On-board software technology trends in space applications ECRTS 2018 Keynote, 5/7/18

Olivier Notebaert On-board Data processing expert Defence and Space Engineering

April 2018

Airbus is an international pioneer in the aerospace industry

We make it fly

Airbus is the largest aeronautics and space company in Europe.

A worldwide leader in designing, manufacturing, and delivering aerospace products, services and solutions to customers on a global scale.

Global Company

* as of December 2016

129,000 employees from **135** nationalities

Located across **35** countries on more than **180** sites

Order Intake €158 bn

3 5 June 2018

AIRBUS

Space Selfie: This talk is not about automotive in space The red cabriolet and the Planet Earth

On-board software technology trends in space applications

Space

Vision

Targets

Technologies

On-board software technology trends in space applications

Space

Vision

Targets

Technologies

7 5 June 2018

15 5 June 2018

On-board software technology trends in space applications - ECRTS 2018

٢

6

19 5 June 201

24 5 June 2018

Another Space Selfie Rosetta and the Comet Tchuri

Another Space Selfie Rosetta and the Comet Tchuri

Spacecraft Avionics Systems

On-board software main functions

On-board Software within Spacecraft Avionics Systems

Spacecraft avionics

DHS Data Handling System On-board Electronics On-board Software

AOCS / GNC

Attitude and Orbit Control System / Guidance, Navigation and Control Sensors & Actuators

AIRBUS

On-board Software within Spacecraft Avionics Systems

On-board Software

DHS Central Software

- Platform Control
- Generic architecture
- Execution platform
- Low Data VolumeHigh Reliability

Payload Data Processing

- Instruments specific
- Mission dependant
- High Data Volumes
- High Data rates
- High Performance

AIRBUS
Main Data Handling System functions

- Communications
- Vehicle Guidance, Navigation and Control
- Spacecraft operations, Housekeeping and Mission management
- Fault management
- Spacecraft equipment management
- Payload control, data processing and on-board data storage

Curiosity explores the surface of MARS

Telecommand

- Low data rate
- Minimal capability ensured by survival mode
- Security (de-cyphering, authentication)

Telemetry

- Large range of data rates
 - Low rate mission data
 - High rate payload data
- Security (cyphering)
- Limited availability
 - Permanent in Geostationary Orbit
 - Submitted to visibility windows in LEO, MEO or Deep Space
 - May be augmented through Space Data Relays

Standardisation

- CCSDS (Consultative Committee for Space Data System) joint organisation with participation of major space agencies (NASA, ESA, JAXA,...).
 - International interoperability (e.g TC/TM communications)
- ECSS (European Cooperation for Space Standardisation)

⇒ European interoperability and technology harmonisation

Vehicle Guidance, Navigation and Control

Orbit transfer and special manoeuvres

- Guidance and navigation for the Orbit transfer
 - 3 to 6 months for a GTO to GEO transfer with electric propulsion
 - Target detection, approach, landing, docking...

Attitude and Orbit Control

- Knowledge and control of the systems position and attitude
- Instrument and antennas pointing
- Interactions (Platform, solar panels, instruments)

Operational Modes Control

- Orbit transfer mode
- Nominal mode
- Survival mode
 - easy attitude control e.g. sun pointing)
 - Limited power consumption
 - Minimal TC/TM communications

ATV docking to the International Space Station

© ESA

Spacecraft operations, Housekeeping and Mission management

Basic functions for system operation

- Telemetry / Telecommand
- On-board Data Management and storage
- System's operations autonomy
- On-board operations scheduling (mission plan)
- On-board mission data storage
- On-board Software maintenance

System Monitoring and Housekeeping

- Thermal system control
 - thermal sensors on spacecraft structure and equipment
 + heaters control
- Power system control
 - battery management, solar panels control and orientation, power distribution
- On-board Equipment monitoring

Failure Detection, Isolation & Recovery (FDIR)

- Next slide

Fault management: Failure Detection, Isolation & Recovery

Different kind of failure origin

- Electrical, electronic or mechanical element failure
- Software fault
- External event (space debris, meteorite, ...)
- External disturbance (optical sensor dazzling, electro-magnetic effect, solar flares...)
- Operational fault (or intentional attack)

Failures can propagate

- Too slow diagnosis
- Bad diagnosis
- Amplification through a looped system

Systems require failure tolerance

- Capacity to detect, isolate and report the failure
- Capacity to configure itself into a safe mode
- Capacity to restore nominal operations
- Minimum data losses & availability
- Stronger requirements for manned missions

Equipment management

- Two kind of equipment
 - Dumb Devices
 - without processing capability
 - Simple Sun Sensors
 - Gyroscopes, first generation optical sensors
 - Smart devices
 - with processing capability with cabled dialog protocol
 - Gyroscopes, second generation optical sensors
 - on-board processing, mass memory
- Equipment Management is complex
 - Many suppliers
 - Variety of interfaces and communication protocols
 - In-orbit on-board software maintenance

Star sensors

GNSS devices

Inertial systems

Mass memories

Payload control, data processing and on-board data storage

Observation & Science

- Image & Radar processing (compression, ciphering...)
- Scientific data processing
- Mostly data stream processing
- few missions with real-time control loops

Telecommunications

- Modulation, Demodulation, (de)ciphering, Channel Switching
- Software Defined Radio

Main characteristics

- Huge data volume
- High capacity modular data compression and Mass Memory Units
- Specific Instruments Control
- Specific Payload data processing and control systems
 - Wide variety of functions

Spacecraft Avionics Systems

- Main Constraints for on-board electronics
 - Space environment
 - Industrial constraints

Space Environment : the radiation issue

Space Environment : the radiation issue

2018

Environmental constraints

Tolerance to radiations for on-board electronics

Problems

- Destructive effects (latch-up)
- Cumulated radiation dose
 - Limits component time-life
- Transients errors due to space particles
 - Upsets generate software faults or functional interuption

Solutions

- Robust silicon technologies (e.g. Silicon On Isolator)
- Fault-tolerant design inside the chips (e.g. ECC, TMR...)
- Fault-tolerant systems architecture with COTS components

Drawbacks

- Poor electronics components and devices catalogue
- Lower processing performance
- Radiation characterisation & qualification

Mechanical and Thermal constraints

- · Vacuum and thermal variations
- Extreme and variable operational conditions
 - Assembly Integration and Tests
 - Ground, air and sea Transport
 - Launch
 - Orbital LEO short night/day cycles, GEO, Deep Space

Result: Specific and complex electronics, heavy investments, long development, limited performances

- Energy
- Solar Energy only
- Becomes rare when far from the Sun
- Unpredictable on Planetary surfaces

Industrial constraints

Variety of missions

- Generic platforms: Requirement domain without precise mission selection
- Standard Product families: Customisation for adaptation to mission

Make or Buy decision

- Interfaces standardisation, inter-operable products catalogue
- International partnerships, GEO return, ITAR constraints

Testability

- Complexity of systems makes full test coverage difficult
- Improvement of production, integration and validation methods and tools

Quality

- cost of non-quality is very difficult to predict and it is not easy to repair defects in space
- Rigorous standards for development and manufacturing processes

Obsolescence

- Maintenance of critical components manufacturing capability
- Strategic stocks for key products

Spacecraft On-board Computer

2016

2014

2018

Satellite Platform Computer: OSCAR

SCoC3 SpaceCraft Controller on a Chip

97 DMIPS 2 Watts 0.18 µm ATMEL RAD-HARD with TMR Built-in debug support

OSCAR Satollito Blatform Compute

Satellite Platform Computer

AIRBUS

5 June 2018

OSCAR Central Software

Satellite Central Software

RTEMS Core DHS Library • PUS services

LEON 2
COLE and MDPA
LEON 3
SCoC3

SDE

- Eclipse
- C language
- Autocoded AOCS
- Numerical Simulation and Validation Facility

AIRBUS

Central Software with Very Integrated Avionics

Satellite Central Software

- TSP Hypervisor
 - Xtratum / PikeOS
- RTEMS / Linux
- Asymmetrical Multi Processing
 - Static partition mapping

AIRBUS

LEON 4 (GR740)Multicore ARM

High Performance Payload Data Processing

Payload Software

S/W ParallelisationRTEMS MTAPIOpenMP

Multicores

- LEON 4 (GR740)
- Multicore ARM

Manycores

- HPDP (Airbus)
- MPPA (Kalray)
- RC64 (RamonChips)
- GPUs

AIRBUS

For Highest Performance → ASIC or FPGA

On-board software technology trends in space applications

Space

Vision

Targets

Technologies

On-board software technology trends in space applications

AIRBUS

AIRBUS DEFENCE AND SPACE STARTS A NEW ERA IN SPACE WITH ONEWEB CONSTELLATION...

No one has ever built a satellite in one day... we will build several every day!

Internet to everyone, everywhere on Earth

GLOBAL LOW EARTH ORBIT CONSTELLATION

Providing high-speed internet connectivity equivalent to terrestrial fiber-optic networks

ONEWEB Facts & Figures

less 150 kg weight

Sup to 4 built every day

900

satellites to be built

AIRBUS

© 2015 C3 Creative Code and Content GmbH

Our future is IoT @ any-time everywhere

Internet of Things Connected smart machines

Smart vehicles and robots in smart cities Electrical, Connected and Autonomous

In-board software technology trends in space applications - ECRTS 2018

Today IOT

Tomorrow Vehicles Robots Autonomous Connected

20th Century On-board Data systems are outdated

AIRBUS

On-board software technology trends in space applications

Space

Vision

Targets

Technologies

Avionics

Instruments

On-board software technology trends in space applications - ECRTS

COST

PERFO

Connectivity

data-centric

massive data volumes Field/Ground/Cloud balance Global Data access

CPU

Autonomy

Onboard Deep learning Artificial Intelligence High computing power

OPEN

Communications

Customization friendly End to End Quality of Service

Robotics Image processing Mission Autonomy

Trusted and Secure Always up-to-date in-depth cybersecurity protection

Open platform evolutive flexible scalable Virtualization Onboard IOT

AIRBUS

On-board software technology trends in space applications

Space

Vision

Targets

Technologies

67 5 June 2018

Space Processors Roadmap vs Smartphone Roadmap

GPP/SoC: Space Roadmap vs Smartphone Roadmap

Why COTS ?

On-board software technology trends in space applications - ECRTS 2018

In Space with COTS based Computers ?

Deep Space

Medium to very long duration High radiations levels Mostly institutional missions ➡ Rad-Hard technology

MEO/GEO

(years)

Medium to long duration Medium to high radiations levels Commercial + institutional market Rad-Tolerant or Rad-Hard

LEO applications

Low to medium duration Low to medium radiations levels Commercial + institutional market Qualified COTS or Rad-Tolerant

Atmospheric applications

Low to very long duration (maintainable) Less radiations but many more devices High commercial market pressure Critical (human transport or assets) ➡ Qualified or Certified COTS

72 5 June 2018

AIRBUS
Micro-electronics Technology trends

Technology enables future applications

On-board software technology trends in space applications - ECRTS 2018

STM 28nm FD-SOI Technology

- ► High performance with low power consumption
- High robustness in radiation environment

a powerful combination of innovative technology adapted for Space

ARM Cortex-R52

ARM's most advanced processor for safety

Deep sub-micron microprocessor for spAce

Context & Objectives

- Horizon 2020 project focusing "Critical Space Technologies for European Strategic Non-Dependence"
- Covers the development of a rad-hard high performance MPSoC based on the ARM[®] Cortex[®] R52 implemented in 28nm FDSOI technology
- Beyond space applications, the adoption of the ARM[®] processor will enable the convergence with terrestrial applications benefiting from the strong ARM[®] ecosystem.

7 partners from 4 countries

- STMicroelectronics (coordinator)
 France
- Airbus D&S
 Germany & France
- Thales Alenia Space
- ISD
- NanoXplore

2017: Kick-off **2018:** FPGA prototype

Schedule

2019: DAHLIA product

AIRBUS

Multi-Processor System on Chip

75 5 June 2018

Italy & France

Greece

France

OPEN

Why FD-SOI ?

Radiations induce Bit flips, latch-up, leakage currents

FD-SOI improves upset rates by 100× to 1000×

- against neutrons, alphas, heavy ions, protons, muons, thermals, low energy protons...
- due to both very small sensitive volume and very low bipolar gain
- The reduced pitch size provides good tolerance to total lonization Dose

Intrinsically immune to Latch-up

Atmospheric neutrons

Why FD-SOI ?

Power/Performance/Cost tradeoffs

- FD-SOI improves power efficiency
 - Technology allowing very low supply voltages (<0.5V)

Very important value for autonomy in embedded systems

- Mobile devices, automotive, UAV's, space exploration and robotics...
- e.g. AUDI A8 includes 6.000 to 8.000 semiconductor components

Source: www.robotzeitgeist.com

Source: Airbus Defence and Space

Source: Audi

AIRBUS

Cortex-R52

ARM's most advanced processor for safety

- Dedicated for safety applications including automotive, industrial and healthcare
- Simplifies integration of software in complex safety critical systems

Safety features

- ECC protected memory
- Software BIST libraries
- Error management
- Memory Protection Unit
- New privilege level
- ...

ARM CoreSight[™]

- Debug and Trace
- Health Monitoring

This keynote was not about automotive in space...

This keynote was not about automotive in space....

but who knows...?

AIR

80 5 June 2018

Creating a better connected, safer and more prosperous world

Thank you for your attention !

Questions ?

Acknowledgements

Olivier.notebaert@airbus.com Arbus Defence and Space 31 rue des cosmonautes 31402 Toulouse Cedex 4 France Airbus, ESA, CNES, NASA and SpaceX for their great images of space vehicles to David Bowie for his great song "life on Mars" To Elon Musk and SpaceX for their strong push into the new space era To Michael Herbig for its great space comedy movie "Raumschiff Surprise – Periode 1" and to Macrovector -@ Freepik.com for their free and nice pictograms

AIRBUS