Tasks using SCHED FIFO, SCHED RR and SCHED NPS F

0.95, while medium tasks have a ui in the range 0.35 to
0.65. Finally, light tasks have ui in the range 0.05 to 0.35.

For each of the four task types, we generated 5 task sets
and repeated this for 25 different Us (Us =

∑
τi∈τ

Ci

Ti
)

values, varying from 0.50 to 0.75 (this value is the utilization
bound of the NPS-F scheduling algorithm) with an incre-
ment of 0.01. The periodicity of all tasks was uniformly
generated in the range 5 ms to 50 ms. The characteristics
of these tasksets are not particularly suited for NPS-F. They
were generated with the purpose of testing high-utilization
periodic workloads with different characteristics. There is a
relevant setup phase in NPS-F, prior to runtime, were tasks
are assigned to processors. This phase is only part of NPS-
F, and thus other algorithms have a slightly more simplified
setup.

We ran each task set using the SCHED_FIFO,
SCHED_RR, and SCHED_NPS_F for a total of over 39
hours. Figure 3 plots the percentage of all task instances
executed during the experiment which met its deadline.

As it can be seen by inspecting Figure 3, that
SCHED_NPS_F was the only scheduling policy that met all
deadlines, as predicted by the theory. Both SCHED_FIFO
and SCHED_RR fail to meet all deadlines. Observe that
longer experiments could reveal a different percentage of
deadlines met, however, the theory tells us that all deadlines
will be met in a correct NPS-F scheduler. Interestingly, with
heavy tasks, none of the schedulers fails deadlines. This is
expected as, for this case, the task set generation method
produces a number of tasks which is smaller or equal to m,
thus each processor is only assigned one task.

V. CONCLUSIONS

This paper addressed the relevant problem of provid-
ing adequate real-time scheduling policies for multicore
systems using the Linux kernel. We have overviewed the
implementation challenges posed by this implementation
and overviewed the structure and the main modifications

introduced. We also presented an evaluation showing that
our implementation is able to meet all deadlines and that its
real-time performance is superior to that of the other real-
time scheduling policies available in the Linux kernel.

Our contribution is completely compatible with the
PREEMPT-RT patch and was implemented with minor mod-
ifications. In our opinion, adding adequate scheduling algo-
rithm to the Linux kernel (compatible with PREEMPT-RT
patch) is an important concern to make this widely adopted
operating system more suitable for real-time systems.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within project Ref.
FCOMP-01-0124-FEDER-022701 and also the REHEAT
project, ref. FCOMP-01-0124-FEDER-010045.

REFERENCES

[1] Tilera, “TILE-Gx processor family overview,” http://www.
tilera.com/products/processors/TILE-Gx Family.

[2] B. Andersson and E. Tovar, “Multiprocessor scheduling with
few preemption,” in 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Application
(RTCSA 06), Sydney, Australia, 2006, pp. 322–334.

[3] K. Bletsas and B. Andersson, “Notional processors: an ap-
proach for multiprocessor scheduling,” in 15th IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS’09), San Francisco, CA, USA, 2009, pp. 3–12.

[4] P. B. Sousa, K. Bletsas, E. Tovar, and B. Andersson, “On the
implementation of real-time slot-based task-splitting schedul-
ing algorithms for multiprocessor systems,” in Proc. of the
13th Real-Time Linux Workshop (RTLWS’13), Prague, Czech
Republic, 2011, pp. 207–218.

34

34

Cleaning Up Linux’s CPU Hotplug For Real Time and Energy Management

Thomas Gleixner
Linutronix

Paul E. McKenney
IBM LTC assigned to Linaro

Vincent Guittot
ST-Ericsson assigned to Linaro

Abstract
Linux’s CPU-Hotplug facility was originally designed to
allow failing hardware to be removed from a running sys-
tem. Hardware fails quite infrequently, so CPU-hotplug
performance (much less real-time response) was not a
major consideration. However, CPU hotplug is now used
for energy management and (believe it or not!) real-
time response, both of which have unsurprisingly ex-
posed some shortcomings in CPU hotplug. This docu-
ment reviews a number of these shortcomings, and then
proposes an alternative CPU-hotplug approach that we
believe will address these shortcomings.

1 Introduction

The Linux kernel’s CPU-hotplug facility allows CPUs to
be added to or removed from a running kernel. CPU hot-
plug has historically been used to isolate failing CPUs
or to simplify running scalability benchmarks [5]. The
roots of the Linux kernel’s CPU-hotplug facility go back
almost ten years [4], but during that time, it has gained a
number of additional uses, including adjusting the sizes
of guest OSes in virtualized environments, clearing cur-
rent and future work from a given CPU, and improving
energy efficiency. These new uses place considerable
stress on the Linux kernel’s implementation, which was
not designed with them in mind.

Linux’s CPU-hotplug implementation is based on no-
tifiers, which are callbacks into the subsystems that need
to be aware of CPUs coming and going. These noti-
fiers are invoked repeatedly in multiple phases, so that
when a CPU is coming online, they are invoked with
CPU UP PREPARE (which runs on some other CPU), then
CPU STARTING (which runs with interrupts disabled on
the CPU coming online), and finally CPU ONLINE (which
might run on any CPU, but after the CPU has come on-
line). CPUs going offline have four notification phases:
CPU DOWN PREPARE (which might run on any CPU),

CPU DYING (which runs with interrupts disabled on the
offlining CPU while all other CPUs are spinning wait-
ing), CPU DEAD (which runs on some other CPU after
the CPU has gone offline), and CPU POST DEAD (which
runs on some other CPU after some of the CPU-hotplug
locks have been dropped). The CPU UP PREPARE and
CPU DOWN PREPARE notifiers are permitted to “fail”, in
other words, to refuse to allow the hotplug operation to
proceed.

Section 2 reviews shortcomings of the current imple-
mentation, Section 3 overviews our work in progress,
Section 4 lists alternative proposals, and Section 5 lists
potential issues with our approach.

2 CPU-Hotplug Shortcomings

The shortcomings of CPU hotplug are well known, but
worth discussion. The most obvious from a real-time-
computing perspective is OS jitter, discussed in Sec-
tion 2.1. From a Linux-kernel implementation view-
point, the lack of a well-defined CPU model during hot-
plug operations is most vexing, as described in Sec-
tion 2.2. A few unlucky portions of the Linux kernel
must correctly handle offline (or “zombie”) CPUs, which
is covered in Section 2.3. Finally, CPU hotplug notifies
kernel subsystems of hotplug operations, but a number
of these notifiers run in extremely constrained software
contexts, as documented in Section 2.4.

2.1 Overhead and OS Jitter

In a perfect world, a given CPU could come online or
go offline quickly and without disturbing the rest of the
system. Unfortunately, in this world, handling the CPU’s
per-CPU kthreads takes a long time (hundreds of mil-
liseconds or even seconds) [1]. This limits CPU hot-
plug’s use as an energy efficiency measure because the
CPU must stay powered off for quite some time to make

35

up for the CPU-hotplug overhead [3]1. Furthermore,
CPU hotplug uses stop machine(), which halts ap-
plication execution on all online CPUs for an extended
period of time. This rules out use of CPU hotplug
for real-time workloads—and makes its use difficult on
battery-powered systems because the CPU hotplug oper-
ation might consume more energy than is saved by pow-
ering off the CPU for a short time.

The traditional rule “don’t use CPU hotplug on real-
time systems” is now starting to fail due to real-time
guests running on real-time hypervisors. In this case, the
hypervisor needs to offline a failing CPU without caus-
ing all the real-time guest OSes to miss their deadlines.
Furthermore, a guest might need to add or remove CPUs
without disrupting its real-time application.

In addition, offlining and immediately onlining a CPU
has the useful side-effect of forcing all current and future
work off of that CPU, providing better response to its
real-time application. Unfortunately, such offlining and
onlining will cause any pre-existing real-time application
running on that same system to miss its deadlines.

These use cases are specific examples of the trend to-
wards increasing general-purpose functionality on real-
time systems [2]. Now that CPU hotplug has moved
away from its original intended use of removal of fail-
ing CPUs, excessive overhead and OS jitter from CPU-
hotplug operations is no longer acceptable.

2.2 Ill-Defined Model of CPU

Suppose that a given CPU is going offline, and that half
of its notifiers have completed. What state is the CPU in?

The answer to this question is unclear. The CPU is
marked as online in the cpu online mask, but some of
its functionality really has been disabled. Worse yet, the
default is for the notifiers to execute in the same order
as they were registered at boot time. This is a problem
because the boot process adds capabilities to the CPU in
a good order that respects dependencies among those ca-
pabilities, which means that removing them in the same
order can be problematic. For example, the scheduler
uses both RCU and IPIs, and during boot, RCUs and IPIs
are initialized before the scheduler. So the boot process
builds up the CPU’s capabilities in a tree-like fashion,
and then the CPU-hotplug system attempts to remove the
tree starting at the trunk, in this case removing RCU and
IPIs before removing the scheduler.

Although notifier priorities are used to handle this spe-
cific case, this requires painstaking manual intervention.
The Linux kernel deserves better.

1 Five milliseconds is a good upper bound on CPU-hotplug latency.

2.3 Zombie CPUs
The stop machine() primitive forces all CPUs on the
system to switch to special kernel threads (kthreads). The
outgoing CPU then executes CPU DYING class of noti-
fiers in the context of its kthread, while the other CPUs
spin in the context of their kthreads. Therefore, a newly
offlined CPU passes through the scheduler when switch-
ing from its stop machine() kthread to the idle loop,
where it is powered off.

This in turn means that both the scheduler and RCU
must handle zombie offline CPUs for a short period after
they have marked themselves offline. RCU handles this
by assuming that a given CPU will not remain a zombie
for more than one jiffy, which does currently work, but
will eventually lead to baffling failures. Again, the Linux
kernel deserves better.

2.4 Inconvenient Software Contexts
The CPU DYING and CPU STARTING classes of notifiers
execute with interrupts disabled, which prevents them
from blocking, which in turn prevents them from starting
or stopping kthreads, which in turn can be problematic.

For example, when preemptible RCU is configured
with priority boosting, it uses a set of per-CPU kthreads
to boost callback-execution priority. RCU must inter-
act with these threads in the CPU UP PREPARE, CPU

ONLINE, CPU DOWN PREPARE, and CPU DEAD notifiers,
which means that RCU must deal with either a CPU that
doesn’t have an RCU kthread or an RCU kthread that
doesn’t have a CPU, both of which are fragile and bug-
prone. Once again, the Linux kernel deserves better.

3 Approach

A successful approach to new-age CPU hotplug must
provide the following:

1. Robust design for CPUs that are partially online.

2. Simple and fast handling of per-CPU kthreads.

3. Explicit specification of notifier dependencies.

4. Parallel CPU-hotplug notification.

5. Full software capabilities in all CPU-hotplug noti-
fiers.

6. Elimination of OS jitter.

To provide all this, our approach provides a generic
facility to create and park per-CPU hotplug kthreads (see
Section 3.1), executes execute in per-CPU kthread con-
text (see Section 3.2, runs notifiers in reverse order for
offline (see Section 3.3), and restricts hotplug-time exe-
cution to per-CPU hotplug kthreads (see Section 3.4.

36

1 static int my_cpu_hotplug_kthread(void *arg)
2 {
3 int cpu = (int)(long)arg;
4
5 /*
6 * Code here from CPU_STARTING notifier.
7 */
8
9 cpu_hotplug_kthread_started();

10
11 while (!kthread_should_park()) {
12
13 /* Do actual work here. */
14
15 }
16
17 /*
18 * Code here from CPU_DYING notifier.
19 */
20
21 }

Figure 1: CPU-Hotplug Per-CPU kthread Structure

3.1 Generic Per-CPU Hotplug kthreads

Vincent established that creation and deletion of kthreads
can add multiple seconds to CPU-hotplug latencies [1].
One best to avoid this is simply to leave those kthreads
in place while the corresponding CPU is offline. A key
observation (due to Thomas) is that the Linux kernel al-
ready has some threads that remain runnable and bound
to offline CPU, namely the idle threads. A generic facil-
ity will allow the per-CPU hotplug kthreads to have this
same capability, so that they remain quiescent while the
corresponding CPU is offline.

3.2 Notify From Per-CPU kthreads

Given special kthreads managed by the CPU-hotplug fa-
cility, it makes sense to run the code currently in CPU-
hotplug notifiers from within these kthreads. This al-
lows the CPU DYING and CPU STARTING notifiers to use
the full capabilities of the scheduler, allowing more of
the notifier code to execute at CPU DYING and CPU

STARTING time. This in turn simplifies the CPU-hotplug
per-CPU kthreads, as shown by the my cpu hotplug

kthread() function in Figure 1. When a CPU boots
or comes online, this function is invoked. When it fin-
ishes initialization, it invokes cpu hotplug kthread

started() as shown on line 11, signalling that the next
notifier or kthread may now be started.

The loop spanning lines 11-15 terminates when
kthread should park() returns true, indicating that
the corresponding CPU is going offline. The function
then executes offline-time cleanups as indicated by the
comment on lines 17-19.

As noted earlier, the CPU UP PREPARE and CPU DOWN

PREPARE phases can block CPU hotplug. Those that
actually do (for example, smp core99 cpu notify())

must remain notifiers. That said, most do not, and can
therefore can run in kthread context.

However, a great many of the Linux kernel’s notifiers
do not involve a kthread. Creating an additional per-CPU
kthread for each of these notifiers would be overkill, so
these notifiers should remain notifiers. They nevertheless
should run in kthread context, for example, in the context
of the kthread coordinating CPU-hotplug operation.

3.3 Reverse Notifier Order For Offline

One of the reasons for notifier priorities and for the cur-
rent multi-phase CPU-hotplug operation is dependencies
among different subsystems. These dependencies must
be handled manually in a distributed fashion, and is a
major source of pain and of bugs.

A better approach is to note that CPU hotplug is not
atomic, and that CPUs are booted up in an orderly man-
ner, with later function depending on earlier function.
For example, the scheduler uses IPIs and RCU, so a
CPU initializes its IPI and RCU handling before it starts
scheduling processes. Given that the scheduler relies
on IPIs and RCU, it makes no sense whatsoever for the
CPU-hotplug offlining path to shut down IPIs and RCU
before the scheduler. However, that is exactly what the
current CPU-hotplug notifier operation encourages by in-
voking offline-time notifiers in the same order that it in-
vokes online-time notifiers.

The only reasonable approach is to run the offline-time
notifiers in the opposite order from online-/boot-time no-
tifiers. With this approach, IPIs and RCU are notified
before the scheduler when a CPU comes online, and the
scheduler is notified before IPIs and RCU when a CPU
goes offline. This means that the scheduler can count on
IPIs and RCU being operational at all times.

In addition, this approach permits a CPU to be par-
tially torn down to a well-defined checkpoint, for exam-
ple, a CPU might be torn down to the point that all it can
do is run in the idle loop, possibly permitting more ag-
gressive power-efficiency measures to be brought to bear
while providing improved CPU-online latency. Another
example is partially tearing the CPU down to the point
that it still handles interrupts, but does not run normal
tasks, providing a form of CPU isolation.

There will of course be the occasional necessary evil
of layering violations, but with this scheme such viola-
tions should be the exception rather than the rule.

3.4 Only Per-CPU Hotplug kthreads Dur-
ing CPU Hotplug

One feature of the current CPU-hotplug approach that
has caused RCU much grief is the fact that interrupts are

37

disabled during the CPU STARTING and CPU DYING no-
tifiers. This means that RCU cannot create or destroy
kthreads at the logical time to do so, but must instead do
so in one of the other notifiers, and handle either semi-
crippled or semi-safe operations betweentimes.

On the other hand, it would be far worse to con-
tinue running arbitrary tasks during this time because
those tasks would use facilities that had already been torn
down. This is bad for the kernel’s actuarial statistics.2

One solution to this problem is for the scheduler to run
only special CPU-hotplug per-CPU tasks during CPU-
hotplug processing. This allows the notifiers to make
full use of the scheduler facilities when handling their
kthreads, while preventing unwary normal tasks from
straying onto a CPU that is only half working.

4 Alternative Approaches Considered

We considered several alternatives. The first alternative,
continuing with existing CPU hotplug, was dispensed
with in Section 2.

The second alternative was continuing with existing
CPU-hotplug, but running the offline-time notifiers in
reverse order. While this would be an improvement, it
would do nothing to solve the kthread-parking problem.

The final alternative was dispensing with CPU hotplug
completely in favor of things like cpusets and interrupt
affinity. However, the most troublesome aspects of CPU
hotplug are inherent in clearing all current and future
work from a given CPU [3], so little is gained. In ad-
dition, CPU hotplug is still required for failing hardware.

5 Issues

Old-Style Interrupt Controllers Some interrupt con-
trollers cannot be directed away from a given not-yet-
offline CPU. If such an interrupt controller absolutely
must be used, we propose interrupt trampolining as a
workaround.

Scheduler Once RCU has marked a CPU as offline,
it cannot safely do a context switch because the sched-
uler relies on RCU. This can be handled by splitting the
RCU notifiers into an earlier-in-boot notifier that handles
marking the CPU online or offline, and a later-in-boot
notifier that manages RCU’s kthreads.

Early-Boot kthreads RCU initializes itself and regis-
ters its notifiers during early boot, long before kthreads

2 That said, RCU currently must handle offline CPUs running
through the scheduler on their way from their CPU DYING notifiers to
the idle loop. RCU’s method of handling this issue is at best inelegant.

may be created. The implementations of RCU that re-
quire kthreads manually defer kthread creation until after
the scheduler is running.

x86 MTRRs Updates to x86 memory type range regis-
ters (MTRRs) require that all hardware threads in a given
core be quiesced. Although this might slow down hot-
plug for hyperthreaded x86 kernels it should be quite a
bit faster than a full stop machine().

Scanning Online CPUs One of the advantages of
stop machine() is that the final CPU-offline process
appears atomic to any in-kernel code that is not hotplug-
aware. Removing this atomicity means that each of
the several hundred occurrances of for each online

cpu() (which iterates over all online CPUs) will need to
be inspected and perhaps modified.

6 Summary and Conclusions

We expect that the new approach to CPU hotplug will re-
duce hotplug latencies to 5ms, making Linux more use-
ful in both the real-time and battery-powered-embedded
arenas.

Acknowledgements and Legal Statement

We thank Amit Kucheria, Peter Zijlstra, Srivatsa Bhat,
and Steven Rostedt for many valuable and illuminating
discussions. We are indebted to Dave Rusling and Jim
Wasko for their support of this effort.

This work represents the views of the authors and does not
necessarily represent the views of their employers.
Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks
or service marks of such companies.

References
[1] GUITTOT, V. Cpu hotplug. Available: https://wiki.linaro.

org/WorkingGroups/PowerManagement/Doc/Hotplug

[Viewed April 20, 2012], February 2012.

[2] MCKENNEY, P. E. SMP and embedded real time. Linux
Journal, 153 (January 2007), 52–57. Available: http://www.

linuxjournal.com/article/9361 [Viewed May 31, 2007].

[3] MCKENNEY, P. E. The linaro connect scheduler minisummit. Re-
port from the Q2 2012 Linaro Connect scheduler mini-summit on
ARM’s big.LITTLE architecture., February 2012.

[4] RUSSELL, R. Hotplug cpu toy for i386. Available: http://lwn.
net/Articles/76667/ [Viewed April 25, 2012], March 2004.

[5] SEQUENT COMPUTER SYSTEMS, INC. tmp ctl - multi-processor-
control. http://oss.sgi.com/projects/numa/download/

dynix, March 2001.

38

https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug
https://wiki.linaro.org/WorkingGroups/PowerManagement/Doc/Hotplug
http://www.linuxjournal.com/article/9361
http://www.linuxjournal.com/article/9361
http://lwn.net/Articles/76667/
http://lwn.net/Articles/76667/
http://oss.sgi.com/projects/numa/download/dynix
http://oss.sgi.com/projects/numa/download/dynix

