Worst-case backlog evaluation of Avionics switched Ethernet networks with the Trajectory approach

Henri BAUER Jean-Luc SCHARBARG Christian FRABOUL

IRIT/INPT-ENSEEIHT Université de Toulouse

Université de Toulouse

- Avoid over or under sizing of output port buffers in store-and-forward switches
- Industrial concern: at least as important as bounding end-to-end communication delays (aircraft certification)
- Trajectory approach has **improved bounds** on worst case end-to-end delays (compared to Network Calculus)
- → Compute worst case buffer occupancy using the Trajectory approach (with a FIFO servicing policy)
- \rightarrow Application to an industrial AFDX configuration

COMMUNICATION DETERMINISM

Bounded frame transmission time (CST + VAR) :

- Constant part = technological latency
- Variable part = output buffer occupancy
 → maximum backlog

Existing approach

Proposed method

Network Calculus

Trajectory approach

Worst case end-to-end delay computation on an industrial configuration

Trajectory (vs. NC)

- Average: > 10 %
- Maximum : > **34%**

(Previous work)

The Trajectory approach consists in:

- Defining a global equivalent node,
- Counting the occurrences of all the frames that can delay frame m on its path.

The Trajectory approach

Amount of frames delaying m in a given node

m

Busy period

Considering:

- Flows going through the studied node,
- Maximal jitter of the incoming frames
- Maximum traffic contract of each flow (s_{max} , BAG)

In an output port h, for a given flow (to whom frame **m** belongs) the **maximum backlog** occurs when **m incurs maximum delay**

Frames belonging to the busy period

Major challenges:

- With increasing loads, several frames per flows have to be counted;
- The worst case does not necessarily happen with the first frame in a row.
- \rightarrow iterative calculation

Superset

Why is it a superset ?

Impact of the serialization effect

Frames coming from a previous node through the **same input link** are already **serialized**

Frames belonging to the same "train" do not delay each other more than once

Which frames should be discarded?

Impact of the serialization effect

Principle of the calculation

Inequality

Busy period of m in a given node (Traj. approach) Set of frames that can not generate backlog in the worst case Worst case backlog for m in the node

Maximize this term, such as the inequality holds...

Worst case happens when frames are sorted by decreasing size

Frame order matters

Application to an industrial case

AFDX avionics configuration

Computation scalability

Some figures

- 126 End Systems (ES)
- 18 switches (24 ports each)
- >1000 Virtual Links (VL)
- >15000 paths (due to multicast paths)

Switch output ports sorted by decreasing improvement

Conclusion and perspectives

Did we reach our goals?

What's next?

- → Compute worst case buffer occupancy using the Trajectory approach
 - OK for AFDX with FIFO servicing policy
 - Could be extended to QoS-aware servicing policies
 - Improve bound on busy period earliest starting time
- → Application to an industrial AFDX configuration
 - Computation scales up to real case networks
 - Improvement consistent with previous results on delay
 - Reduction of switch maximal buffer size requirement

Thank you for your attention!

