
Semi Partitioned Hard Real-Time
Scheduling Under Locked Cache

Migration in Multi-Cores

By

Mayank Shekhar1

Harini Ramaprasad1

Frank Mueller2

Abhik Sarkar2

1: Southern Illinois University Carbondale

2: North Carolina State University

Introduction

• Multi-core architectures

– Provide more computational power

– Have increased power/energy efficiency

– Increasingly used in Real-Time/Embedded Systems

• Hurdles in using multi-cores in real-time
systems

– Unpredictability in execution increases

– Inefficient Scheduling leads to 'hot spots'

Background

Categories of multi-core scheduling algorithms are

• Partitioned -Tasks statically assigned to cores
– Advantages:

• No migration overhead

• Low on-line overhead

• Uni-processor algorithms can be reused

– Disadvantages:
• Optimal task allocation is an NP-hard problem

• Could lead to poor load balancing

• Unable to use free processing time on idle cores

Background(2)

• Global – Dynamic Task allocation

– Advantages :

• Increased Utilization

• Improved load balancing

– Disadvantages :

• Higher scheduling overhead

• Migration overhead (Ex- Cache to cache migration)

• Guaranteeing Predictability is challenging

Background(3)

• Semi-Partitioning :

• Most tasks statically partitioned onto cores

• Few tasks migrate among group of cores

• Advantages :

• Less scheduling overhead compared to global

• Less migration overhead compared to global

• Improved load balancing compared to Partitioning

• Increased utilization compared to Partitioning

Related Work

• Andersson et al., Kato et al. and Dorin et al. have
proposed semi-partitioning algorithms in past

– These algorithms aim at reducing migration overhead

– Constants added to WCET for migration overhead

– Don’t consider cache content migration.

• Sarkar et al. proposed

– proactive, push-based migration mechanisms for bus-
based multi-core architectures

– mechanisms for locked cache migration

Current work

• Cache based migration not trivial in multi-
cores

• In our current paper we

– Explicitly consider cache related factors

– Reduce on-line overhead by offline decision
making

– Use push-based mechanism for cache-content
migration

Assumptions-Architectural Model

– Homogeneous multi-cores

– Private lockable K-way set associative caches on
each core

– A 2-D mesh-based Network On Chip(NoC)

• Dedicated bi-directional channel for cache to cache
transfers

• No interference with channels for main memory traffic.

• Ex- TilePro64-64 core architecture

Assumptions-Task Model
– Periodic hard real-time tasks

– Relative deadlines <= Periods

– Independent tasks

– Can lock cache footprints

– Unlocked memory lines bypass cache

– K-1 ways lockable by partitioned tasks

– No tasks wrap around

– One migrating task per core

– WCET independent of core location

Weighted TDM approach

● Memory requests are

– Statically routed along straight path to the
memory controller

– Arbitrated using TDM approach

A

B

C

Memory Controller

Weighted TDMA

• Main memory traffic bandwidth

– Proportional to number of hops

– Noc latency across bus C for
core A,B and C is 2, 3 and 6

• Total NoC latency for

• Traffic from core A is 5 cycles

• Traffic from core B is 6 cycles

• Traffic from core C is 6 cycles

Core
A

Core
C

Core
B

M.C

Bus A

Bus B

Bus C

3 hops

2 hops

1 hop
3:2:1

Algorithm(Partitioning)

T1(0.6)
11

T2(0.5)

T3(0.3)

T4(0.3)

T5 0.25

Core 1

T1

T2

Core 2

T1(0.6)

T3(0.3)

T2(0.5)

T 4(0.3)

T5
0.25

Where ??

Theory Involved

• Slack Time : Free time available on a core.

• Theorem : A migrating task T gets highest
priority for time δ within any time interval
equal to the shortest relative deadline

Available Slack
Time Multiplied by

Utilization Cap

∑Sum of all WCETs

Theorem Implication

• T gets highest priority upon arrival to a core

• Its remaining utilization decreases with each
migration

• On last core, it executes as normal task

• Schedulability of non-migrating tasks on those
cores not affected

Algorithm(Migration)

Tasks T1 T2 T3 T4 T5

Periods 1000 1000 1000 1000 1000

WCET 600 500 300 300 225

Core 1
Slack Time = 100

Core 2
Slack Time = 200

T5
0.25 Core 2 Core 1

WCET(left) = 25
Deadline(left) = 800
Util (no migration) = 0.03
Util + Migration = 0.1

Algorithm

• Migration overhead consists of

• Read latency at source core

• Write latency at target core

• Transfer time of cache lines from source to target core

• Time to return to the first core

• Assign migrating task to cores such that migration
overhead is minimized

Experimental Setup

Processor In-order

Cache Line Size 32 Bytes

L1 D-Cache Size/Associativity 256KB/4-way

L1 hit latency 1 cycle

Number of Cores 9

External Memory Latency 72 cycles

Experimental Results

• Used DSPStone
Benchmarks

• For Utilization caps of
0.5,0.75 and 1

– Comparing with purely
partitioned approach.

• We show the increase
in utilization and
density

Experimental Results

• Compares utilization
cap needed by
Partitioning and Semi-
Partitioning to schedule
same task set

• Lower Utilization cap
can lead to save power
eventually

Conclusion

• Compared to purely partitioned approach we
achieve

– an average increase in utilization of 36.75%

– an average increase in density of 78.32%

 THANK YOU

