
Robust Real-Time
Multiprocessor Interrupt

Handling Motivated by GPUs

Glenn Elliott
gelliott@cs.unc.edu

Jim Anderson
anderson@cs.unc.edu

The University of North Carolina at Chapel Hill

Work supported by NSF grants CNS 1016954 and CNS 1115284; ARO grant W911NF-09-1-0535; AFOSR grant
FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

1

Monday, July 16, 12

Real-Time GPUs

2

Monday, July 16, 12

Real-Time GPUs

• Graphics processing units (GPUs) can now
be programmed with high-level languages
to solve general purpose problems

• Practice called “GPGPU”

2

Monday, July 16, 12

Real-Time GPUs

• Graphics processing units (GPUs) can now
be programmed with high-level languages
to solve general purpose problems

• Practice called “GPGPU”

• Why use GPUs in real-time systems?

2

Monday, July 16, 12

G
FL

O
PS

 (
si

ng
le

 p
re

ci
si

on
)

Primary Motivation: Performance

3

Monday, July 16, 12

Domains for GPUs

• GPUs excel at data parallel problems

• Digital signal processing

• Matrix-like computations

• Sorting and searching

4

Monday, July 16, 12

Future Automotive Applications

• Vehicle and pedestrian detection

• Object tracking

• Fusion of video, laser, and radar sensor data

• Clear real-time implications!

5

Monday, July 16, 12

Target Platform

6

Monday, July 16, 12

Target Platform

• We want to develop a system using
components available today

6

Monday, July 16, 12

Target Platform

• We want to develop a system using
components available today

• Current state of technology motivates the
following platform:

6

Monday, July 16, 12

Target Platform

• We want to develop a system using
components available today

• Current state of technology motivates the
following platform:

• Multicore system with one or more GPUs

6

Monday, July 16, 12

Target Platform

• We want to develop a system using
components available today

• Current state of technology motivates the
following platform:

• Multicore system with one or more GPUs

• Soft real-time

6

Monday, July 16, 12

Target Platform

• We want to develop a system using
components available today

• Current state of technology motivates the
following platform:

• Multicore system with one or more GPUs

• Soft real-time

• Linux-based operating system

6

Monday, July 16, 12

Challenges: I/O Device

7

Monday, July 16, 12

Challenges: I/O Device

1. Managed by an operating system driver

• Usually closed source

• Not originally designed for real-time use

7

Monday, July 16, 12

Challenges: I/O Device

1. Managed by an operating system driver

• Usually closed source

• Not originally designed for real-time use

2. Not directly schedulable like a CPU

• Allocation/arbitration issues

7

Monday, July 16, 12

Challenges: I/O Device

1. Managed by an operating system driver

• Usually closed source

• Not originally designed for real-time use

2. Not directly schedulable like a CPU

• Allocation/arbitration issues

3. Interrupt-driven communication

7

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU

J1

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU

J1 sends work to the GPU
and blocks waiting for results.

J1

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU J1

J1 sends work to the GPU
and blocks waiting for results.

J1

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU J1

J1 sends work to the GPU
and blocks waiting for results.

An interrupt from the
GPU signals that work

has completed.
(Handler not depicted.)

J1

Monday, July 16, 12

Synchronous GPU Usage Pattern

8

CPU

GPU J1

J1 sends work to the GPU
and blocks waiting for results.

An interrupt from the
GPU signals that work

has completed.
(Handler not depicted.)

J1J1

Monday, July 16, 12

Asynchronous GPU Usage Pattern

9

CPU J1

GPU J1

J1J1

Monday, July 16, 12

Asynchronous GPU Usage Pattern

9

CPU J1

GPU J1

J1J1

J1 may continue executing
before blocking...

Monday, July 16, 12

Asynchronous GPU Usage Pattern

10

CPU

GPU J1

J1J1

Monday, July 16, 12

Asynchronous GPU Usage Pattern

10

CPU

GPU J1

...or may never block if GPU
finishes before J1 needs results.

J1

Monday, July 16, 12

Asynchronous GPU Usage Pattern

10

CPU

GPU J1

...or may never block if GPU
finishes before J1 needs results.

This case has
interesting

implications on
interrupt handling in
global schedulers.

J1

Monday, July 16, 12

Interrupt Handling

11

Monday, July 16, 12

• May arrive at unpredictable moments

Interrupt Handling

11

Monday, July 16, 12

• May arrive at unpredictable moments

• Interrupt preempts currently scheduled
task and prevents this task from resuming
until interrupt is handled

Interrupt Handling

11

Monday, July 16, 12

• May arrive at unpredictable moments

• Interrupt preempts currently scheduled
task and prevents this task from resuming
until interrupt is handled

• A CPU must acknowledge interrupt and
may often perform additional computations

Interrupt Handling

11

Monday, July 16, 12

• A CPU must acknowledge interrupt and
may often perform additional computations

Interrupt Handling

11

Monday, July 16, 12

• A CPU must acknowledge interrupt and
may often perform additional computations

• Handling often split:

Interrupt Handling

11

Monday, July 16, 12

• A CPU must acknowledge interrupt and
may often perform additional computations

• Handling often split:

• Top Half: performs acknowledgement

Interrupt Handling

11

Monday, July 16, 12

• A CPU must acknowledge interrupt and
may often perform additional computations

• Handling often split:

• Top Half: performs acknowledgement

• Bottom Half: performs computations

Interrupt Handling

11

Monday, July 16, 12

Interrupt Handling

12

CPU0

CPU1

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1

CPU1

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1

CPU1

Interrupt

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1 Non-Split Handler

CPU1

Interrupt

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1 Non-Split Handler

CPU1 J2

Interrupt

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1 Non-Split Handler J1

CPU1 J2

Interrupt

Monday, July 16, 12

Interrupt Handling

12

CPU0 J1 Non-Split Handler J1

CPU1 J2

Interrupt

Blocked J1 may experience a priority inversion.

Monday, July 16, 12

Interrupt Handling

13

CPU0 J1

Interrupt

J1

CPU1 J2

Non-Split Handler

Monday, July 16, 12

Interrupt Handling

13

CPU0 J1

Interrupt

J1

CPU1 J2

Top Bottom

Split interrupt handler.
(Linux still often executes these

together by default.)

Monday, July 16, 12

Interrupt Handling

14

CPU0 J1

Interrupt

Top J1

CPU1 J2

Bottom

Monday, July 16, 12

Interrupt Handling

14

CPU0 J1

Interrupt

Top J1

CPU1 J2

Bottom

Real-time approaches (usually) schedule
bottom halves in a thread (fixed or
inherited priority) or in a container.

Should handler preempt J2?

Monday, July 16, 12

Interrupt Handling

14

CPU0 J1

Interrupt

Top J1

CPU1 J2

Bottom

Real-time approaches (usually) schedule
bottom halves in a thread (fixed or
inherited priority) or in a container.

Should handler preempt J2?

Need to know:
 1) Priority of interrupt
 2) “Owner” of interrupt

Monday, July 16, 12

Interrupt Handling

14

CPU0 J1

Interrupt

Top J1

CPU1 J2

Bottom

Real-time approaches (usually) schedule
bottom halves in a thread (fixed or
inherited priority) or in a container.

Should handler preempt J2?

Need to know:
 1) Priority of interrupt
 2) “Owner” of interrupt

Why?

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

GPU

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2

GPU

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2

Synchronous I/O

GPU

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2

Synchronous I/O

GPU J1

J2

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2

Synchronous I/O

GPU J1
Interrupt

J2

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2 Top

Synchronous I/O

GPU J1
Interrupt

J2

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2 Top

Synchronous I/O

GPU J1
Interrupt

J1: Bottom

Schedule bottom half.
Thread inherits priority of J1.

J2 J2

Monday, July 16, 12

Interrupt Ownership

15

CPU0

CPU1

J1

J2

J1

Top

Synchronous I/O

GPU J1
Interrupt

J1: Bottom

Schedule bottom half.
Thread inherits priority of J1.

J2 J2 J2

Monday, July 16, 12

Interrupt Ownership

16

CPU0

CPU1

GPU

Monday, July 16, 12

J2

J1

Interrupt Ownership

16

CPU0

CPU1

GPU

Monday, July 16, 12

J2

J1

J2

J1

Interrupt Ownership

16

CPU0

CPU1

Asynchronous I/O

GPU J1

Monday, July 16, 12

J2

J1

J2

J1

Interrupt Ownership

16

CPU0

CPU1

GPU J1
Interrupt

Monday, July 16, 12

J2

J1

J2

J1J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt
Schedule bottom half.

Thread inherits priority of J1.

J1:

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

J1: J1: Bottom

J2

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

J1J1: J1: Bottom

J2 J2

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

J1J1: J1: Bottom

J2 J2

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

J1J1: J1: Bottom

Two threads with same identity!
Breaks single threaded sporadic task model!

J2 J2

Monday, July 16, 12

J2

J1

J2

J1J1 J1

Interrupt Ownership

16

CPU0

CPU1 Top

GPU J1
Interrupt

J1J1: J1: Bottom

This can only occur under global scheduler with
asynchronous I/O.

J2 J2

Monday, July 16, 12

J1: Bottom J1J2

J1 J2

Interrupt Ownership

17

CPU0

CPU1 Top

GPU J1
Interrupt

Monday, July 16, 12

J1: Bottom J1

J2

J1

J2

Interrupt Ownership

17

CPU0

CPU1 Top

GPU J1
Interrupt

Defer bottom half until
J1 suspends, preventing

co-scheduling.

Monday, July 16, 12

J1: Bottom J1

J2

J1

J2

Interrupt Ownership

17

CPU0

CPU1 Top

GPU J1
Interrupt

Defer bottom half until
J1 suspends, preventing

co-scheduling.

Account for bottom
half execution time as

being of J1.

Monday, July 16, 12

Globally Scheduled GPU Interrupt Handlers

18

Monday, July 16, 12

Globally Scheduled GPU Interrupt Handlers

• Real-Time GPU Interrupts:

18

Monday, July 16, 12

Globally Scheduled GPU Interrupt Handlers

• Real-Time GPU Interrupts:

1. Thread bottom halves of GPU interrupts,
inheriting priority of owners

18

Monday, July 16, 12

Globally Scheduled GPU Interrupt Handlers

• Real-Time GPU Interrupts:

1. Thread bottom halves of GPU interrupts,
inheriting priority of owners

2. Prevent co-scheduling of bottom halves and
owners

18

Monday, July 16, 12

Globally Scheduled GPU Interrupt Handlers

• Real-Time GPU Interrupts:

1. Thread bottom halves of GPU interrupts,
inheriting priority of owners

2. Prevent co-scheduling of bottom halves and
owners

• PROBLEM: GPU driver is closed source.

• Which GPU raised the interrupt?

• What is the priority of the bottom half?

19

Monday, July 16, 12

20

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU Interrupt Handling

Monday, July 16, 12

21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Monday, July 16, 12

21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Table records
GPU allocation
assignments.

Monday, July 16, 12

21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

Monday, July 16, 12

22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

One klmirqd
thread per GPU.

Monday, July 16, 12

22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

Spawned by
top half.

Monday, July 16, 12

23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

Pointer address
identifies bottom half
as from GPU driver.

Monday, July 16, 12

23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
... GPU index in blob.

Location reversed
engineered.

Monday, July 16, 12

23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU bottom
half arrives.

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU index
extracted.

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU owner
identified.

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

klmirqd thread
identified.

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

klmirqd thread inherits
priority of GPU owner

and executes bottom half
callback.

Monday, July 16, 12

GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Scheduler prevents co-
scheduling of owner
and klmirqd thread.

Monday, July 16, 12

Evaluation

25

Monday, July 16, 12

Evaluation

• Test platform:

25

Monday, July 16, 12

Evaluation

• Test platform:

• Two six-core Xeon X5060 processors at
2.67GHz

25

Monday, July 16, 12

Evaluation

• Test platform:

• Two six-core Xeon X5060 processors at
2.67GHz

• Eight NVIDIA GTX-470 GPUs

25

Monday, July 16, 12

Evaluation

• Test platform:

• Two six-core Xeon X5060 processors at
2.67GHz

• Eight NVIDIA GTX-470 GPUs

• Scheduled in clusters along NUMA
boundaries

25

Monday, July 16, 12

Evaluation

• Test platform:

• Two six-core Xeon X5060 processors at
2.67GHz

• Eight NVIDIA GTX-470 GPUs

• Scheduled in clusters along NUMA
boundaries

• One X5060 and four GPUs per cluster

25

Monday, July 16, 12

Effect on Priority Inversions

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

• Modified process-aware interrupt (PAI) handling for global
scheduling (adapted from Zhang and West, RTSS 2006)

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

• Modified process-aware interrupt (PAI) handling for global
scheduling (adapted from Zhang and West, RTSS 2006)

• Executed 41 task sets with utilizations [7.5, 11.5] each
for 2 minutes

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

• Modified process-aware interrupt (PAI) handling for global
scheduling (adapted from Zhang and West, RTSS 2006)

• Executed 41 task sets with utilizations [7.5, 11.5] each
for 2 minutes

• Every task used GPUs asynchronously

26

Monday, July 16, 12

Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

• Modified process-aware interrupt (PAI) handling for global
scheduling (adapted from Zhang and West, RTSS 2006)

• Executed 41 task sets with utilizations [7.5, 11.5] each
for 2 minutes

• Every task used GPUs asynchronously

• Scheduled under Clustered EDF

26

Monday, July 16, 12

Effect on Priority Inversions

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P(
In

ve
rs

ion
 D

ur
at

ion
) <

=
X

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH

[1]

[3]

[2]

Monday, July 16, 12

Effect on Priority Inversions

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P(
In

ve
rs

ion
 D

ur
at

ion
) <

=
X

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH

[1]

[3]

[2]

Priority inversion durations decreased.

Monday, July 16, 12

Effect on Priority Inversions

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P(
In

ve
rs

ion
 D

ur
at

ion
) <

=
X

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH

[1]

[3]

[2]

Priority inversion durations decreased.

klmirqd: 90%
inversions <5µs

X

Monday, July 16, 12

Effect on Priority Inversions

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P(
In

ve
rs

ion
 D

ur
at

ion
) <

=
X

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH

[1]

[3]

[2]

Priority inversion durations decreased.

X

PAI: 90%
inversions <35µs

X

Monday, July 16, 12

Effect on Priority Inversions

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P(
In

ve
rs

ion
 D

ur
at

ion
) <

=
X

Priority Inversion Duration (microseconds)

Distribution of Priority Inversions: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH

[1]

[3]

[2]

Priority inversion durations decreased.

X X

SLIH: 90% inversions <40µs
(with long tail)

X

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

28

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

• Gathered overhead measurements for
many system tasks (such as scheduling)

28

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

• Gathered overhead measurements for
many system tasks (such as scheduling)

• Incorporated overheads into soft real-time
schedulability experiments

• Task sets a mix of GPU-using and CPU-only

28

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

• Gathered overhead measurements for
many system tasks (such as scheduling)

• Incorporated overheads into soft real-time
schedulability experiments

• Task sets a mix of GPU-using and CPU-only

• Different accounting techniques are
required for each interrupt handling
method

28

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6 [1]

[5,6]

[7][8, 9]

[4]

[2,3]

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6 [1]

[5,6]

[7][8, 9]

[4]

[2,3]

i is number of interrupts
generated per job

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6 [1]

[5,6]

[7][8, 9]

[4]

[2,3]

klmirqd, w/ i=6, 50% of
task sets with utilization
of ~10.5 are schedulable.

X

Monday, July 16, 12

Overhead-Aware Schedulability
Experiments

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6 [1]

[5,6]

[7][8, 9]

[4]

[2,3]

X

PAI & SLIH, w/ i=6, 50% of task
sets with utilization of ~9.1 are

schedulable.

X

Monday, July 16, 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1][2,3,4]
[7]

[5,6][8,9]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6

Overhead-Aware Schedulability
Experiments

30

Monday, July 16, 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1][2,3,4]
[7]

[5,6][8,9]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6

Overhead-Aware Schedulability
Experiments

30

“Effective CPU utilization”
presumes that each GPU
provides 16x utilization.

Monday, July 16, 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1][2,3,4]
[7]

[5,6][8,9]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6

Overhead-Aware Schedulability
Experiments

30

klmirqd, w/ i=6, 50% of
task sets with effective
CPU utilization of ~73.0

are schedulable.

X

Monday, July 16, 12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1][2,3,4]
[7]

[5,6][8,9]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6

Overhead-Aware Schedulability
Experiments

30

XX
PAI & SLIH, w/ i=6, 50% of task
sets with effective CPU utilization

of ~61.0 are schedulable.

Monday, July 16, 12

Conclusion

31

Monday, July 16, 12

Conclusion
• Developed method for threaded interrupt

handling under global scheduling with
asynchronous I/O in mind

31

Monday, July 16, 12

Conclusion
• Developed method for threaded interrupt

handling under global scheduling with
asynchronous I/O in mind

• Integrated closed source GPU driver through
interrupt interception and decoding

31

Monday, July 16, 12

Conclusion
• Developed method for threaded interrupt

handling under global scheduling with
asynchronous I/O in mind

• Integrated closed source GPU driver through
interrupt interception and decoding

• Evaluations indicate klmirqd significantly
reduces priority inversions while avoiding
schedulability analysis pitfalls

31

Monday, July 16, 12

Conclusion
• Developed method for threaded interrupt

handling under global scheduling with
asynchronous I/O in mind

• Integrated closed source GPU driver through
interrupt interception and decoding

• Evaluations indicate klmirqd significantly
reduces priority inversions while avoiding
schedulability analysis pitfalls

• Source available at www.litmus-rt.org

31

Monday, July 16, 12

Thank you!
Questions?

32

Monday, July 16, 12

Backup Slides

33

Monday, July 16, 12

Measured Overheads

34

Overhead Average Time (µs)
Scheduling 0.63

Context Switch 0.36
0.6IPI 0.60

Job Release 0.67
Top Half 16.44

Bottom Half 29.90
klmirqd Release 1.39

PAI Release 0.13
PAI Scheduling 0.56

Monday, July 16, 12

Effect on Priority Inversions

35

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Cu
mu

lat
ive

 In
ve

rsi
on

 L
en

gt
h

(m
icr

os
ec

on
ds

)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH
[1]

[3]

[2]

Effect on Priority Inversions

Monday, July 16, 12

Effect on Priority Inversions

35

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Cu
mu

lat
ive

 In
ve

rsi
on

 L
en

gt
h

(m
icr

os
ec

on
ds

)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH
[1]

[3]

[2]

Effect on Priority InversionsTotal inversion time reduced.

Monday, July 16, 12

Effect on Priority Inversions

35

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Cu
mu

lat
ive

 In
ve

rsi
on

 L
en

gt
h

(m
icr

os
ec

on
ds

)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH
[1]

[3]

[2]

klmirqd: 1.2ms inversion
time in 2 minutes

Effect on Priority InversionsTotal inversion time reduced.

Monday, July 16, 12

Effect on Priority Inversions

35

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Cu
mu

lat
ive

 In
ve

rsi
on

 L
en

gt
h

(m
icr

os
ec

on
ds

)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH
[1]

[3]

[2]

PAI: 220ms

Effect on Priority InversionsTotal inversion time reduced.

Monday, July 16, 12

Effect on Priority Inversions

35

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Cu
mu

lat
ive

 In
ve

rsi
on

 L
en

gt
h

(m
icr

os
ec

on
ds

)

Priority Inversion Duration (microseconds)

Cumulative Inversion Length: Task Set Utilization of 11.2

[1] klmirqd

[2] PAI

[3] SLIH
[1]

[3]

[2]

SLIH: 350ms

Effect on Priority InversionsTotal inversion time reduced.

Monday, July 16, 12

System-Level Evaluation

• Compared klmirqd against SLIH, PAI, and
PREEMPT_RT (real-time Linux patch)

• PREEMPT_RT interrupt handler threads
have fixed priority

• Scheduled using Clustered Rate Monotonic

• Needed to make fair comparisons to
PREEMPT_RT

36

Monday, July 16, 12

Pathological Task Set

37

One GPU-using,
period = 19.9ms

{
{20 CPU-only,
period = 20ms

Four GPU-using,
period = 20.1ms

One “sandwich”
on each cluster.

Monday, July 16, 12

System-Level Evaluation

38

Monday, July 16, 12

System-Level Evaluation

38

GPU starvation

Monday, July 16, 12

System-Level Evaluation

38

CPU response
time increase

Monday, July 16, 12

