ECRTS 2012 in Pisa, Italy 11-13 July 2012

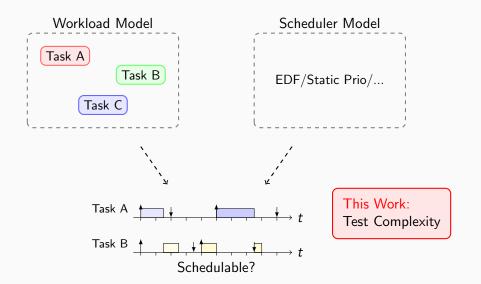
Hardness Results for Static Priority Real-Time Scheduling

Martin Stigge

Uppsala University, Sweden

Joint work with Wang Yi

Problem Overview



Model/Design Choices

Task Models:

- Periodic (L&L)
- Generalized Multiframe (GMF)
- Digraph Real-Time (DRT)
- ...

Schedulers:

- Dynamic Priorities: EDF
- Static Priorities

Different combinations = Different complexity

(Here: Uniprocessor, preemption, precise tests)

Complexity of Schedulability Test

- Efficient schedulability tests possible?
 - ("Efficient" = "pseudo-polynomial")

	EDF	Static
L&L	Yes	Yes
GMF	Yes	Yes* No!
DRT	Yes	No
EDRT	No	No

- * = Takada & Sakamura, 1997
- Flawed!

Theorem (Our technical result)

For GMF task systems, the schedulability problem for static priority schedulers is strongly coNP-hard.

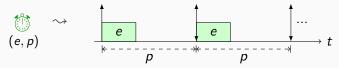
Fahrplan

- Problem Overview
- 2 Task Models: L&L, GMF, DRT
- Analysis Methods
 - EDF: Demand Bound Function
 - Static Priorities: Maximum Interference Function
- 4 Hardness Result

The Liu and Layland (L&L) Task Model

(Liu and Layland, 1973)

- Tasks are periodic
 - ▶ Job WCFT e
 - Minimum inter-release delay p (implicit deadline)

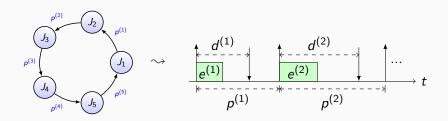


- Advantages: Well-known model; efficient schedulability tests
- However, not everything is periodic...

The General Multiframe (GMF) Task Model

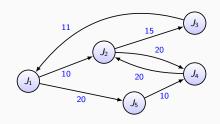
(Baruah et al, 1999)

- Tasks cycle through job types, "frames"
 - ▶ Vector for WCET $(e^{(1)}, ..., e^{(n)})$
 - ▶ Vector for deadlines $(d^{(1)}, \dots, e^{(n)})$
 - Vector for minimum inter-release delays $(p^{(1)}, \ldots, p^{(n)})$

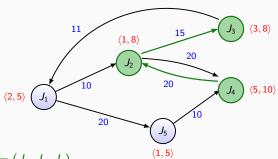


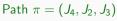
The Digraph Real-Time (DRT) Task Model (S. et al, RTAS 2011)

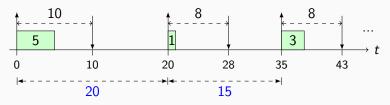
- Branching, cycles (loops), ...
- Directed graph for each task
 - ▶ Vertices *J*: jobs to be released (with WCET and deadline)
 - ▶ Edges (J_i, J_j) : minimum inter-release delays $p(J_i, J_j)$



DRT: Semantics







Fahrplan

- Problem Overview
- 2 Task Models: L&L, GMF, DRT
- Analysis Methods
 - EDF: Demand Bound Function
 - Static Priorities: Maximum Interference Function
- 4 Hardness Result

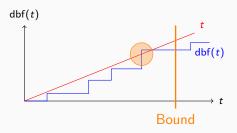
The Demand Bound Function

- Given a time interval length t
- ullet dbf(t) bounds the demand for processor time within any t interval

Theorem

A task system τ is schedulable with EDF iff:

$$\forall t \geqslant 0 : \sum_{T \in \tau} \mathsf{dbf}_T(t) \leqslant t$$



Complexity of Schedulability Test

• Efficient schedulability tests:

	EDF	Static
L&L	Yes	Yes
GMF	Yes	?
DRT	Yes	
EDRT	No	

Schedulability for Static Priorities

L&L tasks: Response Time Analysis

$$R_i = C_i + \underbrace{\sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil \cdot C_j}_{\text{Interference Term}}$$

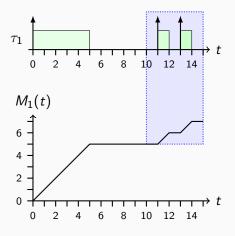
- Generalize for GMF: Maximum Interference Function (MIF)
 - ▶ $M_j(t)$: Maximum interference that τ_j can cause within t time units

$$R_i = C_i + \sum_{j \in hp(i)} M_j(R_i)$$

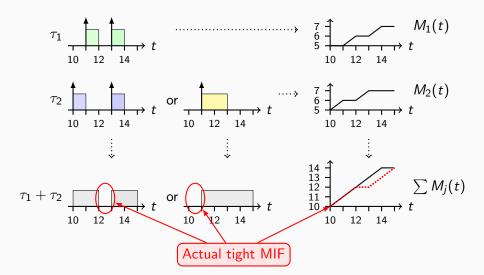
▶ Efficiently computable for GMF/DRT/...

BUT: Inherently overapproximate!

MIF: Example



MIF: Combined Example



Schedulability for Static Priorities

- In summary: MIF is pessimistic
- Possible improvement?
 - Define MIF additions better? Precise?
 - ▶ Use another abstraction level?
 - **.**..?
- No!

Theorem (Our technical result)

For GMF task systems, the schedulability problem for static priority schedulers is strongly coNP-hard.

• Thus: No precise efficient analysis possible.

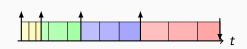
Hardness Result: Proof sketch

Possible to (exactly) fit all items? (strongly NP-hard)

Reduction to GMF schedulability:

One GMF task for *each* item

Packing possible ←⇒ Busy interval



Thus: $\tau(I)$ unsched. $\iff I \in 3\text{-PARTITION}$

Summary and Outlook

	EDF	Static
L&L	Yes	Yes
GMF	Yes	Yes No!
DRT	Yes	No
EDRT	No	No

- Showed intractability of static scheduling for GMF
- Insight:
 - For EDF, "simple" overload test suffices (Local worst cases combine.)
 - ightharpoonup For static prio: More structure ightharpoonup more complex test (Local worst case unclear.)
- Ongoing work:
 - Solve anyway? Heuristics?
 - ▶ Use SAT-/SMT-solvers

Q & A

Thanks!

