

Optimal Program Partitioning
for Predictable Performance

Jack Whitham and Neil Audsley
Real-time Systems Group

University of York

Program Partitioning

● Programs are typically larger than
local memory
● L1 cache ~ 16kb
● L1 scratchpad memory (SPM) ~ 16kb
● Typical program size?

● How can a large program make good use
of local memory?

Program Partitioning

● Program is divided into regions
● Regions consist of methods,

basic blocks, loops...

● One region is in local memory at a time
● Regions are small enough to fit in local

memory

● If execution leaves one region,
another region is loaded

Program Partitioning

● Cache: implicit partitioning
● Program elements loaded on demand

● SPM: explicit partitioning
● Algorithm required to divide large programs

into regions

● Extra complexity... why use SPM?
● Predictability
● Performance

fdct

● MRTC benchmark
● 223 words (Microblaze, mbgcc Os)

● 56 cache misses OR one SPM load

fdct

● 56 cache misses @ 29 clock cycles each
(on my FPGA)

= 1624 clock cycles waiting

OR
● One SPM load of 223 words

= 286 clock cycles waiting

One SPM load

LatencyProgram runs

R
eq

u
es

t
1

 Data Received

One SPM load

● SPM load is pipelined

Latency Data Received Data ReceivedProgram runs

R
eq

u
es

t
1

R
eq

u
e

st
 2

One SPM load

● SPM load is pipelined

● After initial latency, the bus is never idle

Latency Data Received Data Received Data ReceivedProgram runs

R
eq

u
es

t
1

R
eq

u
e

st
 2

R
eq

u
es

t
3

R
e

q
u

es
t

4

R
eq

u
es

t
5

56 cache misses

● Cache load is not pipelined

● Cache misses depend on the program
control flow

Latency Data ReceivedProgram runs

R
eq

u
es

t
1

Program runs

56 cache misses

● Cache load is not pipelined

● Cache misses depend on the program
control flow

Latency Data ReceivedProgram runs

R
eq

u
es

t
1

R
eq

u
es

t
2

LatencyProgram runs Data Received

0 50 100 150 200 250 300 350

0

500

1000

1500

2000

2500

SPM
Cache

Number of words

L
o

a
d

i n
g

 c
o

s
t

fdct

fdct

● Measured WCET on FPGA platform
● 4213 clock cycles with 256 word cache
● 2903 clock cycles with 256 word SPM

● 45% faster (real hardware)

● But this is a small program
● Larger programs would require...

fdct

● Measured WCET on FPGA platform
● 4213 clock cycles with 256 word cache
● 2903 clock cycles with 256 word SPM

● 45% faster (real hardware)

● But this is a small program
● Larger programs would require...

● Partitioning!

Partitioning a Call Tree

Call Tree Notation

● Method X calls method Y

void X(void)
{
 …
 Y();
 …
}

Call Tree Notation

● Method X calls method Y 94 times

void X(void)
{
 …
 for(i=0;i<94;i++)
 Y();
 …
}

Call Tree Notation

● Method sizes
● Method X has size

100 words
● Method Y has size

20 words

Partitioning Example

● Program containing 10 methods
● Total method size 424 words
● SPM size 128 words

● Minimise the cost of region transitions
● Enforce upper bound on region size

Partitioning Algorithms

● Exhaustive search
● Greedy (min-cut)
● Greedy (merging regions)
● Dynamic programming

Dynamic Programming

● Program represented as a tree
● Typically a call tree

● Partitions created from leaves to root
● Optimal partition in polynomial time!

Dynamic Programming

● Program represented as a tree
● Typically a call tree

● Partitions created from leaves to root
● Optimal partition in polynomial time!

● Optimal wrt. program representation
and a single “typical” execution path
(not necessarily worst-case path)

Lukes' Algorithm

● J.A. Lukes (1974) invented an O(nk2)
algorithm for partitioning call trees

● For each subtree root and each possible
root region size, memoise the optimal
partition

Contributions of the paper

Result 1

● Lukes' algorithm does not generate
optimal solutions when the cost of loading
regions is taken into account

Lukes' cost:
10

SPM loading cost:
10 ⨯ loading 58 words +
10 ⨯ loading 34 words

SPM loading cost: 429

SPM loading cost: 360

Algorithm 1

● New partitioning algorithm ELA-1 which
includes region sizes in cost calculations

● Principal difficulty – cost calculations
depend on the caller as well as callee

● Caller region size is unknown

ELA-1

● Unknown caller region size
represented by α

● For each subtree root and each possible
root region size and each possible α,
store optimal partition

● Lukes: O(nk2)

ELA-1: O(nk3)

(up to k possible values of α)

Result 2

● Comparison of ELA-1 and cache
● Recall: fdct program

● Single region
● 4213 clock cycles with 256 word cache
● 2903 clock cycles with 256 word SPM
● 45% faster (4213/2903 = 1.45)

● Repeated experiment with other MRTC
programs

compress
matmult

bsort100
edn

ns
crc

expint
recursion

cnt
cover

f ir
f ibcall

insertsort
jfdctint

duff
fac

complex
fdct

lcdnum
binarysearch

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

Improvement

Exec time
>>

load time

Single
region

Sparse
execution

Improved evaluation

● Smaller SPM: increase pressure
● Tried exlining loops

● Separate loading time and execution time
● Clearer results for long-running benchmarks

64 128 256 512 1024 2048 4096

binarysearch - - 2.12 2.12 2.12 2.12 2.12

bsort100 - 0.76 1.50 2.14 2.14 2.14 2.14

crc - - 0.94 1.13 1.74 1.74 1.74

edn - - - - 0.40 1.12 1.45

fir - - 0.62 1.90 1.90 1.90 1.90

insertsort - - 0.19 2.00 2.00 2.00 2.00

jfdctint - - - 1.44 1.50 1.62 1.62

matmult - 1.16 2.40 3.93 1.78 1.78 1.78

0.19 3.93

ELA-1 vs Cache

Loading times only
Loops exlined

Algorithm 2

● Problem: call tree representation
● Sometimes, methods don't fit

– Small SPM size
● Whole methods are loaded even if parts are

rarely/never used
– c.f. “compress”

● Solution: ELA-2: an attempt to extend
ELA-1 for general control-flow graphs

ELA-2 vs Cache
64 128 256 512 1024 2048 4096

binarysearch 2.73 2.25 2.21 2.21 2.21 2.21 2.21

bsort100 2.55 0.94 2.09 2.22 2.22 2.22 2.22

crc 1.33 1.08 2.07 1.46 2.05 2.05 2.05

edn 1.17 1.32 1.19 1.82 2.11 1.95 1.69

fir 1.63 1.69 0.81 2.02 2.02 2.02 2.02

insertsort 2.03 1.59 1.95 2.08 2.08 2.08 2.08

jfdctint 1.50 1.48 1.33 1.94 1.91 1.81 1.81

matmult 1.94 1.47 2.75 5.79 1.85 1.85 1.85

0.19 3.93 Loading times only

ELA-2

● ELA-2 is not widely applicable
● Loops are a problem, and poorly handled

● O(2Lnk3) time for L loops (!)

● A better solution is required
● Greedy heuristics may be the best-known

solution so far

Conclusions

● Partitioning brings the performance and
predictability benefits of SPM to larger
programs

● Optimal algorithm ELA-1 specified
● ELA-1 is very useful if a call tree can be

partitioned effectively
● Difficulties in generalising ELA-1 for control

flow graphs (ELA-2)

Thankyou

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

