

A sensitivity analysis of two worstcase delay computation methods for SpaceWire networks

Thomas Ferrandiz ¹ <u>Fabrice Frances ¹</u> Christian Fraboul ² Université de Toulouse (¹ ISAE , ² IRIT/INP-ENSEEIHT)

Illustrated with a single contention example...

« On-the-fly » retransmission

Local flow-control (per link)

Wormhole routing

« Round-robin » election

Approaches for routed SpaceWire end-to-end delay analysis

- Simulation
 - MOST simulator (OPNET-based)
 - developed by TAS (Thales Alenia Space)
 - sold to the ESA (European Space Agency)
 - 16 seconds simulated in ~ 1 hr
 - Cannot be presented as a proof that the observed worstcase will never be exceeded
- Model-checking
 - Model developed at TAS
 - cannot tackle the case study (combinatorial explosion)
- Calculation of latency bounds
 - Thomas Ferrandiz' thesis

Calculating latency bounds in routed SpaceWire networks

- Several methods developed during Thomas Ferrandiz' thesis
 - First simple Recursive Calculus (DEDS'2011)
 - Enhanced Recursive Calculus (ECRTS 2010) : RC
 - Network Calculus method (ECRTS 2011) : NC
- Each method has strong and weak points
 - None is fully satisfying... stay tuned if you are looking for a new application domain...

Industrial Case Study

- A single SpaceWire network for both the scientific traffic, and the control (getting rid of 1553B)
 - Need to guarantee time constraints for the control
 - ⇒ Calculate an upper bound
- Representative (for the next 20 years !) of the size of onboard networks in the largest satellites

Traffic flows

Traffic flows

Traffic flows

Command packets 1000 bytes Period: 80 ms

Telemetry packets 4000 bytes Period: 40 ms

Sensitivity analysis of RC and NC methods

1. Fragmentation of the large scientific packets :

- Bounds calculated with RC are reduced but not in the same level as packet size reduction
 - (RC assumes that buffers are full of HK packets, which wait behind large TM X packets)
- Bounds calculated with NC are much tighter than with RC and reduce with a larger factor along with packet size reduction
 - Most flows have a large period, so NC counts much less packets than RC

Sensitivity analysis of RC and NC methods

2. Influence of small service rate equipments

- RC gives unusable over-estimated bounds
 - No "pay-burst-only-once" effect : multiplication of worstcase scenario of all crossed routers
 - Reduction of packet size actually increases some bounds
- NC gives usable bounds, but...
 - The 20-bytes-long packets delay the 4000-byte-long scientific packets, whereas the opposite was expected!
 - In this situation reducing the scientific packet size doesn't have a large impact
 - The bounds for the Command packets are better with RC than with NC: this comes from a preemptive model of the sharing of our "Wormhole section" by two conflicting flows

Sensitivity analysis of RC and NC methods

3. Impact of the size and period of the packets

- RC gives period-independent bounds, best when the traffic is saturated with large packets
- NC gives better or equal bounds (depending on the network size) when the traffic is far from being saturated
- but NC gives more-pessimistic bounds when the traffic is saturated with large packets
- When the traffic is saturated with a combination of small and large packets, NC becomes better again, but only because RC counts too many small packets
- 4. Impact of crossed flows and slow terminals
 - In a network with crossed flows, RC usually gives better bounds than NC, except when the network carries very small packets to a slow terminal
 - The pre-emptive model of the wormhole section sharing weights more than the gains due to taking the periods into account

Open problems

- Space Industrials were looking for a fast analysis technique that "gives approximately the same results as those obtained with MOST simulator"
 - Such a request is obviously arguable (rare events not captured by simulation)...
 - Many bounds obtained with our methods are compatible with the time constraints but others are still an order of magnitude higher than the worse latencies observed with the simulator
- The size of the network is much smaller than networks in civil aircrafts:
 - Is it possible to investigate exhaustive analysis techniques?
 - Still working on optimization of Model Checking, and plans to try SDD
 - Other analysis techniques ?