thinken is so gra in sjilv att 1 gra:

Control-Quality Optimization for Distributed Embedded Systems with Adaptive Fault Tolerance

Soheil Samii^{1,2}, Unmesh D. Bordoloi², Petru Eles², Zebo Peng², Anton Cervin³

¹Embedded Intelligent Solutions, Semcon AB ²Dept. of Computer and Information Science, Linköping University ³Dept. of Automatic Control, Lund University

Sweden

LfJ for

Overview of our approach

- Classify <u>feasible</u> configurations
 - Sufficient computation capacity
 - Availability of external interfaces to sensors and actuators
- Synthesis of a certain set of base configurations is sufficient to satisfy fault-tolerance requirements
- Design optimization for additional configurations to optimize control quality

Outline

- System model
- Example: Distributed control systems with faults
- Base configurations
- Control-quality optimization
- Experiments

System model

Control quality

- Quadratic cost: $J = E\{ x^TQ_1x + u^TQ_2u \}$
- Depends on
 - the sampling period,
 - the control law, and
 - the mapping and schedule (delays between sampling and actuation)
- "Jitterbug" (Lund University)

Co-Design Tool for Distributed Control

- Sensors: Node A and C
- Actuators: Node C and D

- Sensors: Node A and C
- Actuators: Node C and D

Actuators: Node C and D

17

Optimization

- Construct solutions for additional configurations (heuristic considers node failure probabilities)
 - Trade-offs: control quality, design time
- Mapping realization (ILP formulation)
 - Task migration (time constraint, overhead)
 - Store tasks on nodes (memory constraint)
- Cost function to minimize:

$$\sum_{C} p_{C} \cdot J_{C}$$

p_c: Probability of reaching configuration C

Experiments

Conclusions

- Faults lead to different configurations
 - Not practical to design a customized solution to each configuration
- Synthesize solutions to a subset of all configurations in order to achieve a level of fault tolerance given by the available sensor/actuator interfaces and capacity of the platform
- Optimization method for control-quality improvements in the configurations