Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

> Haibo Zeng, Marco Di Natale McGill University – Montreal, Canada Scuola Superiore S. Anna – Pisa, Italy

Outlines

- Motivations
- Synchronous FSMs
 - actions, not tasks
 - Need to map reactions into tasks
 - Applicability of Existing Task Models
- Schedulability Analysis Overview
- Efficient Calculation of RBF and DBF
 - Execution Request Matrix
 - Periodicity of Execution Request Matrix
- Summary and Future Work

Model-based Design

- Popular in many application domains of real-time systems
 - Automotive
 - Avionics
- To deal with complexity
 - Model everything for design (engineering) and analysis (science)
 - It is necessary to select a modeling language in the most natural and easy way
- The four tenets on the right are fundamental to model-based design
- No program by hand
- Starting point is functional model
- Automatic generation of implementation is key
- Synthesis of tasks, priorities, allocation, communication mechanisms ...

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

Motivations

- Synchronous FSMs are used in the most popular model-based design tools
 - SCADE

Synchronous Finite State Machines

- Event *e*;:
 - Period T_i
 - Offset = 0
- State S_i
- Transition $S_i -> S_j$
 - Trigger event
 - Action a_k :
 - WCET C_k
 - guard, priority
- Hyperperiod H = lcm of event periods
- Scheduled with static priority
 - As in commercial code generators (Simulink Coder, dSPACE TargetLink)

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

Existing Task Models

- Actions and tasks:
 - Assumption: all actions are executed by a single task
 - Other options are possible
- Digraph task model [1] and its extension [2]
 - Accuracy issue
 - Arbitrary offsets
 - Dynamic priority scheduling (EDF)
 - Efficiency issue
 - Patterns of trigger events repeat every hyperperiod
 - Further periodicity by max-plus algebra

[1] M. Stigge et al. "The digraph real-time task model," in Proc. the 16th IEEE Real-Time and Embedded Technology and Applications Symposium, 2011.

[2] M. Stigge et al. "On the Tractability of Digraph-Based Task Models," in Proc. the 23rd Euromicro Conference on Real-Time Systems, 2011.

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines H. Zeng, M. Di Natale

digraph model

digraph model with interfame separation

Schedulability Analysis Overview

Schedulability Analysis for Task *i*

FOR each priority level-*i* busy period [*s*,*f*) IF $\exists t \in [s, f), \forall t' \in [s, t]$ such that $\tau_i.dbf[s,t] + \sum_{j \in hp(i)} \tau_j.rbf[s,t') > t' - s$ THEN return **unschedulable** ENDFOR Return **schedulable**

Remaining Question:

how to efficiently calculate $rbf(\Delta)$ and $dbf(\Delta)$ for a given time interval Δ ?

Event Sequence Pattern and Reachability Graph

Need to compute the request bound function

reachability graph in one hyperperiod

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

Refinement of rbf

- $rbf_{i,j}(\Delta)$:
 - source state of the first transition is S_i
 - sink state of the last transition is S_i
- $rbf_{i,i}(\Delta)$ is **additive** (but $rbf(\Delta)$ is not)
 - $rbf_{i,j}[s,f) = \max_{m}(rbf_{i,m}[s,t) + rbf_{m,j}[t,f))$
 - $rbf_{i,j}[s, f)$ for a long interval [s, f) can be computed from its values for shorter intervals [s, t) and [t, f)

Key property to enable dynamic programming techniques

Execution Request Matrix

 The request bound function in one hyperperiod $-X = (x_{i,i})$, where $x_{i,i} = rbf_{i,i}[0,H)$ $\implies X = \begin{bmatrix} 0.65 & 0.9 & 1.07 \\ 0.45 & 0.7 & 0.8 \\ 0.95 & 1.2 & 1.3 \end{bmatrix}$ e1=2ms e2=5ms event sequence in one hyperperiod $o_1 \quad S1 \xrightarrow{e_1/a_1} S2 \xrightarrow{e_1/a_3} S3 \xrightarrow{e_2/a_2} S1 \xrightarrow{e_1/a_1} S2 \xrightarrow{e_1/a_3} S3$ e1/a1 0.25 S1 i₂ 02 e1/a3 $\Rightarrow x_{1.3} = 1.0$ e2/a2 0.1 S2 0.3 $\implies X = \begin{bmatrix} 0.65 & 0.9 & 1.0 \\ 0.45 & 0.7 & 0.8 \\ 0.95 & 1.2 & 1.3 \end{bmatrix}$ i_n 0_m **S**3 e2/a4 0.15

Execution Request Matrix

 The request bound function over several hyperperiods

$$- X^{(k)} = (x_{i,j}^{(k)}), \text{ where } x_{i,j}^{(k)} = rbf_{i,j}[0,kH)$$
$$- \forall i, j, \forall 1 \le l < k \quad x_{i,j}^{(k)} = \max(x_{i,m}^{(l)} + x_{m,j}^{(k-l)})$$

$$-X^{(k+1)} = \begin{bmatrix} 0.65 & 0.9 & 1.0 \\ 0.45 & 0.7 & 0.8 \\ 0.95 & 1.2 & 1.3 \end{bmatrix} + k \times 1.3$$

This indicates some additional periodicity

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

 \mathbf{m}

Basics on Max-Plus Algebra

 Operations maximum (denoted by the max operator ⊕) and addition (denoted by the plus operator ⊗)

 $-a \oplus b = \max(a, b)$ $a \otimes b = a + b$

• Multiplication of two square matrices

-
$$A \otimes B = C$$
, where
 $c_{i,j} = \bigoplus (a_{i,m} \otimes b_{m,j}) = \max_{m} (a_{i,m} + b_{m,j})$

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines H. Zeng, M. Di Natale

Periodicity of Matrix Power in Max-Plus Algebra

Studied by its corresponding digraph $\mathcal{G}(X)$ •

$$X = \begin{array}{cccc} 1 & 2 & 3 \\ 1 & 0.65 & 0.9 & 1.0 \\ 0.45 & 0.7 & 0.8 \\ 3 & 0.95 & 1.2 & 1.3 \end{array}$$

0.45 0.70.65 2 0.9 0.8 0.95 1.2 3 1.3 Edge (i,j) has weight equal to matrix element $x_{i,i}$ $\mathcal{G}(X)$

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

Periodicity of Matrix Power in Max-Plus Algebra

- If the digraph G(X) is strongly connected
 - $X^{(k+p)} = X^{(k)} + p \times q$ for sufficiently large k
 - $-p = \text{maximum cycle mean of } \mathcal{G}(X)$
 - -q = lcm of all the cycles with mean equal to p

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines

The Efficient Way of Calculating rbf

• For small intervals

$$\frac{1}{s} \xrightarrow{n_{s}H} \xrightarrow{n_{f}H f} \\
rbf_{i,j}[s, f) = \max_{k,l} (rbf_{i,k}[s, n_{s}H) + rbf_{k,l}[n_{s}H, n_{f}H) \\
+ rbf_{l,j}[n_{f}H, f)) \\
= \max_{k,l} (rbf_{i,k}[s, n_{s}H) + x_{k,l}^{(n_{f}-n_{s})} \\
+ rbf_{l,j}[0, f - n_{f}H))$$

• For large intervals: the above equation applies, but

 $\begin{aligned} x_{k,l}^{(n_f-n_s)} &= x_{k,l}^{(n)} + (n_f-n_s-n) \times q_{k,l}(k) \\ \text{where } n \leq d \text{ and } n+p > d, \quad n_f-n_s \equiv n \equiv k \mod p. \end{aligned}$

Asymptotic complexity independent from length of interval

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines H. Zeng, M. Di Natale

Summary and Future Work

- Efficient and accurate schedulability analysis
 - Event sequence pattern within one hyperperiod
 - Max-plus algebra for evaluating the periodicity of the execution request matrix
- Multi-task implementation of an FSM
 - Issues with single task implementation
 - all actions executed at the same priority level
 - tight deadline (equal to the gcd of event periods)
 - inflexible for avoiding overhead from communication
- Extension of periodicity of *rbf* and *dbf* to generic digraph task models

Thank you!

haibo.zeng@mcgill.ca

Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State Machines