UNI\.’ERSITE LIBRE DE BRUXELLES,
UNIVERSITE D'EUROPE

Techniques Optimizing the
Number of Processors to
Schedule Multi-Threaded Tasks

Geoffrey Nelissen, Vandy Berten, Joél Goossens, Dragomir Milojevic

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks



Multiprocessor platforms purpose:

Parallelization

* What can we parallelize?

— Traditional approach: execution of many sequential tasks
e But... #CPU is increasing -> Systems with more CPUs than tasks

— New approach: execution of parallel tasks
e Solid background for parallelization in the “non-real time” world
* Explicit parallel coding : MPI, PVM, OpenMP, multi-thread
* Compiler (automatic) parallelization

* Should we develop two different scheduling models?

* |f not: How could we efficiently use the existing
theory?

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 2



Generalization of the Fork-Join model

 Any number of threads in each segment /
Segments : Threads ° : \
/:\ ) — ] 0 :

e Sporadic multi-threaded tasks with constrained deadlines

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 3



How could we use the existing scheduling

theory with such a model?

* Adding artificial intermediate deadlines
=> Each thread can be modeled by a sequential sporadic task

Task reIeaée E 'Ipte%d reléase TEnread deiadlin;/>
(| Any algorithm scheduling
sequential sporadic tasks >

<with constrained deadlines
can be used

di : d, : dis - :

Intermediate Deadlines
Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 4

E 0
d 0
i,n



Density of a segment

Density of a segment T, (51.,]. y

Density: minimum # needed CPUs

6i,2



Density of a task system

max; 9, ;
U1 Waorst sitt:ation

— l

Maximal density :



How do we minimize the number of

processors?

» A sufficient schedulability test for PD?, DP-Wrap, U-EDF:
m=0(t), Vt

* Minimizing m = minimizing the total maximal density

C. .

Emax 5. . = Emax &
j i, ] d

i i i

* Terms are independent =2 minimizing the maximal

density for each task C. .
max, —~

]dij

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 7




Density of a segment

digi,l dgi,z di,n



Density of a segment

Segment’s density
pper-bound

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks



This Problem can be expressed as a Linear

Optimization Problem

* Minimize: Maximum density reachable by the segments
* Subject to:

— Intermediate deadline > Largest thread execution (for each segment)
— Sum of intermediate deadlines < Task deadline

D;
di 1 : di 2 ' di 3 : : d; n,

(9 1,1

S —(Cu— —()
E —> 'R

. —»

04,1 :

04,2 : 04,3 : . Oing,

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 10



Let us try to understand the optimal

solution

 The deadline of a segment cannot be smaller than
the WCET of its threads

=>» The segment density is upper-bounded

* An optimal solution can be found by comparing the
upper-bound of all segment densities with the
average density of the task

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 11



Let us try to understand the optimal

solution

* Rule 1: Keep the density constant if possible
Density upper-bound

/\4

S mmm————— ———————— - ———— e Average density
* ®
P N S S R Y

Maximum on sum of segment deadlines



Let us try to understand the optimal

solution

* Rule 1: Keep the density constant if possible

Deadline of Deadline of

segment 1 segment 2
Qrssssssssns D@ sssssssssssenss >
.- ® Average density
® ®

Maximum on sum of segment deadlines



Let us try to understand the optimal

solution

* Rule 2: Minimize impact of segments with small densities

Density upper-bound

Maximum on sum of segment deadlines



Let us try to understand the optimal

solution

* Rule 2: Minimize impact of segments with small densities

Deadline of
segment 1
PO
P — o . S . S . . . e Average density
e ®
€ s06000000000088008sssdbsasssssa >

Maximum on sum of segment deadlines



A simple algorithm to find an optimal

solution

* Sort segments by their density upper-bounds

* For each segment in the list DO

— IF Maximum density < average density THEN
* Assign maximal density to the segment
 Recompute average density of remaining segments

— ELSE

* Assign average density to all remaining segments
* Break

— END
* END

* Complexity : O(n, x log n,) for each task
* Allow to dynamically add tasks online

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 16



What about performances?

-
o

—/0O— [7] vs Over-Optimal
—_O— AI orithm 1 vs Over-Optimal
14 —_—— [7]gVS Algorithm 1

-
N

-
o

(00)

()

N

N

Proportion of Tested Task Sets (%)

(@

Difference on Number of Processors (%)

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 17



Extension to a More General Model of

Multi-Threaded Tasks

2
 Threads shared by ‘9/%
7z o/ %
several segments Q_> ; 04 C
=2 We reduce it to the ¢

: —’< > g
previous problem —»

* The Optimization
problem becomes o1

non-linear Q—»

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 18



Extension to a More General Model of

Multi-Threaded Tasks

e New difficulties:
— More variables

e segment deadline
* repartition of WCET between segments

— Decision taken in one segment strongly impacts other segments in G
=>» We need a tool taking into account the properties of many segments

2/

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 19



Extension to a More General Model of

Multi-Threaded Tasks

 Many parallel branches

-

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks



Conclusions

Provide a way to « convert » a parallel task in a set of
sequential task, by adding intermediate deadlines

Optimal assignment (given we use intermediate
deadlines)

Low computational complexity (O(n, x log n.) for each
task)

In average, we need 20% less processors than previous
work

Augmentation bound: 2
Extension to multi-branch tasks

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 21



.
(Vg
-

O

i )
(Vg
()
-

d




Manage the evolution of the task density

by fixing the intermediate deadlines

 Number of threads varies = Task density changes with time
By imposing intermediate deadlines
=2 We can compute the density of each segment independently

pogFaun *

Intermediate Deadlines

Techniques Optimizing the Number of Processors to Schedule Multi-Threaded Tasks 23



Let us try to understand the optimal

solution

* Rule 2: Minimize impact of segments with small densities

Deadline of
segment 1

Maximum on sum of segment deadlines



Let us try to understand the optimal

solution

* Rule 2: Minimize impact of segments with small densities

Deadline of
segment 1
Crsssssssea >
P —— S e e Average density
® ®
€ s06000000000088008sssdbsasssssa >

Maximum on sum of segment deadlines



