Supporting Nested Locking Iin
Multiprocessor Real-Time Systems

Bryan C. Ward

A James H. Anderson
Dept. of Computer Science
i UNC Chapel Hill

July 13, 2012

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

® Locking protocols are used to control
access to shared resources.

©® Real-time locking protocols must
have predictable blocking behavior.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

® Locking protocols are used to control
access to shared resources.

©® Real-time locking protocols must
have predictable blocking behavior.

Locking Protocol j

UNC Chapel Hill 2 Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

® Locking protocols are used to control
access to shared resources.

©® Real-time locking protocols must
have predictable blocking behavior.

(Shared Resource) »@

Locking Protocol j

UNC Chapel Hill 2 Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Real-Time Locking Protocols

® Locking protocols are used to control

access to shared resources.
©® Real-time locking protocols must
have predictable blocking behavior. -
2
Tasks blocked waiting T3
(busy-waiting or suspended)
for a resource Sl 7
(Shared Resource) >@
Locking Protocol j

UNC Chapel Hill 2 Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Nested Locks

® If a job holding a shared resource makes a
resource request it is a nested request.

©® Nested requests can allow resource holding
jobs to be blocked.

©® Nested requests can cause deadlock.

® No previous multiprocessor real-time locking
protocols support nested resource requests.

® Issue is avoided via group locks.
® Group locks treat a set of resources as one.
® Group locks can decrease parallelism.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

® A job experiences pi-blocking when it
should be scheduled but is not.

® Three ways to measure pi-blocking:

® Suspension-oblivious (s-oblivious).
® Suspension-aware (s-aware).
® Spin-based.

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

® A job experiences pi-blocking when it
should be scheduled but is not.

® Three ways to measure pi-blocking:

® Suspension-oblivious (s-oblivious).
® Suspension-aware (s-aware).
® Spin-based.

Only applies to
(suspensmn gased Iocks)

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pi-Blocking

® A job experiences pi-blocking when it
should be scheduled but is not.

® Three ways to measure pi-blocking:

® Suspension-oblivious (s-oblivious).
® Suspension-aware (s-aware).
® Spin-based.

Only applies to
(suspensmn gased Iocks)

Only applies to
(spin-based locks)

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RNLP Architecture

® A job must acquire a token from a token lock
before it can issue a resource request.

® A request satisfaction mechanism (RSM)
orders the satisfaction of resource requests.

® Different token locks and RSMs can be paired
on different platforms.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RNLP Architecture

® A job must acquire a token from a token lock
before it can issue a resource request.

® A request satisfaction mechanism (RSM)
orders the satisfaction of resource requests.

® Different token locks and RSMs can be paired
on different platforms.

Token Lock RSM
J; needs J; issues a
a resource J; competes |résource request| J, competes for
> for a token ™ shared resource(s)

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Token Locks

® Requirements of a token lock:

® No more than k jobs can hold a token at a time.
® A pi-blocked job makes progress.

® Can use existing k-exclusion locks.

® O-KGLP (Elliott and Anderson, RTNS 2011)

® Clustered k-exclusion OMLP (CK-OMLP)
(Brandenburg and Anderson, EMSOFT 2011)

® We also developed the I-KGLP.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM

® Each resource A has a queue RQ,.

® RQs are ordered by timestamp of
token acquisition.

® A job at the head of RQ, might acquire
A. The RNLP is not greedy.

® A job must wait even if it is at the head
of a RQ if it could possibly block another
job with an earlier timestamp.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

@ C (Tl requests C)

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

@ A (TZ requests A)
() B
(1) C

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

T5 requests but does not
T3 D B acquire B because T, may
request B in the future.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

OR:

T, requests and acquires
IE @ B B because it has an earlier
timestamp than Ts.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

T, requests C but is
T 2
2 @ C [blocked by T;.]

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

) A

D

@ C T; releases Cand T,
acquires it.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

OR:
T, @ B
D C (TZ releases C)

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

) A
T, D 3 T, releases B but T,]

still can't acquire it.
O ¢

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

D A T, releases A and T3
can then acquire B.

(1)

O «

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

RSM Example

() A
D B (T3 releases B)
() c

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Progress Mechanisms

® Progress mechanisms are used to
ensure progress.

® RNLP compatible with three progress
mechanisms:

® Priority Inheritence: a resource holding job
Inherits another waiting job's priority.

® Priority Boosting: a resource holding job's
priority is boosted above all other jobs.

® Priority Donation: a hybrid of boosting and
inheritence.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Progress Mechanisms

® Progress mechanisms are used to
ensure progress.

® RNLP compatible with three progress
mechanisms:

® Priority Inheritence: a resource holding job
Inherits another waiting job's priority.

® Priority Boosting: a resource holding job's
priority is boosted above all other jobs.

® Priority Donation: a hybrid of boosting and
inheritence.

Progress mechanisms can cause jobs not
engaged in the locking protocol to be pi-blocked.

UNC Chapel Hill 9 Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Boosting and Donation

® Priority Boosting: the earliest m
timestamp resource-holding jobs are
priority boosted.

@® Priority Donation:

® Must use CK-OMLP as token lock.

® Priority donation ensures that the token holding
jobs have the highest effective priorities in the
system.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

® A job's priority can only be inherited by
one other job at a time.

® A job's priority may be inherited by the
earliest timestamp job blocking it.

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

® A job's priority can only be inherited by
one other job at a time.

® A job's priority may be inherited by the
earliest timestamp job blocking it.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

® A job's priority can only be inherited by
one other job at a time.

® A job's priority may be inherited by the
earliest timestamp job blocking it.

OR:
E@B
[T ¢

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Priority Inheritence

® A job's priority can only be inherited by
one other job at a time.

® A job's priority may be inherited by the
earliest timestamp job blocking it.

F{T,) B

e
=0

UNC Chapel Hill

(T, blocks both T, and T,

and thus executes with the
highest effective priority of
T;, T, and Ts.

_ J

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Number of Tokens

® More tokens allow for the possibility of
Increased parallelism.

® Fewer tokens mean less pi-blocking in the RSM
and more pi-blocking in the token lock.

©® Number of tokens depends upon the analysis:

® Spin-based: k=m.
® S-aware: k=n.
® S-oblivious: k=m.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Number of Tokens

® More tokens allow for the possibility of
Increased parallelism.

® Fewer tokens mean less pi-blocking in the RSM
and more pi-blocking in the token lock.

©® Number of tokens depends upon the analysis:

® Spin-based: k=m.

® S-aware: k=n.m

® S-oblivious: k=m.

UNC Chapel Hill

(A job acquires a token A
iImmediately upon request.
We call this the trivial

ktoken lock (TTL). Y

Ward and Anderson

12

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

Analysis Scheduler | Token Lock | £ RSM | Every Job Pi-blocking | Per-Request Pi-blocking

spin Any TTL m | S-RSM mLmr (m —1)Lm*®
Partitioned TTL n | B-RSM nLm" (n—1)Lme®

s-aware Clustered TTL n | B-RSM O(¢-n) (n—1)L™m*
Global' TTL n | I-RSM O(n) (n—1)L™me*

Partitioned | CK-OMLP | m | D-RSM mLm (m — 1)L™®

Clustered | CK-OMLP | m | D-RSM mL™m" (m — 1)L™®

s-oblivious CK-OMLP | m | D-RSM mL™m® (m — 1)L

Global O-KGLP | m | I-RSM 0 (bm — 1)Lmer

[-KGLP m | I-RSM 0 (2m — 1)Lmer

T Applicable only under certain schedulers.

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

Analysis Scheduler | Token Lock | £ RSM | Every Job Pi-blocking | Per-Request Pi-blocking

spin Any TTL m | S-RSM mLmr (m —1)Lm*®
Partitioned TTL n | B-RSM nLm" (n—1)Lme®

s-aware Clustered TTL n | B-RSM O(¢-n) (n—1)Lme®
Global' TTL n | I-RSM O(n) (n—1)L™me*

Partitioned | CK-OMLP | m | D-RSM mLm (m — 1)L™®

Clustered | CK-OMLP | m | D-RSM mL™m" (m — 1)L™®

s-oblivious CK-OMLP | m | D-RSM mLmr (m—1)Lm*®

Global O-KGLP | m | I-RSM 0 (bm — 1)Lmer

[-KGLP m | I-RSM 0 (2m — 1)Lmer

T Applicable only under certain schedulers.

UNC Chapel Hill

T

Type of progress
mechanism employed.

13

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

Analysis Scheduler | Token Lock | £ RSM | Every Job Pi-blocking | Per-Request Pi-blocking

spin Any TTL m | S-RSM mLmr (m —1)Lm*®
Partitioned TTL n | B-RSM nLm" (n—1)Lme®

s-aware Clustered TTL n | B-RSM O(¢-n) (n—1)Lme®
Global' TTL n | I-RSM O(n) (n—1)L™me*

Partitioned | CK-OMLP | m | D-RSM mLm (m — 1)L™®

Clustered | CK-OMLP | m | D-RSM mL™m" (m — 1)L™®

s-oblivious CK-OMLP | m | D-RSM mLmr (m—1)Lm*®

Global O-KGLP | m | I-RSM 0 (bm — 1)Lmer

[-KGLP m | I-RSM 0 (2m — 1)Lmer

T Applicable only under certain schedulers.

UNC Chapel Hill

T

Duration of pi-blocking
any job may experience.

13

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing
Duration of pi-blocking W

a job may experience per
outermost request.)

—

Analysis Scheduler | Token Lock | £ RSM | Every Job Pi-blocking | Per-Request Pi-blocking

spin Any TTL m | S-RSM mLmr (m —1)Lm*®
Partitioned TTL n | B-RSM nLm" (n—1)Lme®

s-aware Clustered TTL n | B-RSM O(¢-n) (n—1)Lme®
Global' TTL n | I-RSM O(n) (n—1)L™me*

Partitioned | CK-OMLP | m | D-RSM mLm (m — 1)L™®

Clustered | CK-OMLP | m | D-RSM mL™m" (m — 1)L™®

s-oblivious CK-OMLP | m | D-RSM mLmr (m—1)Lm*®

Global O-KGLP | m | I-RSM 0 (bm — 1)Lmer

[-KGLP m | I-RSM 0 (2m — 1)Lmer

T Applicable only under certain schedulers.

Ward and Anderson

UNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Pairing

[Asymptotically Optimal

Analysis Scheduler | Token Lock RSM | Every Job Pi-blocking | Per-Request Pi-blocking
spin Any TTL mN_S-RSM_ [mL" (m —1)Lme
Partitioned TTL n | B-RSM | nLm" (n—1)Lme® y
s-aware Clustered TTL n | B-RSM O(¢-n) (n—1)Lm®
Global' TTL n | I-RSM | /7 O(n) (n—1)L™me*
Partitioned | CK-OMLP | m | D-RSM | mLm (m — 1)L™®
Clustered | CK-OMLP [\;n | D-RSM mL™m" (m — 1)L™®
s-oblivious CK-OMLP | m | D-RS mL™m® (m — 1)L
Global O-KGLP | m | I-RSM 0 (bm — 1)Lmer
I-KGLP m | I-RSM 0 (2m — 1)Lmer

T Applicable only under certain schedulers.

Ward and Anderson

UNC Chapel Hill

Supporting Nested Locking in Multiprocessor Real-Time Systems

Conclusions

® The RNLP is the first multiprocessor

real-time locking protocol supporting
nested resource requests.

® The RNLP has maximum pi-blocking no
worse than existing single-resource
locking protocols.

® The RNLP is optimal under all systems and
types of analysis for which an optimal
locking protocol is known.

® Future progress mechanisms or k-exclusion
locks can be incorporated to improve the RNLP.

UNC Chapel Hill

Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Ongoing Work

® Support nested reader-writer and
multi-unit resources.

® Develop a progress mechanism for
clustered systems that yields an optimal
RNLP variant under s-aware analysis.

® More detailed analysis to reflect the
benefit of increased parallelism.

® Experimental evaluations.

UNC Chapel Hill Ward and Anderson

Supporting Nested Locking in Multiprocessor Real-Time Systems

Thank You!

UNC Chapel Hill Ward and Anderson

