
Computing First-to-First Propagation
Delays Through Sequences of
Fixed-Priority Periodic Tasks

Rodney R. Howell
Kansas State University

Motivation

• In many real-time control systems, tasks use
information computed by other tasks

• The responsiveness of the system may depend
on the propagation delay of information
flowing through a sequence of tasks

• We would like to compute the worst-case
propagation delay through a given sequence
of tasks

Example

𝑇1

𝑇2

𝑇3

𝑇1

𝑇2

𝑇3

First-to-first information propagation delay [10]

Input interval

[10] N. Feiertag, et al., RTSS 2008

Task System Model

• Tasks are periodic
• Periods are harmonic
• Task arrivals are synchronous: all tasks initially

arrive at time 0
• Each task has a minimum and a maximum

execution time
– Both are integers no greater than the period

• Each task has a distinct fixed priority

Scheduling Model

• All tasks are scheduled on the same processor
• Each task instance requires an integer-valued

execution time no less that its minimum
execution time and no greater than its
maximum execution time

• At each integer time value, the ready task (if
any exist) with highest priority is executed

Feasibility

• A schedule is feasible if each task instance
completes no later than the next arrival of
that task

• A task set is feasible if each possible schedule
is feasible
– Different schedules are produced by different

execution time requirements of task instances

• We will only consider feasible task sets

First-Read Information Flow

• Let T = 〈𝑇1, . . . ,𝑇𝑛〉 be a sequence of
distinct tasks, and let 𝑆 be a schedule for a
task set containing these tasks

• Given a time 𝑡0, the first-read information flow
from 𝑡0 is the sequence 𝑡0 < ∙ ∙ ∙ < 𝑡𝑛 such that
for 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 is the finish time of the first
instance of 𝑇𝑖 that begins executing no earlier
than 𝑡𝑖−1

Last-Write Information Flow

• Let T = 〈𝑇1, . . . ,𝑇𝑛〉 be a sequence of distinct
tasks, and let 𝑆 be a schedule for a task set
containing these tasks

• Given a time 𝑡𝑛+1, the last-write information flow
to 𝑡𝑛+1 is the sequence 𝑡1 < ∙ ∙ ∙ < 𝑡𝑛+1 such that
for 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 is the start time of the last
instance of 𝑇𝑖 that finishes executing no later
than 𝑡𝑖+1

• For small 𝑡𝑛+1, there may be no last-write
information flow

Propagation Delays

• The first-read propagation delay 𝑑T
𝐹𝐹(𝑆, 𝑡0)

from time 𝑡0 in schedule 𝑆 through task
sequence T is the length 𝑡𝑛 – 𝑡0 of the first-
read information flow from 𝑡0

• The last-write propagation delay 𝑑T
𝐿𝐿(𝑆, 𝑡𝑛+1)

to time 𝑡𝑛+1 in schedule 𝑆 through task
sequence T is the length 𝑡𝑛+1 – 𝑡1 of the
last-write information flow to 𝑡𝑛+1
– 𝑑T

𝐿𝐿(𝑆, 𝑡𝑛+1) is undefined for small 𝑡𝑛+1

Worst Case Propagation Delay

• The worst-case first-to-first propagation delay
𝐷T
𝐹𝐹 is the maximum value of

𝑑T
𝐹𝐹 𝑆, 𝑡0 + 1 , taken over all schedules 𝑆 and

all times 𝑡0

A Useful Relationship

Theorem: For any schedule 𝑆 and time 𝑡:
• 𝑑T

𝐹𝐹(𝑆, 𝑡) ≤ 𝑑T
𝐹𝐹(𝑆, 𝑡 + 1) = 𝑑 iff

• 𝑑T
𝐿𝐿(𝑆, 𝑡 + 𝑑 + 1) ≤ 𝑑T

𝐿𝐿(𝑆, 𝑡 + 𝑑) = 𝑑

Thus:
• a maximum-length first-read information flow

occurs in 𝑆 from time 𝑡 + 1 to time t + 𝑑 + 1 iff
• a maximum-length last-write information flow

occurs in 𝑆 from time 𝑡 to time 𝑡 + 𝑑

Pivoting Schedules

0 𝑡

Tasks use minimum
execution time

Tasks use maximum
execution time

Information flow

Monotonically Decreasing Priorities

• Let T = 〈𝑇1, . . . ,𝑇𝑛〉 be a task sequence with
monotonically decreasing priorities within a
feasible task set

• Suppose 𝑃 is the largest period of any task in the
task set

• Let 𝑆 be any schedule that pivots at time 𝑃
• Then this schedule contains a first-read

information flow 〈𝑡0, . . . , 𝑡𝑛〉 with maximum length
• Furthermore, 𝑡𝑛 can be chosen to be
𝑃 + 𝑅(𝑇𝑛), where 𝑅(𝑇𝑛) is the worst-case
response time of 𝑇𝑛

Algorithm

• Build a schedule from 𝑃 – 𝑝𝑘 to 𝑃 + 𝑅(𝑇𝑛)
– 𝑝𝑘 is the largest period in the task sequence
– This schedule should pivot at 𝑃

• Find the last-write information flow to
𝑃 + 𝑅(𝑇𝑛) – 1, and add 1 to its length

• Running Time: 𝑂(𝑚 + 𝑝𝑘 log 𝑚), where 𝑚 is
the number of tasks in the task set

Monotonically Increasing Priorities

Let T = 〈𝑇1, . . . ,𝑇𝑛〉 be a task sequence with
monotonically increasing priorities within a feasible
task set
Suppose 𝑃 is the largest period in the task set
Then there is a schedule 𝑆 with a first-read
information flow 〈𝑡0, . . . , 𝑡𝑛〉 such that
• 0 < 𝑡0 ≤ 𝑃
• 𝑆 pivots at 𝑡0
• 𝑡𝑛 − 𝑡0 = 𝐷T

𝐹𝐹 − 1

Algorithm

For 0 ≤ 𝑖 < 𝑃/𝑝1:
• Build a schedule of length 3𝑃

– Pivots at 𝑡0, 1 time unit after the instance of 𝑇1
that arrives at time 𝑖𝑝1 begins executing

• Compute an array Next[1. . 2𝑃] such that if
𝑇𝑖 finishes at time 𝑡, Next[𝑡] gives the next
finish time of an instance of 𝑇𝑖+1

• Compute the first-read information flow from
𝑡0, and add 1 to its length

Running Time

• 𝑂(𝑃2 log 𝑚 / 𝑝1)
• If rate monotonic priorities are used, this can

be improved to 𝑂(𝑚 + 𝑝1 log 𝑚)

Arbitrary Sequences

• In general, there may be no maximum-length
first-read information flow in any schedule
that pivots

• However, a task sequence may be partitioned
into monotonically increasing and
monotonically decreasing sequences

• Summing 𝐷T k
𝐹𝐹

 – 1 over all monotonic
subsequences Tk gives an upper bound on
𝐷T
𝐹𝐹

 – 1

Example

• Suppose the sequence of priorities is 〈1, 3, 2〉
• We can partition this sequence into either

– 〈1, 3〉 and 〈2〉 or
– 〈1〉 and 〈3, 2〉

• Our goal is to choose the partitioning giving
the best upper bound

Performance

• Running Time: 𝑂(𝑃2 log 𝑚)
• For rate-monotonic priorities, this can be

improved to 𝑂((𝑚 + 𝑠) log 𝑚 + 𝑛2)
– 𝑠 is the sum of the periods of the tasks in the

sequence
– 𝑛 is the number of tasks in the sequence

• When viewed as an approximation algorithm
for minimizing the upper bound on 𝐷T

𝐹𝐹, this
algorithm has an approximation ratio of 𝑛/2

Future Work

• Is there an efficient algorithm for non-monotonic
sequences?

• Can these results be extended to other types of
delays?
– The algorithm for monotonically increasing priorities

extends to last-to-last delays
• What if the periods are not harmonic or start

times are offset?
• Can priorities be adjusted to shorten the

propagation delay?

Questions?

	Computing First-to-First Propagation Delays Through Sequences of �Fixed-Priority Periodic Tasks
	Motivation
	Example
	Task System Model
	Scheduling Model
	Feasibility
	First-Read Information Flow
	Last-Write Information Flow
	Propagation Delays
	Worst Case Propagation Delay
	A Useful Relationship
	Pivoting Schedules
	Monotonically Decreasing Priorities
	Algorithm
	Monotonically Increasing Priorities
	Algorithm
	Running Time
	Arbitrary Sequences
	Example
	Performance
	Future Work
	Questions?

