Relaxing Mixed Criticality Scheduling Strictness For Task Sets Scheduled With Fixed Priority

François Santy¹, Laurent George², Philippe Thierry², Joël Goossens¹

¹Université Libre de Bruxelles Bruxelles, Belgium

²ECE / LACSC Paris, France

What are mixed-criticality systems?

A task's tolerance to a deadline miss is represented by a criticality level:

- High criticality tasks: tolerate no deadline miss
- Low criticality tasks: tolerate occasional deadline misses

Mixed-criticality systems are systems composed of tasks having heterogeneous criticality levels.

Mixed-criticality in the avionics

<u>Level</u>	Failure Condition	Effects
А	Catastrophic	Failure may cause a crash. Error or loss of critical function required to safely fly and land aircraft.
В	Hazardous	Failure has a large negative impact on safety or performance, or reduces the ability of the crew to operate the aircraft due to physical distress or a higher workload, or causes serious or fatal injuries among the passengers.
С	Major	Failure is significant, but has a lesser impact than a Hazardous failure (for example, leads to passenger discomfort rather than injuries) or significantly increases crew workload.
D	Minor	Failure is noticeable, but has a lesser impact than a Major failure (for example, causing passenger inconvenience or a routine flight plan change).
E	No effect	Failure has no impact on safety, aircraft operation, or crew workload.

RTCA-DO178B

Work hypotheses

- Uni-processor
- Sporadic tasks
- Preemptive tasks

• CAPA scheduler

Mixed criticality systems are subject to certification

Each certification authority might only be interested in a subset of the tasks

tasks:

CertificationAuthority₁ will certify the system if the CertificationAuthority₂ will certify the system if the task:

 τ_1

 T_1 T_2

always meet their deadline:

 τ_1 τ2 н 0 2 3 5 • $\tau_1 = (D_1, T_1, X_1 = 2, 1)$ • $\tau_2 = (D_2, T_2, X_2=1, 2)$

always meet its deadline:

Mixed criticality systems are subject to certification

How to deal with mixed criticality tasks?

- Prioritize the deadline of high criticality tasks
- Possibly at the expense of lower criticality tasks
- Task suspension may occur during the scheduling of the system

Task suspension only relies on the certification hypotheses

Relaxing Mixed Criticality Scheduling Strictness For Task Sets Scheduled With FP

Task suspension is undesirable

- It is a reasonable agreement
- Nevertheless:
 - It should be avoided when it is not necessary
 - It should be restrained as much as possible in time when required

Task suspension is not always carried out when strictly necessary!

•
$$\tau_1 = (D_1 = T_1 = 8, X_1 = 2, C_1 = \{ 3, 7 \})$$

• $\tau_2 = (D_2 = T_2 = 7, X_2 = 1, C_2 = \{ 2, / \})$

Computation of the allowance: a fair distribution

- Advantage: straightforward
- Drawback: maximum value is restrained by the least flexible task

•
$$\tau_1 = (D_1 = T_1 = 8, X_1 = 2, C_1 = \{ 3, 7 \})$$

• $\tau_2 = (D_2 = T_2 = 5, X_2 = 1, C_2 = \{ 2, / \})$

 τ_1 can be granted no allowance because of τ_2

Computation of the allowance: any distribution

- Much more flexible
- Requires the computation of the allowance domain

Computation of the allowance: any distribution

- Much more flexible
- Requires the computation of the allowance domain

Computation of the allowance: any distribution

- Much more flexible
- Requires the computation of the allowance domain

•
$$\tau_1 = (D_1 = T_1 = 8, X_1 = 3, C_1 = \{ 1, 3, 7 \})$$

• $\tau_2 = (D_2 = T_2 = 7, X_2 = 2, C_2 = \{ 1, 3, / \})$
• $\tau_3 = (D_3 = T_3 = 5, X_2 = 1, C_3 = \{ 1, /, / \})$

Implementation of the allowance

- We need to detect absolute time instants
- Online management of the allowance: Latest Completion Time (LCT)

Implementation of the allowance

•
$$\tau_1 = (D_1 = T_1 = 8, X_1 = 3, C_1 = \{ 1, 3, 7 \})$$

• $\tau_2 = (D_2 = T_2 = 7, X_2 = 2, C_2 = \{ 1, 3, / \})$

•
$$\tau_3 = (D_3 = T_3 = 5, X_2 = 1, C_3 = \{ 1, /, / \})$$

Criticality level 1

Allowance recovery based on the LCT

• Unused allowance can be recovered by tasks having a lower priority:

Task suspension can be restrained in time

Each time an idle time is met, the criticality of the system can be reset.

Quantifying the benefits of our improvements

We compared three different approaches:

- the traditional approach (TA)
- the task reversion mechanism (CD)
- the task reversion mechanism as well as the ability to consume allowance (CD-A)

Quantifying the benefits of our improvements

We notice an average decrease of 30% of the jobs drops

Conclusion

We were facing two problems:

- 1. Unnecessary task suspension
- 2. Everlasting task suspension

We solved those problems by:

- 1. The computation of the allowance and LCT online mechanism
- 2. Restraining task suspensions within finite time intervals

The combination of 1 and 2 allows an average decrease of 30% of jobs drops

