
Avoiding Pitfalls when Using NVIDIA
GPUs for Real-Time Tasks in

Autonomous Systems
Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita,

James H. Anderson, F. Donelson Smith

All image sources and references are provided at the end. 1

2

3

Computer Vision
& AI Expertise

GPU
Behavior
Expertise

Real-time
Expertise

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking
● GPU concurrency and performance
● CUDA programming perils

4

CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

5

CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

6

CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

7

(i) Allocate GPU memory cudaMalloc(&devicePtr,
 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

CUDA Programming Fundamentals

8

CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

9

CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

 bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
 bufferSize);

(iii) Launch the kernel
 (kernel = code that runs on GPU)

computeResult<<<numBlocks,
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
 bufferSize);

(v) Free GPU memory cudaFree(devicePtr);

10

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking
● GPU concurrency and performance
● CUDA programming perils

11

Explicit Synchronization

12

Explicit Synchronization

13

Each CUDA stream is
managed by a
separate CPU thread
in the same address
space.

Explicit Synchronization

14
K1 starts K1 completes

Explicit Synchronization

15

1024 threads

256 threads

Explicit Synchronization

16

1. Thread 3 calls cudaDeviceSynchronize
 (explicit synchronization). (a)

2. Thread 3 sleeps for 0.2 seconds. (c)

3. Thread 3 launches kernel K3. (d)

Explicit Synchronization

17

1. Thread 3 calls cudaDeviceSynchronize
 (explicit synchronization). (a)

2. Thread 4 launches kernel K4. (b)

3. Thread 3 sleeps for 0.2 seconds. (c)

4. Thread 3 launches kernel K3. (d)

Explicit Synchronization

18

Pitfall 1. Explicit synchronization does not block future
commands issued by other tasks.

Implicit Synchronization

19

Two commands from different streams cannot run concurrently [if separated by]:

1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same
device memory
5. Any CUDA command to the NULL stream

CUDA toolkit 9.2.88 Programming Guide, Section 3.2.5.5.4, "Implicit Synchronization":

Implicit Synchronization

20

➔ Pitfall 2. Documented sources of implicit synchronization
may not occur.

1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same
device memory
5. Any CUDA command to the NULL stream

Implicit Synchronization

21

Implicit Synchronization

22

1. Thread 3 calls cudaFree. (a)

2. Thread 3 sleeps for 0.2 seconds. (c)

3. Thread 3 launches kernel K3. (d)

Implicit Synchronization

23

1. Thread 3 calls cudaFree. (a)

2. Thread 4 is blocked on the CPU when
 trying to launch kernel 4. (b)

3. Thread 4 finishes launching kernel K4,
 thread 3 sleeps for 0.2 seconds. (c)

4. Thread 3 launches kernel K3. (d)

Implicit Synchronization

24

➔ Pitfall 3. The CUDA documentation neglects to list some
functions that cause implicit synchronization.

➔ Pitfall 4. Some CUDA API functions will block future
CUDA tasks on the CPU.

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

25

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

26

27

GPU Concurrency and Performance

● Implicit synchronization penalty = Processes with MPS
vs. Threads

28

GPU Concurrency and Performance

● Implicit synchronization penalty = Processes with MPS
vs. Threads

● GPU concurrency benefit = Processes with MPS vs.
Processes without MPS

29

GPU Concurrency and Performance

● Implicit synchronization penalty = Processes with MPS
vs. Threads

● GPU concurrency benefit = Processes with MPS vs.
Processes without MPS

● MPS overhead = Threads vs. Threads with MPS
(not in plots)

30

GPU Concurrency and Performance

31

GPU Concurrency and Performance

GPU Concurrency and Performance

32

70% of the time, a single
Hough transform iteration
completed in 12 ms or less.

GPU Concurrency and Performance

33

This occurred when four
concurrent instances were
running in separate CPU threads.

GPU Concurrency and Performance

34

The observed WCET using threads
was over 4x the WCET using
multiple processes.

GPU Concurrency and Performance

35

GPU Concurrency and Performance

36

GPU Concurrency and Performance

37

➔ Pitfall 5. The suggestion from NVIDIA’s documentation to
exploit concurrency through user-defined streams may be of
limited use.

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

38

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

39

Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

40

Synchronous Defaults
if (!CheckCUDAError(

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}

41

Why does this cause implicit synchronization?

Synchronous Defaults
if (!CheckCUDAError(

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}

42

• The CUDA docs say that memset
 causes implicit synchronization...

Synchronous Defaults
if (!CheckCUDAError(

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}

43

• The CUDA docs say that memset
 causes implicit synchronization...

• But didn't slide 20 say memset
 doesn't cause implicit
 synchronization?

Synchronous Defaults
if (!CheckCUDAError(

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}

44

if (!CheckCUDAError(
cudaMemsetAsync(
state->device_block_smids,
0, data_size,
state->stream))) {
return 0;

}

➔ Pitfall 6. Async CUDA functions use the
GPU-synchronous NULL stream by default.

Other Perils

45

➔ Pitfall 7. Observed CUDA behavior often diverges from
what the documentation states or implies.

Other Perils

46

➔ Pitfall 8. CUDA documentation can be contradictory.

Other Perils

47

➔ Pitfall 8. CUDA documentation can be contradictory.

CUDA Programming Guide, section 3.2.5.1:

The following device operations are asynchronous with respect to the host:
[...] Memory copies performed by functions that are suffixed with Async

CUDA Runtime API Documentation, section 2:

For transfers from device memory to pageable host memory,
[cudaMemcpyAsync] will return only once the copy has completed.

Other Perils

48

➔ Pitfall 9. What we learn about current black-box GPUs
may not apply in the future.

Conclusion
● The GPU ecosystem needs clarity and openness!

● Avoid pitfalls when using NVIDIA GPUs for
real-time tasks in autonomous systems
○ GPU synchronization, application performance, and

problems with documentation

49

Thanks!
Questions?
Figure sources:
https://electrek.co/guides/tesla-vision/
https://www.quora.com/What-are-the-different-types-of-artificial-neural-network
https://www.researchgate.net/figure/Compute-unified-device-architecture-CUDA-threads-and-blocks-multidimensional_fig1_320806445?_sg=ziaY-gBKKiKX4pljRq4v
JSWZvDvdOidZ2aCRYnD1QVFBJDxIx3MEO1I03cI31e1It6pUr53qaS1L1w4Bt5fd8w

50

https://electrek.co/guides/tesla-vision/
https://www.quora.com/What-are-the-different-types-of-artificial-neural-network
https://www.researchgate.net/figure/Compute-unified-device-architecture-CUDA-threads-and-blocks-multidimensional_fig1_320806445?_sg=ziaY-gBKKiKX4pljRq4vJSWZvDvdOidZ2aCRYnD1QVFBJDxIx3MEO1I03cI31e1It6pUr53qaS1L1w4Bt5fd8w
https://www.researchgate.net/figure/Compute-unified-device-architecture-CUDA-threads-and-blocks-multidimensional_fig1_320806445?_sg=ziaY-gBKKiKX4pljRq4vJSWZvDvdOidZ2aCRYnD1QVFBJDxIx3MEO1I03cI31e1It6pUr53qaS1L1w4Bt5fd8w

