
Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Title

1

Supporting Nested Locking in
Multiprocessor Real-Time Systems

Bryan C. Ward
James H. Anderson

Dept. of Computer Science
UNC Chapel Hill

July 13, 2012

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

2

Locking protocols are used to control
access to shared resources.

Real-time locking protocols must
have predictable blocking behavior.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

2

Locking Protocol

Locking protocols are used to control
access to shared resources.

Real-time locking protocols must
have predictable blocking behavior.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

2

Locking Protocol

Locking protocols are used to control
access to shared resources.

Real-time locking protocols must
have predictable blocking behavior.

Shared Resource

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

2

Locking Protocol

Locking protocols are used to control
access to shared resources.

Real-time locking protocols must
have predictable blocking behavior.

Shared Resource

Tasks blocked waiting
(busy-waiting or suspended)

 for a resource

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Nested Locks

3

If a job holding a shared resource makes a
resource request it is a nested request.

No previous multiprocessor real-time locking
protocols support nested resource requests.

Issue is avoided via group locks.
Group locks treat a set of resources as one.
Group locks can decrease parallelism.

Nested requests can cause deadlock.

Nested requests can allow resource holding
jobs to be blocked.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

4

A job experiences pi-blocking when it
should be scheduled but is not.

Three ways to measure pi-blocking:

Suspension-oblivious (s-oblivious).

Suspension-aware (s-aware).

Spin-based.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

4

A job experiences pi-blocking when it
should be scheduled but is not.

Three ways to measure pi-blocking:

Suspension-oblivious (s-oblivious).

Suspension-aware (s-aware).

Spin-based.

Only applies to
suspension-based locks

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

4

A job experiences pi-blocking when it
should be scheduled but is not.

Three ways to measure pi-blocking:

Suspension-oblivious (s-oblivious).

Suspension-aware (s-aware).

Spin-based.

Only applies to
spin-based locks

Only applies to
suspension-based locks

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RNLP Architecture

5

A job must acquire a token from a token lock
before it can issue a resource request.

A request satisfaction mechanism (RSM)
orders the satisfaction of resource requests.

Different token locks and RSMs can be paired
on different platforms.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RNLP Architecture

5

A job must acquire a token from a token lock
before it can issue a resource request.

A request satisfaction mechanism (RSM)
orders the satisfaction of resource requests.

Different token locks and RSMs can be paired
on different platforms.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Token Locks

6

Requirements of a token lock:

Can use existing k-exclusion locks.

We also developed the I-KGLP.

Clustered k-exclusion OMLP (CK-OMLP)
(Brandenburg and Anderson, EMSOFT 2011)

O-KGLP (Elliott and Anderson, RTNS 2011)

No more than k jobs can hold a token at a time.
A pi-blocked job makes progress.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM

7

Each resource A has a queue RQA.

A job at the head of RQA might acquire
A. The RNLP is not greedy.

RQs are ordered by timestamp of
token acquisition.

A job must wait even if it is at the head
of a RQ if it could possibly block another
job with an earlier timestamp.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

CT1 T1 requests C

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

CT1

T2 T2 requests A

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

CT1

T2

T3
T3 requests but does not
acquire B because T2 may
request B in the future.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

CT1

T2

T3 T2
T2 requests and acquires
B because it has an earlier
timestamp than T3.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

CT1

T2

T3 T2

T2
T2 requests C but is
blocked by T1.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

T2

T3 T2

T2
T1 releases C and T2
acquires it.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

T2

T3 T2

T2 releases C

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

T2

T3
T2 releases B but T3
still can't acquire it.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

T3

T2 releases A and T3
can then acquire B.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

8

A

B

C

T3 releases B

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Progress Mechanisms

9

Progress mechanisms are used to
ensure progress.

RNLP compatible with three progress
mechanisms:

Priority Inheritence: a resource holding job
inherits another waiting job's priority.

Priority Boosting: a resource holding job's
priority is boosted above all other jobs.

Priority Donation: a hybrid of boosting and
inheritence.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Progress Mechanisms

9

Progress mechanisms are used to
ensure progress.

RNLP compatible with three progress
mechanisms:

Priority Inheritence: a resource holding job
inherits another waiting job's priority.

Priority Boosting: a resource holding job's
priority is boosted above all other jobs.

Priority Donation: a hybrid of boosting and
inheritence.

Progress mechanisms can cause jobs not
engaged in the locking protocol to be pi-blocked.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Boosting and Donation

10

Priority Boosting: the earliest m
timestamp resource-holding jobs are
priority boosted.

Priority Donation:

Must use CK-OMLP as token lock.

Priority donation ensures that the token holding
jobs have the highest effective priorities in the
system.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

11

A job's priority can only be inherited by
one other job at a time.

A job's priority may be inherited by the
earliest timestamp job blocking it.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

11

A job's priority can only be inherited by
one other job at a time.

A job's priority may be inherited by the
earliest timestamp job blocking it.

AT2

BT3 T2

CT1T2

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

11

A job's priority can only be inherited by
one other job at a time.

A job's priority may be inherited by the
earliest timestamp job blocking it.

AT2

BT3 T2

CT1T2

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

11

A job's priority can only be inherited by
one other job at a time.

A job's priority may be inherited by the
earliest timestamp job blocking it.

AT2

BT3 T2

CT1T2

T1 blocks both T2 and T3,
and thus executes with the
highest effective priority of
T1, T2 and T3.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Number of Tokens

12

More tokens allow for the possibility of
increased parallelism.

Fewer tokens mean less pi-blocking in the RSM
and more pi-blocking in the token lock.

Spin-based: k=m.
S-aware: k=n.
S-oblivious: k=m.

Number of tokens depends upon the analysis:

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Number of Tokens

12

More tokens allow for the possibility of
increased parallelism.

Fewer tokens mean less pi-blocking in the RSM
and more pi-blocking in the token lock.

Spin-based: k=m.
S-aware: k=n.
S-oblivious: k=m.

Number of tokens depends upon the analysis:

A job acquires a token
immediately upon request.
We call this the trivial
token lock (TTL).

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

13

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

13

Type of progress
mechanism employed.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

13

Duration of pi-blocking
any job may experience.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

13

Duration of pi-blocking
a job may experience per

outermost request.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

13

Asymptotically Optimal

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Conclusions

14

The RNLP is the first multiprocessor
real-time locking protocol supporting
nested resource requests.

The RNLP has maximum pi-blocking no
worse than existing single-resource
locking protocols.

The RNLP is optimal under all systems and
types of analysis for which an optimal
locking protocol is known.

Future progress mechanisms or k-exclusion
locks can be incorporated to improve the RNLP.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Ongoing Work

15

Support nested reader-writer and
multi-unit resources.

Develop a progress mechanism for
clustered systems that yields an optimal
RNLP variant under s-aware analysis.

Experimental evaluations.

More detailed analysis to reflect the
benefit of increased parallelism.

Ward and AndersonUNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Thank You

16

Thank You!

