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Real-Time GPUs

• Graphics processing units (GPUs) can now 
be programmed with high-level languages 
to solve general purpose problems

• Practice called “GPGPU”

• Why use GPUs in real-time systems?
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Primary Motivation: Performance
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Domains for GPUs

• GPUs excel at data parallel problems

• Digital signal processing

• Matrix-like computations

• Sorting and searching
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Future Automotive Applications

• Vehicle and pedestrian detection

• Object tracking

• Fusion of video, laser, and radar sensor data

• Clear real-time implications!
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Target Platform

• We want to develop a system using 
components available today

• Current state of technology motivates the 
following platform:

• Multicore system with one or more GPUs

• Soft real-time

• Linux-based operating system
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Challenges: I/O Device
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Challenges: I/O Device

1. Managed by an operating system driver

• Usually closed source

• Not originally designed for real-time use

2. Not directly schedulable like a CPU

• Allocation/arbitration issues

3. Interrupt-driven communication
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Synchronous GPU Usage Pattern
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Synchronous GPU Usage Pattern
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J1 sends work to the GPU 
and blocks waiting for results.

An interrupt from the 
GPU signals that work 

has completed.
(Handler not depicted.)
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Asynchronous GPU Usage Pattern
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Asynchronous GPU Usage Pattern
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Asynchronous GPU Usage Pattern
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Asynchronous GPU Usage Pattern
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CPU

GPU J1

...or may never block if GPU 
finishes before J1 needs results.

This case has 
interesting 

implications on 
interrupt handling in 
global schedulers.
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• A CPU must acknowledge interrupt and 
may often perform additional computations

• Handling often split:

• Top Half: performs acknowledgement

• Bottom Half: performs computations

Interrupt Handling
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Interrupt Handling
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Blocked J1 may experience a priority inversion.
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Interrupt Handling
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Interrupt Handling
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Split interrupt handler.
(Linux still often executes these 

together by default.)
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Interrupt Handling
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CPU0 J1

Interrupt

Top J1

CPU1 J2

Bottom

Real-time approaches (usually) schedule 
bottom halves in a thread (fixed or 
inherited priority) or in a container.

Should handler preempt J2?

Need to know:
   1) Priority of interrupt
   2) “Owner” of interrupt

Why?
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Interrupt Ownership
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• Real-Time GPU Interrupts:

1. Thread bottom halves of GPU interrupts, 
inheriting priority of owners

2. Prevent co-scheduling of bottom halves and 
owners
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Globally Scheduled GPU Interrupt Handlers

• Real-Time GPU Interrupts:

1. Thread bottom halves of GPU interrupts, 
inheriting priority of owners

2. Prevent co-scheduling of bottom halves and 
owners

• PROBLEM: GPU driver is closed source.

• Which GPU raised the interrupt?

• What is the priority of the bottom half?

19

Monday, July 16, 12



20

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU Interrupt Handling

Monday, July 16, 12



21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Monday, July 16, 12



21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Table records 
GPU allocation 
assignments.

Monday, July 16, 12



21

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

GPU Allocation

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

Monday, July 16, 12



22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

One klmirqd 
thread per GPU.

Monday, July 16, 12



22

klmirqd GPU Threads

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

Spawned by 
top half.

Monday, July 16, 12



23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

Pointer address 
identifies bottom half 
as from GPU driver.

Monday, July 16, 12



23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
... GPU index in blob. 

Location reversed 
engineered.

Monday, July 16, 12



23

Interrupt Interception

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU bottom 
half arrives.

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU index 
extracted.

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

GPU owner 
identified.

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

klmirqd thread 
identified.

Monday, July 16, 12



GPU Interrupt Handling

24

n

...

...

k

k-exclusion lock
(k-FMLP)

GPU Index Task
0 T1

... ...

GPU Registry

k{

Bottom Half Data

Callback

Function Pointer

Callback

Arguments

(binary blob)

GPU Driver

...
GPU 

Index
...

GPU Index klmirqd Thread

0

...

k

LITMUSRT

Schedulerthreaded
bottom half

klmirqd thread inherits 
priority of GPU owner 

and executes bottom half 
callback.

Monday, July 16, 12



GPU Interrupt Handling
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Evaluation

• Test platform:

• Two six-core Xeon X5060 processors at 
2.67GHz

• Eight NVIDIA GTX-470 GPUs

• Scheduled in clusters along NUMA 
boundaries

• One X5060 and four GPUs per cluster
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Effect on Priority Inversions
• Inversions measured in LITMUSRT for:

• klmirqd

• Standard Linux interrupt handling (SLIH)

• Modified process-aware interrupt (PAI) handling for global 
scheduling (adapted from Zhang and West, RTSS 2006)

• Executed 41 task sets with utilizations [7.5, 11.5] each 
for 2 minutes

• Every task used GPUs asynchronously

• Scheduled under Clustered EDF
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Overhead-Aware Schedulability 
Experiments

• Gathered overhead measurements for 
many system tasks (such as scheduling)

• Incorporated overheads into soft real-time 
schedulability experiments

• Task sets a mix of GPU-using and CPU-only

• Different accounting techniques are 
required for each interrupt handling 
method
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X
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“Effective CPU utilization” 
presumes that each GPU 
provides 16x utilization.

Monday, July 16, 12



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90

Ra
tio

 o
f S

ch
ed

ula
ble

 T
as

k S
et

s (
so

ft)

Effective CPU Utilization (prior inflations)

Crit. Sec. Exe 75%; GPU Task Share [50, 60%]; Util (uniform) [0.5, 0.9]; Per (uniform) [15ms, 60ms]

[1][2,3,4]
[7]

[5,6][8,9]

[1] klmirqd, i=1
[2] PAI, i=1

[3] SLIH, i=1

[4] klmirqd, i=3
[5] PAI, i=3

[6] SLIH, i=3

[7] klmirqd, i=6
[8] PAI, i=6

[9] SLIH, i=6

Overhead-Aware Schedulability 
Experiments

30

klmirqd, w/ i=6, 50% of 
task sets with effective 
CPU utilization of ~73.0 

are schedulable.

X
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XX
PAI & SLIH, w/ i=6, 50% of task 
sets with effective CPU utilization 

of ~61.0 are schedulable.
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Conclusion
• Developed method for threaded interrupt 

handling under global scheduling with 
asynchronous I/O in mind

• Integrated closed source GPU driver through 
interrupt interception and decoding

• Evaluations indicate klmirqd significantly 
reduces priority inversions while avoiding 
schedulability analysis pitfalls

• Source available at www.litmus-rt.org
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Thank you!
Questions?
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Backup Slides
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Measured Overheads

34

Overhead Average Time (µs)
Scheduling 0.63

Context Switch 0.36
0.6IPI 0.60

Job Release 0.67
Top Half 16.44

Bottom Half 29.90
klmirqd Release 1.39

PAI Release 0.13
PAI Scheduling 0.56
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System-Level Evaluation

• Compared klmirqd against SLIH, PAI, and 
PREEMPT_RT (real-time Linux patch)

• PREEMPT_RT interrupt handler threads 
have fixed priority

• Scheduled using Clustered Rate Monotonic

• Needed to make fair comparisons to 
PREEMPT_RT
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Pathological Task Set
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One GPU-using,
period = 19.9ms

{
{20 CPU-only,
period = 20ms

Four GPU-using,
period = 20.1ms

One “sandwich”
on each cluster.
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System-Level Evaluation
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System-Level Evaluation
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GPU starvation
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System-Level Evaluation
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CPU response 
time increase
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