

Replacement Policies for a Function-based Instruction Memory: A Quantification of the Impact on Hardware Complexity and WCET Estimates

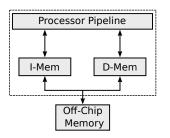
Stefan Metzlaff and Theo Ungerer

Department of Computer Science, University of Augsburg, Germany

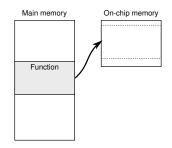
ECRTS12 24th Euromicro Conference on Real-Time Systems July 12, 2012

ECRTS12 Metzlaff and Ungerer / Replacement Policies for a Function-based Instruction Memory

Safety-critical hard real-time systems


- No deadline miss tolerable
- System schedule requires safe and tight WCET bound per task
- Determination of the timing of the whole system, including
 - ▶ the executed software (task with all input data sets, OS)
 - ► the underlying hardware (CPU, memory hierarchy, bus, etc.)
- Speed gap between processor and main memory
 - ► Usage of fast, but small on-chip memories

Memory hierarchy has a major contribution to the system's predictability and worst case performance

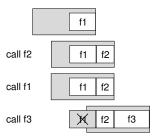

- Approaches for on-chip memories in hard real-time systems
 - Scratchpads with fixed content
 - SW-managed scratchpads
 - ► Cache locking
 - Cache analysis
 - Function-based instruction memories

Function-Based Instruction Memories for Real-Time Systems

Universitä Augsburg Universit

- Load a function completely into on-chip memory before executing
- Predictable and instantaneous execution of functions
- Examples: Method-Cache [Schoeberl 04] and D–ISP

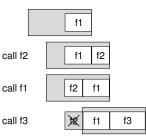
Examination of the impact of different replacement policies on WCET estimate and hardware complexity



Replacement Policies for Function-Based Memories

FIFO replacement policy

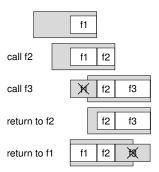
- Keeping recently loaded functions
 - Eviction of the oldest function
- Implementable in hardware with low complexity
 - Queue with write and eviction pointer



Replacement Policies for Function-Based Memories

LRU replacement policy

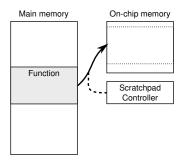
- Keeping frequently accessed functions
 - Eviction of the least recently used function
 - Order depends on access history
- Too complex to implement in hardware, because
 - 1. functions of different size
 - 2. reordering of memory content
 - 3. memory fragmentation



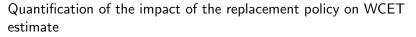
Replacement Policies for Function-Based Memories

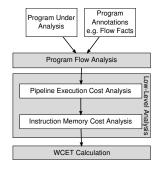
Stack-based replacement policy

- ► Keep active branch of call tree
 - Definitely accessed again
 - At the expense of sibling function
 - Eviction of the function with largest stack distance
- Possible hardware implementation
 - Double ended queue with different write and eviction pointers for call and return



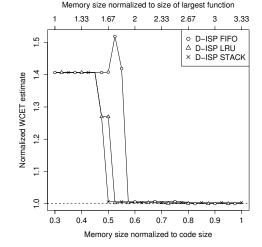
Dynamic Function-Based Instruction Scratchpad (D–ISP)


 Using function-based instruction memory D–ISP for comparison of the replacement policies


- Two operation phases: load function & execute function
- Dynamic content management
 - ► Is aware of D–ISP content
 - Load of complete function from off-chip memory
 - ► A function is always in in memory before its execution
- Instruction memory access
 - ► All fetches directed to D-ISP
 - Always hit for any fetch

WCET Estimation: Static WCET Analysis Tool

- Static WCET analysis tool
 - Dual-issue in-order processor
 - Timing model of D–ISP with FIFO, Stack-based, and LRU replacement policy
 - D–ISP analysis using collective semantics
 - ► No on-chip data memory


Universität Augsburg

D–ISP Replacement Policy Comparison for Sha

- Benchmark: Sha
- FIFO with high eviction rate for small memory sizes
- Stack-based with few evictions for small sizes, but non-optimal behavior for large sizes

Hardware Estimation for D–ISP Replacement Policies

- Comparison of the hardware effort
- VHDL implementation of D–ISP controller with FIFO and stack-based replacement policy
- Synthesized for Altera Stratix II FPGA

Replacement Policy	ALUTs	Registers	Max. f
FIFO	809	613	103.17 MHz
Stack-based	995	643	101.21 MHz
Overhead of stack-based	+23.0%	+4.9%	-1.9%
compared to FIFO (in %)			

 Additional logic and register usage caused by different operation modes for call and return and their maintenance

- Function-based instruction memory for HRT systems and the implementation of different replacement policies
- ► Comparison regarding WCET estimate & hardware effort
 - ► LRU: usually best WCET estimates, but not implementable
 - ► FIFO: lowest implementation cost, but high WCET estimates
 - Stack-based: with additional hardware effort than FIFO, WCET estimates comparable to LRU
- Future work
 - Development of scalable analysis techniques for function-based replacement policies