

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

ole of Software	
Provides large flex	sibility
Metric in SW: fun	ctionality, modularity and reusability
SW can never imp	prove the energy efficiency, it can just enable it
Reality: SW often	disables energy efficiency
SW implementation Dedicated HW im E.g. MPEG decod	on on DSP processor: 25W plementation: 0.2-0.5W ling: HW ⇔ SW ⇔ HW
	do off Floribility / Enormy

Further Lessons for Energy

- In reality only some discrete voltages possible
- Any voltage change implies overhead (DC/DC converter, PLL)
 - Latency: x 1.000 cycles
 - Energy overhead

Multi-Core architectures

- Processor core energy (performance) is often not dominating
 E.g. INTEL 48 core computer
 - Maximum Speed: Cores@1GHz, NoC@2GHz ⇒125W@1.14V@50C°: 69% cores, 30% NoC and DRAM interface
 - Low Power Mode: Cores@125MHz, NoC@255MhZ
 ⇒ 25W@0.7V@50C°: 21% cores, 70% NoC and DRAM interface

© N. Wehn

W ML	TE timing with Burst length=4
CLK	hanhannaha
CMD	ACT 15ns WR 15ns
ADDR	
DOS	
DATA	00,01,02,03
wordline	
REAT	D timing with CI = 3 and Burst length = 4
CLK	
CMD	ACTX 15ns XRD X 15ns XPREX
ADDR	ROW
DQS	RAS to CAS=3*CLK CAS latency=3*CLK
DATA	

Observations

Communication vs Computation

- $\mathbf{E}_{\text{compute}} \sim 2nJ/\text{operation}$
- **E**_{send} ~ 230nJ/useful bit
- $\Rightarrow E_{send}(127 \text{ bytes}) \sim E_{uC}(100.000 \text{ cycles})$ $E_{send}(1 \text{ bit}) \sim 100...4000 \text{ x } E_{compute}(1 \text{ instruction})$

Computation vs Flashstorage

• $E_{\text{flash write}}(127 \text{ bytes}) \sim E_{uC}(300.000 \text{ cycles})$

Communication

 $\bullet P_{\text{receive}} \sim P_{\text{transmit}}$

- ⇒ Large energy for ACK based protocols
 - E.g. frame length with 60 bytes
 - Energy_RX_ACK/total_energy: 80% (10ms), 30% (0.5ms)

© N. Wehn

Method	# of sent Messages	Ø Frames / succ. Message (#ARQ)	Energy / succ Message [µ]]
Only ARQ Battery fully depleted after 48 hours Extrapolated to a runtime of 120h	431,906	2.34	346,049
ARQ + Rep 1/3	431,737	1.18	16,842
ARQ + Turbo-Code	431,728	1.12	11,798

© N. Wehn

