
From Classical to
Runtime Aware
Architectures

Barcelona, July 4, 2018

Prof. Mateo Valero

BSC Director

Professor Tomas Lang

Once upon a time …

Our Origins…

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20071987 1988 1989 2008 200919861985 2010

IBM PP970 / Myrinet

MareNostrum

42.35, 94.21 Tflop/s

IBM RS-6000 SP & IBM p630

192+144 Gflop/s

SGI Origin 2000

32 Gflop/s

Connection Machine CM-200

0,64 Gflop/s

Convex C3800

Compaq GS-140

12.5 Gflop/s

Compaq GS-160

23.4 Gflop/s

Parsys Multiprocessor Parsytec CCi-8D

4.45 Gflop/s BULL NovaScale 5160

48 Gflop/s

Research prototypes

Transputer cluster

SGI Altix 4700

819.2 Gflops
SL8500

6 Petabytes

Maricel

14.4 Tflops, 20 KW

http://images.google.com/imgres?imgurl=http://www.cepba.upc.es/TTN-project/images/cepbasymbol.gif&imgrefurl=http://www.cepba.upc.es/TTN-project/projects.html&h=73&w=80&sz=1&hl=en&start=12&tbnid=GHqw-Hxj2oMNYM:&tbnh=68&tbnw=74&prev=/images?q=CEPBA+logo&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.cepba.upc.es/TTN-project/images/cepbasymbol.gif&imgrefurl=http://www.cepba.upc.es/TTN-project/projects.html&h=73&w=80&sz=1&hl=en&start=12&tbnid=GHqw-Hxj2oMNYM:&tbnh=68&tbnw=74&prev=/images?q=CEPBA+logo&gbv=2&svnum=10&hl=en

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Spanish Government 60%

Catalan Government 30%

Univ. Politècnica de Catalunya (UPC) 10%

BSC-CNS is
a consortium
that includes

BSC-CNS objectives

Supercomputing services
to Spanish and
EU researchers

R&D in Computer,
Life, Earth and

Engineering Sciences

PhD programme,
technology transfer,
public engagement

Mission of BSC Scientific Departments

Earth
Sciences

CASE

Computer
Sciences

Life
Sciences

To influence the way machines are built, programmed

and used: programming models, performance tools,

Big Data, computer architecture, energy efficiency

To develop and implement global and

regional state-of-the-art models for short-

term air quality forecast and long-term

climate applications

To understand living organisms by means of

theoretical and computational methods

(molecular modeling, genomics, proteomics)

To develop scientific and engineering software to

efficiently exploit super-computing capabilities

(biomedical, geophysics, atmospheric, energy, social

and economic simulations)

MareNostrum4
Total peak performance: 13,7 Pflops

General Purpose Cluster: 11.15 Pflops (1.07.2017)

CTE1-P9+Volta: 1.57 Pflops (1.03.2018)

CTE2-Arm V8: 0.5 Pflops (????)

CTE3-KNH?: 0.5 Pflops (????)

MareNostrum 1
2004 – 42,3 Tflops

1st Europe / 4th World

New technologies

MareNostrum 2
2006 – 94,2 Tflops

1st Europe / 5th World

New technologies

MareNostrum 3
2012 – 1,1 Pflops

12th Europe / 36th World

MareNostrum 4
2017 – 11,1 Pflops

2nd Europe / 13th World

New technologies

MareNostrum 4

From MN3 to MN4

BSC & The Global IT Industry 2018

Collaborations with Industry

Research into advanced technologies

for the exploration of hydrocarbons,

subterranean and subsea reserve

modelling and fluid flows

Research on wind farms

optimization and wing energy

production forecasts

Collaboration agreement for the

development of advanced systems

of deep learning with applications

to banking services

BSC’s dust storm forecast system

licensed to be used to improve

the safety of business flights.

Research on the protein-drug mechanism of

action in Nuclear Hormone receptors and

developments on PELE method to perform

protein energy landscape explorations

Simulation of fluid-structure

interaction problem with the

multi-physics software Alya

Design of Superscalar Processors

Simple interface
Sequential
program

ILP

ISA

Programs
“decoupled”

from hardware

Applications

Decoupled from the software stack

Latency Has Been a Problem from the
Beginning... 

• Feeding the pipeline with the right instructions:

• Software trace cache (ICS’99)

• Prophet/Critic Hybrid Branch Predictor (ISCA’04)

• Locality/reuse

• Cache Memory with Hybrid Mapping (IASTED87). Victim Cache 

• Dual Data Cache (ICS¨95)

• A novel renaming mechanism that boosts software prefetching (ICS’01)

• Virtual-Physical Registers (HPCA’98)

• Kilo Instruction Processors (ISHPC03,HPCA’06, ISCA’08)

F
e
tc

h

D
e
c
o
d
e

R
e

n
a

m
e

In
s
tr

u
c
ti
o
n

W
in

d
o
w

W
a
k
e
u
p
+

s
e
le

c
t

R
e
g
is

te
r

fi
le

B
y
p
a
s
s

D
a
ta

 C
a
c
h
e

R
e

g
is

te
r

W
ri
te

C
o
m

m
it

… and the Power Wall Appeared Later 

• Better Technologies

• Two-level organization (Locality Exploitation)

• Register file for Superscalar (ISCA’00)

• Instruction queues (ICCD’05)

• Load/Store Queues (ISCA’08)

• Direct Wakeup, Pointer-based Instruction Queue Design (ICCD’04,
ICCD’05)

• Content-aware register file (ISCA’09)

• Fuzzy computation (ICS’01, IEEE CAL’02, IEEE-TC’05). Currently known as
Approximate Computing 

F
e
tc

h

D
e
c
o
d
e

R
e
n
a
m

e

In
s
tr

u
c
ti
o
n

W
in

d
o
w

W
a
k
e
u
p
+

s
e
le

c
t

R
e
g
is

te
r

fi
le

B
y
p
a
s
s

D
a
ta

 C
a
c
h
e

R
e

g
is

te
r

W
ri
te

C
o
m

m
it

Fuzzy computation

Accuracy Size

Performance
@ Low Power

Binary
systems
(bmp)

Compresion
protocols

(jpeg)

Fuzzy
Computation

This one only used
~85% of the time
while consuming

~75% of the power

This image is the
original one

SMT and Memory Latency … 

• Simultaneous Multithreading (SMT)

• Benefits of SMT Processors:

• Increase core resource utilization

• Basic pipeline unchanged:

• Few replicated resources, other shared

• Some of our contributions:

• Dynamically Controlled Resource Allocation (MICRO 2004)

• Quality of Service (QoS) in SMTs (IEEE TC 2006)

• Runahead Threads for SMTs (HPCA 2008)

Fe
tc

h

D
ec

o
d

e

R
e

n
am

e

In
st

ru
ct

io
n

W
in

d
o

w

W
ak

eu
p

+
se

le
ct

R
e

gi
st

e
r

fi
le

B
yp

as
s

D
at

a
C

ac
h

e

R
e

gi
st

e
r

W
ri

te

C
o

m
m

itThread 1

Thread N

Time Predictability (in multicore and SMT processors)

• Where is it required:
• Increasingly required in handheld/desktop devices
• Also in embedded hard real-time systems (cars, planes, trains, …)

• How to achieve it:
• Controlling how resources are assigned to co-running tasks

• Soft real-time systems
• SMT: DCRA resource allocation policy (MICRO 2004, IEEE Micro 2004)
• Multicores: Cache partitioning (ACM OSR 2009, IEEE Micro 2009)

• Hard real-time systems
• Deterministic resource ‘securing’ (ISCA 2009)
• Time-Randomised designs (DAC 2014 best paper award)

QoS
spaceDefinition:

• Ability to provide a minimum performance to a task
• Requires biasing processor resource allocation

Statically scheduled VLIW architectures

• Power-efficient FU

• Clustering

• Widening (MICRO-98)

• μSIMD and multimedia vector units
(ICPP-05)

• Locality-aware RF

• Sacks (CONPAR-94)

• Non-consistent (HPCA95)

• Two-level hierarchical (MICRO-00)

• Integrated modulo scheduling
techniques, register allocation and spilling
(MICRO-95, PACT-96, MICRO-96, MICRO-01)

Vector Architectures… Memory Latency
and Power 

• Out-of-Order Access to Vectors (ISCA 1992, ISCA 1995)

• Command Memory Vector (PACT 1998)

• In-memory computation

• Decoupling Vector Architectures (HPCA 1996)

• Cray SX1

• Out-of-order Vector Architectures (Micro 1996)

• Multithreaded Vector Architectures (HPCA 1997)

• SMT Vector Architectures (HICS 1997, IEEE MICRO J. 1997)

• Vector register-file organization (PACT 1997)

• Vector Microprocessors (ICS 1999, SPAA 2001)

• Architectures with Short Vectors (PACT 1997, ICS 1998)

• Tarantula (ISCA 2002), Knights Corner

• Vector Architectures for Multimedia (HPCA 2001, Micro 2002)
• High-Speed Buffers Routers (Micro 2003, IEEE TC 2006)
• Vector Architectures for Data-Base (Micro 2012, HPCA2015,ISCA2016)

Awards in Computer Architecture

Charles Babbage: IEEE Computer Society:“For contributions
to parallel computation through brilliant technical work,
mentoring PhD students, and building an incredibly productive
European research environment.”. April, 2017

Seymour Cray: IEEE Computer Society:…… “In recognition of
seminal contributions to vector, out-of-order, multithreaded,
and VLIW architectures.” November 2015

Eckert-Mauchly: IEEE Computer Society and ACM:…… “For
extraordinary leadership in building a world class computer
architecture research center, for seminal contributions in the
areas of vector computing and multithreading, and for pioneering
basic new approaches to instruction-level parallelism.” June 2007

The MultiCore Era
Moore’s Law + Memory Wall + Power Wall

UltraSPARC T2
(2007)

Intel Xeon
7100 (2006)

POWER4
(2001)

Chip MultiProcessors (CMPs)

How Multicores Were Designed at the Beginning?

IBM Power4 (2001)
• 2 cores, ST

• 0.7 MB/core L2,
16MB/core L3 (off-chip)

• 115W TDP

• 10GB/s mem BW

IBM Power7 (2010)
• 8 cores, SMT4

• 256 KB/core L2
16MB/core L3 (on-chip)

• 170W TDP

• 100GB/s mem BW

IBM Power8 (2014)
• 12 cores, SMT8

• 512 KB/core L2
8MB/core L3 (on-chip)

• 250W TDP

• 410GB/s mem BW

How To Parallelize Future Applications?

• From sequential to parallel codes

• Efficient runs on manycore processors
implies handling:

• Massive amount of cores and available
parallelism

• Heterogeneous systems
• Same or multiple ISAs

• Accelerators, specialization

• Deep and heterogeneous memory hierarchy
• Non-Uniform Memory Access (NUMA)

• Multiple address spaces

• Stringent energy budget

• Load Balancing

A Really Fuzzy Space

Interconnect

L2 L2

D
R

A
M

D
R

A
M

MC

L3 L3 L3L3

M
R

A
M

M
R

A
M

C

C

C

CC
lu

st
er

 In
te

rc
o

n
n

ec
t

C C

C C

C

C

C

CC
lu

st
er

 In
te

rc
o

n
n

ec
t

C C

C C

C CA A

Living in the Programming Revolution

Multicores made the
interface to leak…

ISA /API

Parallel hardware
with multiple

address spaces
(hierarchy, transfer),

control flows, …

Applications

Parallel application
logic

+
Platform specificities

Applications

The efforts are
focused on

efficiently using the
underlying
hardware

ISA / API

Vision in the Programming Revolution

Need to decouple again

General purpose

Single address space

Application logic

Arch. independentApplications

Power to the runtime

PM: High-level, clean, abstract interface

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP … 3.0 …. 4.0 ….

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

GridSs
~2002

OmpSs: data-flow execution of sequential programs

void Cholesky(float *A) {

int i, j, k;

for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ;

for (i=k+1; i<NT; i++)

strsm (A[k*NT+k], A[k*NT+i]);

// update trailing submatrix

for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)

sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);

}

}#pragma omp task inout ([TS][TS]A)

void spotrf (float *A);

#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)

void ssyrk (float *A, float *C);

#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)

void strsm (float *T, float *B);

Decouple how we write
applications form
how they are executed

Write

Execute

Clean offloading to
hide architectural
complexities

OmpSs: …Taskified…
#pragma css task input(A, B) output(C)

void vadd3 (float A[BS], float B[BS],

float C[BS]);

#pragma css task input(sum, A) inout(B)

void scale_add (float sum, float A[BS],

float B[BS]);

#pragma css task input(A) inout(sum)

void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation

Some antidependences covered by flow dependences not drawn

Write

Decouple

how we write

form

how it is executed

… and Executed in a Data-Flow Model
#pragma css task input(A, B) output(C)

void vadd3 (float A[BS], float B[BS],

float C[BS]);

#pragma css task input(sum, A) inout(B)

void scale_add (float sum, float A[BS],

float B[BS]);

#pragma css task input(A) inout(sum)

void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution

OmpSs: Potential of Data Access Info

• Flat global address space seen by
programmer

• Flexibility to dynamically traverse
dataflow graph “optimizing”

• Concurrency. Critical path

• Memory access: data transfers
performed by run time

• Opportunities for automatic

• Prefetch

• Reuse

• Eliminate antidependences (rename)

• Replication management

• Coherency/consistency handled by
the runtime

• Layout changes

Processor

CPU

On-chip cache

Off-chip BW

CPU

Main Memory

PPU

User
main
program

CellSs PPU lib

SPU0

DMA in
Task execution
DMA out
Synchronization

CellSs SPU lib

Original task
code

Helper threadmain thread

Memory

User
data

Renaming

Task graph

Synchronization

Tasks

Finalization
signal

Stage in/out
data

Work
assignment

Data dependence

Data renaming

Scheduling

SPU1

SPU2

SPE threads

FU
FUFU

Helper thread

CellSs implementation

IFU

REG

ISSIQRENDEC

RET
Main thread

P. Bellens, et al, “CellSs: A Programming Model for the Cell BE Architecture” SC’06.
P. Bellens, et al, “CellSs: Programming the Cell/B.E. made easier” IBM JR&D 2007

Renaming @ Cell

• Experiments on the CellSs (predecessor of OmpSs)
• Renaming to avoid anti-dependences

• Eager (similarly done at SS designs)

• At task instantiation time

• Lazy (similar to virtual registers)

• Just before task execution

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory
Hierarchy” Sci. Prog. 2009

Main memory transfers (cold)

Main Memory transfers
(capacity)

Killed transfers

SMPSs: Stream benchmark reduction in execution time

SMPSs: Jacobi reduciton in # remanings

Data Reuse @ Cell

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy” Sci. Prog. 2009

Matrix-matrix multiply

• Experiments on the CellSs

• Data Reuse

• Locality arcs in dependence graph

• Good locality but high overhead  no time improvement

Reducing Data Movement @ Cell

• Experiments on the CellSs (predecessor of
OmpSs)

• Bypassing / global software cache
• Distributed implementation

• @each SPE

• Using object descriptors managed atomically with
specific hardware support (line level LL-SC)

Main memory:
cold

Main memory:
capacity

Global
software cache

Local
software cache

P. Belens et al, “Making the Best of Temporal Locality: Just-In-Time Renaming
and Lazy Write-Back on the Cell/B.E.” IJHPC 2010

DMA Reads

GPUSs implementation
• Architecture implications

• Large local store O(GB)  large task granularity  Good
• Data transfers: Slow, non overlapped  Bad

• Cache management
• Write-through
• Write-back

• Run time implementation
• Powerful main processor and multiple cores
• Dumb accelerator (not able to perform data transfers, implement

software cache,…)

Slave threads

FU
FU

FU

Helper thread

IFU

REG

ISSIQRENDEC

RET
Main thread

E. Ayguade, et al, “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs” Europar 2009

Prefetching @ multiple GPUs
• Improvements in runtime mechanisms (OmpSs +

CUDA)
• Use of multiple streams
• High asynchrony and overlap (transfers and kernels)
• Overlap kernels
• Take overheads out of the critical path

• Improvement in schedulers
• Late binding of locality aware decisions
• Propagate priorities

J. Planas et al, “Optimizing Task-based Execution Support on Asynchronous Devices.” Submitted

Nbody
Cholesky

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP … 3.0 …. 4.0 ….

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

GridSs
~2002

OmpSs

A forerunner for OpenMP

+ Prototype
of tasking

+ Task
dependences

+ Task
priorities

+ Taskloop
prototyping

+ Task reductions
+ Dependences

on taskwaits
+ OMPT impl.

+ Multidependences

+ Commutative

+ Dependences

on taskloops

today

40

ISA / API

The runtime drives the hardware design

– Tight collaboration between software and hardware layers

Runtime Aware Architectures

Applications

Runtime

PM: High-level, clean, abstract interface

Task based PM

annotated by the user

Data dependencies

detected at runtime

Dynamic scheduling

“Reuse” architectural

ideas under

new constraints

Superscalar vision at Multicore level

Programmability
Wall

Resilience Wall

Memory Wall Power Wall

Superscalar World

Out-of-Order, Kilo-Instruction Processor,
Distant Parallelism

Branch Predictor, Speculation

Fuzzy Computation

Dual Data Cache, Sack for VLIW

Register Renaming, Virtual Regs

Cache Reuse, Prefetching, Victim Cache
In-memory Computation

Accelerators, Different ISA’s, SMT

Critical Path Exploitation

Resilience

Multicore World

Task-based, Data-flow Graph, Dynamic
Parallelism

Tasks Output Prediction,

Speculation

Hybrid Memory Hierarchy, NVM

Late Task Memory Allocation

Data Reuse, Prefetching

In-memory FU’s

Heterogeneity of Tasks and HW

Task-criticality

Resilience

Load Balancing and Scheduling

Interconnection Network

Data Movement

RoMoL Research Lines

• Management of hybrid memory hierarchies with scratchpad
memories (ISCA’15, PACT’15) and stacked DRAMs (ICS’18)

• Runtime Exploitation of Data Locality (PACT’16, TPDS’18)

• Exploiting the Task Dependency Graph (TDG) to reduce data
movements (ICS’18)

• Architectural Support for Task-dependence Management
(IPDPS’17, HPCA’18)

• Vector Extensions to Optimize DBMS (Micro´12, HPCA´15, ISCA´16)

• Criticality-aware task scheduling (ICS’15) and acceleration
(IPDPS’16)

• Approximate Task Memoization (IPDPS’17)

• Dealing with Variation due to Hardware Manufacturing (ICS’16)

Memory Wall

Runtime Aware Architectures (RAA)

43

Re-design memory hierarchy

– Hybrid (cache + local memory)

– Non-volatile memory, 3D stacking

– Simplified coherence protocols,

non-coherent islands of cores

Exploitation of data locality

– Reuse, prefetching, in-memory

computation

44

Transparent Management of Local Memories
Hybrid memory hierarchy
– L1 cache + Local memories (LM)

More difficult to manage, but
– More energy efficient

– Less coherence traffic

LM Management in OpenMP (SC’12,
ISCA’15)
– Strided accesses served by the LM

– Irregular accesses served by the L1 cache

– HW support for coherence and consistency

Ll. Alvarez et al. Hardware-Software Coherence Protocol for the Coexistence of Caches and Local Memories. SC 2012.

0,8

0,9

1

1,1

1,2

CG EP FT IS MG SP

S
p

e
e
d

u
p

Cache

Hybrid

Ll. Alvarez et al. Coherence Protocol for Transparent Management of Scratchpad Memories in shared Memory Manycore Architectures.

ISCA 2015.

C C
L1 C

lu
st

er
 In

te
rc

o
n

n
e

ct

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

DRAM DRAM

L2

L3

45

Transparent Management of Local Memories

LM Management in Task-based

Programming Models (PACT’15)

– Inputs and outputs mapped to the LMs

– Runtime manages DMA transfers

• Locality-aware task scheduling

• Overlap with runtime

• Double buffering between tasks

– Coherence and consistency ensured by

programming model semantics

C C
L1 C

lu
st

er
 In

te
rc

o
n

n
e

ct

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

DRAM DRAM

0,8

0,9

1

1,1

1,2

S
p

e
e

d
u

p

Cache

Hybrid

L2

L3

Ll. Alvarez et al.

Runtime-Guided

Management of Hybrid

Memory Hierarchies in

Multicore Architectures.

PACT 2015.

C

C

C

8.7% speedup in execution time

14% reduction in power

20% reduction in network-on-chip traffic

Exploiting the Task Dependency Graph (TDG)
to Reduce Coherence Traffic

To reduce coherence traffic, the

state-of-the-art applies round-robin

mechanisms at the runtime level.

Exploiting the information

contained at the TDG level is

effective to

– improve performance (3.16x wrt FIFO)

– dramatically reduce coherence traffic

(2.26x reduction wrt state-of-the-art).

State-of-the-art Partition (DEP)

Gauss-Seidel TDG

DEP requires ~200GB
of data transfer across a
288 cores system

Exploiting the Task Dependency Graph (TDG)
to Reduce Coherence Traffic

To reduce coherence traffic, the

state-of-the-art applies round-robin

mechanisms at the runtime level.

Exploiting the information

contained at the TDG level is

effective to

– improve performance (3.16x wrt FIFO)

– dramatically reduce coherence traffic

(2.26x reduction wrt state-of-the-art).

Graph Algorithms-Driven Partition (RIP-DEP)

Gauss-Seidel TDG

RIP-DEP requires ~90GB

of data transfer across a

288 cores system

I. Sánchez et al, “Reducing Data Movements on Shared Memory Architectures”, ICS 2018

49

Transparent Management of Stacked DRAMs

Heterogeneous memory system
– 3D stacked HBM + off-chip DDR4

Very high bandwidth, but
– Difficult to manage

– Part of memory (PoM) or cache?

Runtime-managed stacked DRAM
– Map task data to the stacked DRAM

– Parallelize data copies to reduce copy overheads

– Reuse-aware bypass to avoid unworthy copies

– 14% average performance benefits on an Intel Knight’s Landing

Ll. Alvarez et al. “Runtime-Guided Management of Stacked

DRAM Memories in Task Parallel Programs.”, ICS 2018.

Cache Part of memory

NUMA 1 NUMA 2

0,2
0,4
0,6
0,8

1
1,2
1,4

Cache

PoM

Runtime

CPU

Stacked
DRAM

External

DRAM

CPU

Stacked
DRAM

External

DRAM

Power Wall

Heterogeneity of tasks and

Hardware

– Critical path exploitation

– Manufacturing Variability

Management of shared resources

Runtime Aware Architectures (RAA)
Re-design memory hierarchy

– Hybrid (cache + local memory)

– Non-volatile memory, 3D stacking

– Simplified coherence protocols,

non-coherent islands of cores

Exploitation of data locality:

– Reuse, prefetching, in-memory

computation

Memory Wall

OmpSs in Heterogeneous Systems

Heterogeneous systems

• Big-little processors

• Accelerators

• Hard to program

big

little

big big

big

little little

little

Task-based programming models can adapt to these scenarios

• Detect tasks in the critical path and run them in fast cores

• Non-critical tasks can run in slower cores

• Assign tasks to the most energy-efficient HW component

• Runtime takes core of balancing the load

• Same performance with less power consumption

Criticality-Aware Task Scheduler

• CATS on a big.LITTLE processor (ICS’15)
• 4 Cortex A15 @ 2GHz

• 4 Cortex A7 @ 1.4GHz

• Effectively solves the problem of blind assignment of tasks
• Higher speedups for double precision-intensive benchmarks

• But still suffers from priority inversion and static assignment

K. Chronaki et al. Criticality-Aware Dynamic Task Scheduling for
Heterogeneous Architectures. ICS 2015.

0,7

0,8

0,9

1

1,1

1,2

1,3

Cholesky Int. Hist QR Heat AVG

Sp
e

e
d

u
p

Original CATS

53

Criticality-Aware Task Acceleration
CATA: accelerating critical tasks (IPDPS’16)

– Runtime drives per-core DVFS reconfigurations meeting a

global power budget

– Solves priority inversion and static assignment issues

– Reconfiguration overhead grows with the number of cores

• Hardware Runtime Support Unit (RSU) reconfigures DVFS

E. Castillo et al., CATA: Criticality Aware Task Acceleration for

Multicore Processors. IPDPS 2016.

80%

90%

100%

110%

120%

130%

140%

150%

Performance imprv EDP imprv

Original CATS CATA CATA+RSU

32-core system with

16 fast cores

54

Programmability Wall

Runtime Aware Architectures (RAA)

Hardware acceleration of the
runtime system
– Task dependency graph

management

Task Memoization and
Approximation

Heterogeneity of tasks and

Hardware

– Critical path exploitation

– Manufacturing variability

Management of shared resources

Re-design memory hierarchy

– Hybrid (cache + local memory)

– Non-volatile memory, 3D stacking

– Simplified coherence protocols,

non-coherent islands of cores

Exploitation of data locality:

– Reuse, prefetching, in-memory

computation

Memory Wall Power Wall

Task-based checkpointing

Algorithmic-based fault tolerance

Resilience Wall

55

Approximate Task Memoization (ATM)
ATM aims to eliminate redundant tasks (IPDPS’17)

ATM detects correlations between task inputs and

outputs to memoize similar tasks

I. Brumar et al, “ATM: Approximate Task Memoization in the

Runtime System”. IPDPS 2017

– Static ATM achieves 1.4x

average speedup when

only applying

memoization techniques

– With task approximation,

Dynamic ATM achieves

2.5x average speedup

with an average 0.7%

accuracy loss, competitive

with an off-line Oracle

approach

56

TaskSuperscalar (TaskSs) Pipeline

Hardware design for a distributed task

superscalar pipeline frontend (MICRO’10)

– Can be embedded into any manycore fabric

– Drive hundreds of threads

– Work windows of thousands of tasks

– Fine grain task parallelism

TaskSs components:
– Gateway (GW): Allocate resources for task meta-data

– Object Renaming Table (ORT)

• Map memory objects to producer tasks

– Object Versioning Table (OVT)

• Maintain multiple object versions

– Task Reservation Stations (TRS)

• Store and track task in-flght meta-data

Implementing TaskSs @ Xilinx Zynq
(ISPASS’16, IPDPS’17)

GW

TRS

ORT

Ready Queue

OVT

TaskSs pipeline

Scheduler

C C C C
C C C C

C C C C
C C C C

Multicore Fabric
Y. Etsion et al, “Task Superscalar: An Out-of-Order Task Pipeline”, MICRO 2010

X. Tan et al, “General Purpose Task-Dependence Management Hardware for

Task-based Dataflow Programming Models”, IPDPS 2017

57

Architectural Support for Task Dependence

Management (TDM) with Flexible Software Scheduling

Task creation is a bottleneck

since it involves dependence

tracking

Our hardware proposal (TDM)

– takes care of dependence tracking

– exposes scheduling to the SW

Our results demonstrate that

this flexibility allows TDM to

beat the state-of-the-art

E. Castillo et al, Architectural Support for Task Dependence Management

with Flexible Software Scheduling (HPCA’18)

Hash Join, Sorting, Aggregation, DBMS
• Goal: Vector acceleration of data bases

• “Real vector” extensions to x86
• Pipeline operands to the functional unit (like Cray machines,

not like SSE/AVX)

• Scatter/gather, masking, vector length register

• Implemented in PTLSim + DRAMSim2

• Hash join work published in MICRO 2012
• 1.94x (large data sets) and 4.56x (cache resident data sets)

of speedup for TPC-H
• Memory bandwidth is the bottleneck

• Sorting paper published in HPCA 2015
• Compare existing vectorized quicksort, bitonic mergesort,

radix sort on a consistent platform

• Propose novel approach (VSR) for vectorizing radix sort with
2 new instructions

• Similarity with AVX512-CD instructions
(but cannot use Intel’s instructions because the
algorithm requires strict ordering)

• Small CAM

• 3.4x speedup over next-best vectorised algorithm with the
same hardware configuration due to:

• Transforming strided accesses to unit-stride

• Elminating replicated data structures

• Ongoing work on aggregations

• Reduction to a group of values, not a single scalar value
ISCA 2016

• Building from VSR work

0
2
4
6
8

10
12
14
16
18
20
22

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

quicksort bitonic radix vsr

sp
ee

d
u

p
 o

ve
r

sc
al

ar
 b

as
e

lin
e

1 lane 2 lanes 4 lanes

59

RoMoL Infrastructure

Applications:

• HPC codes (OmpSs, MPI+OmpSs)

• PARSECSs (OmpSs)

Simulation infrastructure:

We have built a MUlti-scale

Simulation Approach (MUSA)

Applications: Building a

representative set to show

OmpSs’ strengthsº

Analysis Tools:

We are using a solid tool kit to

analyze our codes on real HW

Dimemas:

• Off-Socket Communicatons (MPI)

TaskSim:

• On-socket Parallelism (OmpSs)

• Coarse Memory Hierarchy

Gem5:

• Detailed Memory Hierarchy

• Fine Grain Parallelism (OmpSs)

• Processors Pipeline

Analysis Tools

• Extrae (tracing OmpSs and

MPI+OmpSs codes)

• Paraver (analysis of OmpSs and

MPI+OmpSs codes)

Related Work

• Rigel Architecture (ISCA 2009)
• No L1D, non-coherent L2, read-only, private and cluster-shared data
• Global accesses bypass the L2 and go directly to L3

• SARC Architecture (IEEE MICRO 2010)
• Throughput-aware architecture
• TLBs used to access remote LMs and migrate data accross LMs

• Runnemede Architecture (HPCA 2013)
• Coherence islands (SW managed) + Hierarchy of LMs
• Dataflow execution (codelets)

• Carbon (ISCA 2007)
• Hardware scheduling for task-based programs

• Holistic run-time parallelism management (ICS 2013)

• Runtime-guided coherence protocols (IPDPS 2014)

RoMoL … papers

• V. Marjanovic et al., “Effective communication and computation overlap with
hybrid MPI/SMPSs.” PPoPP 2010

• Y. Etsion et al., “Task Superscalar: An Out-of-Order Task Pipeline.” MICRO 2010

• N. Vujic et al., “Automatic Prefetch and Modulo Scheduling Transformations for
the Cell BE Architecture.” IEEE TPDS 2010

• V. Marjanovic et al., “Overlapping communication and computation by using a
hybrid MPI/SMPSs approach.” ICS 2010

• T. Hayes et al., “Vector Extensions for Decision Support DBMS Acceleration”.
MICRO 2012

• L. Alvarez,et al., “Hardware-software coherence protocol for the coexistence of
caches and local memories.” SC 2012

• M. Valero et al., “Runtime-Aware Architectures: A First Approach”. SuperFRI
2014

• L. Alvarez,et al., “Hardware-Software Coherence Protocol for the Coexistence of
Caches and Local Memories.” IEEE TC 2015

RoMoL … papers

• M. Casas et al., “Runtime-Aware Architectures”. Euro-Par 2015.

• T. Hayes et al., “VSR sort: A novel vectorised sorting algorithm & architecture
extensions for future microprocessors”. HPCA 2015

• K. Chronaki et al., “Criticality-Aware Dynamic Task Schedulling for
Heterogeneous Architectures”. ICS 2015

• L. Alvarez et al., “Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures”. ISCA 2015

• L. Alvarez et al., “Run-Time Guided Management of Scratchpad Memories in
Multicore Architectures”. PACT 2015

• L. Jaulmes et al., “Exploiting Asycnhrony from Exact Forward Recoveries for DUE
in Iterative Solvers”. SC 2015

• D. Chasapis et al., “PARSECSs: Evaluating the Impact of Task Parallelism in the
PARSEC Benchmark Suite.” ACM TACO 2016.

• E. Castillo et al., “CATA: Criticality Aware Task Acceleration for Multicore
Processors.” IPDPS 2016

RoMoL … papers

• T. Hayes et al “Future Vector Microprocessor Extensions for Data Aggregations.”
ISCA 2016.

• D. Chasapis et al., “Runtime-Guided Mitigation of Manufacturing Variability in
Power-Constrained Multi-Socket NUMA Nodes.” ICS 2016

• P. Caheny et al., “Reducing cache coherence traffic with hierarchical directory
cache and NUMA-aware runtime scheduling.” PACT 2016

• T. Grass et al., “MUSA: A multi-level simulation approach for next-generation
HPC machines.” SC 2016

• I. Brumar et al., “ATM: Approximate Task Memoization in the Runtime System.”
IPDPS 2017

• K. Chronaki et al., “Task Scheduling Techniques for Asymmetric Multi-Core
Systems.” IEEE TPDS 2017

• C. Ortega et al., “libPRISM: An Intelligent Adaptation of Prefetch and SMT
Levels.” ICS 2017

• V. Dimic et al., “Runtime-Assisted Shared Cache Insertion Policies Based on Re-
Reference Intervals.” EuroPAR 2017

• Riding on Moore’s Law (RoMoL, http://www.bsc.es/romol)
• ERC Advanced Grant: 5-year project 2013 – 2018.

• Our team:
• CS Department @ BSC

• PI: Project Coordinators:

• Researchers: Postdocs:

• Students:

• Open for collaborations!

RoMoL Team

http://www.bsc.es/romol

65

High-level Overview of the Proposal and Goals

We propose a management agent able to dynamically

adapt hardware and system software:

– At the HW level, it will monitor the architecture status, evaluate, and

adapt it.

– At the system SW level, it will monitor the program state and adapt the

OS and runtime system policies (E.g. scheduling).

The goal is to predict hardware and software states as

many cycles as possible in advance to enable

optimizations (E.g. pre-fetcher).

SW models

HW models

Management

Agent

Mare Nostrum RISC-V inauguration 202X

MN-RISC-V

www.bsc.es

THANK YOU!

