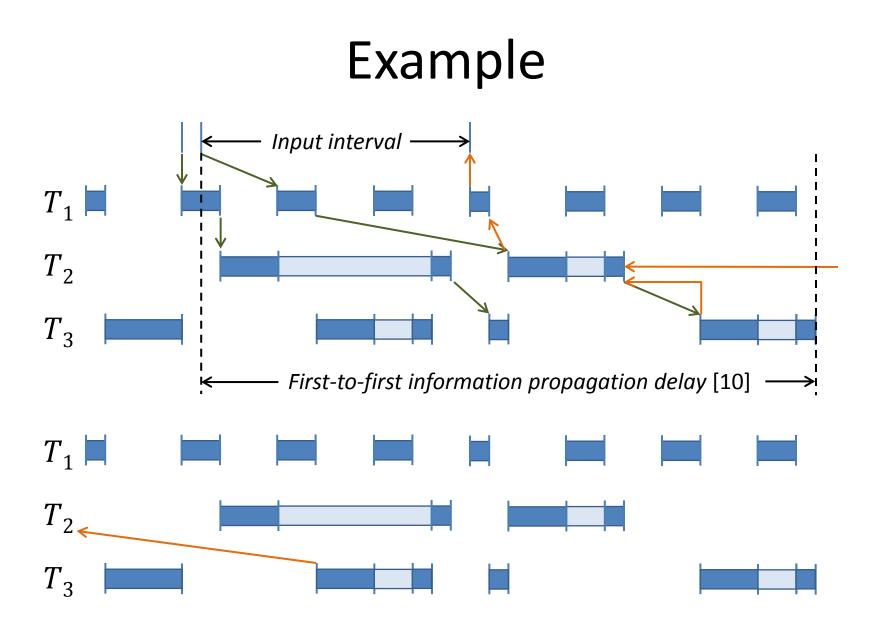
Computing First-to-First Propagation Delays Through Sequences of Fixed-Priority Periodic Tasks

Rodney R. Howell Kansas State University

Motivation

- In many real-time control systems, tasks use information computed by other tasks
- The responsiveness of the system may depend on the propagation delay of information flowing through a sequence of tasks
- We would like to compute the worst-case propagation delay through a given sequence of tasks



[10] N. Feiertag, et al., RTSS 2008

Task System Model

- Tasks are periodic
- Periods are harmonic
- Task arrivals are synchronous: all tasks initially arrive at time 0
- Each task has a minimum and a maximum execution time

- Both are integers no greater than the period

• Each task has a distinct fixed priority

Scheduling Model

- All tasks are scheduled on the same processor
- Each task instance requires an integer-valued execution time no less that its minimum execution time and no greater than its maximum execution time
- At each integer time value, the ready task (if any exist) with highest priority is executed

Feasibility

- A schedule is feasible if each task instance completes no later than the next arrival of that task
- A task set is feasible if each possible schedule is feasible
 - Different schedules are produced by different execution time requirements of task instances
- We will only consider feasible task sets

First-Read Information Flow

- Let $\mathscr{T} = \langle T_1, \dots, T_n \rangle$ be a sequence of distinct tasks, and let S be a schedule for a task set containing these tasks
- Given a time t_0 , the first-read information flow from t_0 is the sequence $t_0 < \cdots < t_n$ such that for $1 \le i \le n$, t_i is the finish time of the first instance of T_i that begins executing no earlier than t_{i-1}

Last-Write Information Flow

- Let $\mathscr{T} = \langle T_1, \dots, T_n \rangle$ be a sequence of distinct tasks, and let S be a schedule for a task set containing these tasks
- Given a time t_{n+1} , the *last-write information flow* to t_{n+1} is the sequence $t_1 < \cdots < t_{n+1}$ such that for $1 \le i \le n$, t_i is the start time of the last instance of T_i that finishes executing no later than t_{i+1}
- For small t_{n+1} , there may be no last-write information flow

Propagation Delays

- The first-read propagation delay $d_{\mathcal{T}}^{FR}(S, t_0)$ from time t_0 in schedule S through task sequence \mathcal{T} is the length $t_n - t_0$ of the firstread information flow from t_0
- The last-write propagation delay $d_{\mathscr{T}}^{LW}(S, t_{n+1})$ to time t_{n+1} in schedule S through task sequence \mathscr{T} is the length $t_{n+1} - t_1$ of the last-write information flow to t_{n+1}

- $d_{\mathcal{T}}^{LW}(S, t_{n+1})$ is undefined for small t_{n+1}

Worst Case Propagation Delay

• The worst-case first-to-first propagation delay $D_{\mathcal{T}}^{FF}$ is the maximum value of $d_{\mathcal{T}}^{FR}(S, t_0) + 1$, taken over all schedules S and all times t_0

A Useful Relationship

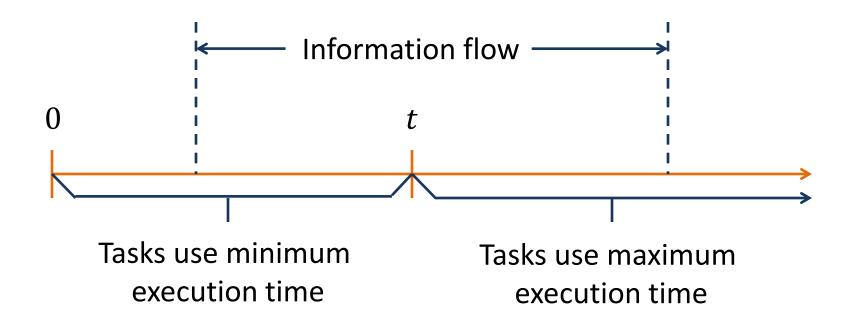
Theorem: For any schedule *S* and time *t*:

- $d_{\mathcal{T}}^{FR}(S,t) \leq d_{\mathcal{T}}^{FR}(S,t+1) = d$ iff
- $d_{\mathcal{T}}^{LW}(S,t+d+1) \leq d_{\mathcal{T}}^{LW}(S,t+d) = d$

Thus:

- a maximum-length first-read information flow occurs in S from time t + 1 to time t + d + 1 iff
- a maximum-length last-write information flow occurs in S from time t to time t + d

Pivoting Schedules



Monotonically Decreasing Priorities

- Let $\mathcal{T} = \langle T_1, \dots, T_n \rangle$ be a task sequence with monotonically decreasing priorities within a feasible task set
- Suppose P is the largest period of any task in the task set
- Let *S* be any schedule that pivots at time *P*
- Then this schedule contains a first-read information flow $\langle t_0, \ldots, t_n \rangle$ with maximum length
- Furthermore, t_n can be chosen to be $P + R(T_n)$, where $R(T_n)$ is the worst-case response time of T_n

Algorithm

- Build a schedule from P p_k to P + R(T_n)
 p_k is the largest period in the task sequence
 This schedule should pivot at P
- Find the last-write information flow to $P + R(T_n) 1$, and add 1 to its length
- **Running Time:** $O(m + p_k \log m)$, where *m* is the number of tasks in the task set

Monotonically Increasing Priorities

Let $\mathcal{T} = \langle T_1, \dots, T_n \rangle$ be a task sequence with monotonically increasing priorities within a feasible task set

Suppose *P* is the largest period in the task set Then there is a schedule *S* with a first-read information flow $\langle t_0, \ldots, t_n \rangle$ such that

- 0 < $t_0 \leq P$
- S pivots at t₀

•
$$t_n - t_0 = D_{\mathcal{T}}^{FF} - 1$$

Algorithm

For $0 \leq i < P/p_1$:

- Build a schedule of length 3P
 - Pivots at t_0 , 1 time unit after the instance of T_1 that arrives at time ip_1 begins executing
- Compute an array Next[1..2P] such that if T_i finishes at time t, Next[t] gives the next finish time of an instance of T_{i+1}
- Compute the first-read information flow from t_0 , and add 1 to its length

Running Time

- $O(P^2 \log m / p_1)$
- If rate monotonic priorities are used, this can be improved to $O(m + p_1 \log m)$

Arbitrary Sequences

- In general, there may be no maximum-length first-read information flow in any schedule that pivots
- However, a task sequence may be partitioned into monotonically increasing and monotonically decreasing sequences
- Summing $D_{\mathcal{T}_k}^{FF} 1$ over all monotonic subsequences \mathcal{T}_k gives an upper bound on $D_{\mathcal{T}}^{FF} 1$

Example

- Suppose the sequence of priorities is $\langle 1, 3, 2 \rangle$
- We can partition this sequence into either $-\langle 1,3\rangle$ and $\langle 2\rangle$ or

 $-\langle 1 \rangle$ and $\langle 3, 2 \rangle$

• Our goal is to choose the partitioning giving the best upper bound

Performance

- Running Time: $O(P^2 \log m)$
- For rate-monotonic priorities, this can be improved to $O((m + s) \log m + n^2)$
 - s is the sum of the periods of the tasks in the sequence
 - -n is the number of tasks in the sequence
- When viewed as an approximation algorithm for minimizing the upper bound on $D_{\mathcal{T}}^{FF}$, this algorithm has an approximation ratio of [n/2]

Future Work

- Is there an efficient algorithm for non-monotonic sequences?
- Can these results be extended to other types of delays?
 - The algorithm for monotonically increasing priorities extends to last-to-last delays
- What if the periods are not harmonic or start times are offset?
- Can priorities be adjusted to shorten the propagation delay?

Questions?