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Pitfalls for Real-Time GPU Usage
● Synchronization and blocking
● GPU concurrency and performance
● CUDA programming perils
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CUDA Programming Fundamentals
(i) Allocate GPU memory cudaMalloc(&devicePtr,

           bufferSize);

(ii) Copy data from CPU to GPU cudaMemcpy(devicePtr, hostPtr,
           bufferSize);

(iii) Launch the kernel
      (kernel = code that runs on GPU)

computeResult<<<numBlocks, 
threadsPerBlock>>>(devicePtr);

(iv) Copy results from GPU to CPU cudaMemcpy(hostPtr, devicePtr,
           bufferSize);

(v) Free GPU memory cudaFree(devicePtr);
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Explicit Synchronization
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Explicit Synchronization
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Each CUDA stream is 
managed by a 
separate CPU thread 
in the same address 
space.



Explicit Synchronization
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K1 starts K1 completes



Explicit Synchronization
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1024 threads

256 threads



Explicit Synchronization
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1. Thread 3 calls cudaDeviceSynchronize
    (explicit synchronization). (a)

2. Thread 3 sleeps for 0.2 seconds. (c)

3. Thread 3 launches kernel K3. (d)



Explicit Synchronization
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1. Thread 3 calls cudaDeviceSynchronize
    (explicit synchronization). (a)

2. Thread 4 launches kernel K4. (b)

3. Thread 3 sleeps for 0.2 seconds. (c)

4. Thread 3 launches kernel K3. (d)



Explicit Synchronization
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Pitfall 1. Explicit synchronization does not block future 
commands issued by other tasks.



Implicit Synchronization
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Two commands from different streams cannot run concurrently [if separated by]:

1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same 
device memory
5. Any CUDA command to the NULL stream

CUDA toolkit 9.2.88 Programming Guide, Section 3.2.5.5.4, "Implicit Synchronization":



Implicit Synchronization
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➔ Pitfall 2. Documented sources of implicit synchronization 
may not occur.

1. A page-locked host memory allocation
2. A device memory allocation
3. A device memory set
4. A memory copy between two addresses to the same 
device memory
5. Any CUDA command to the NULL stream



Implicit Synchronization
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Implicit Synchronization
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1. Thread 3 calls cudaFree. (a)

2. Thread 3 sleeps for 0.2 seconds. (c)

3. Thread 3 launches kernel K3. (d)



Implicit Synchronization
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1. Thread 3 calls cudaFree. (a)

2. Thread 4 is blocked on the CPU when
    trying to launch kernel 4. (b)

3. Thread 4 finishes launching kernel K4,
    thread 3 sleeps for 0.2 seconds. (c)

4. Thread 3 launches kernel K3. (d)



Implicit Synchronization
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➔ Pitfall 3. The CUDA documentation neglects to list some 
functions that cause implicit synchronization.

➔ Pitfall 4. Some CUDA API functions will block future 
CUDA tasks on the CPU.



Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

25



Pitfalls for Real-Time GPU Usage
● Synchronization and blocking

○ Suggestion: use CUDA Multi-Process Service (MPS).

● GPU concurrency and performance
● CUDA programming perils

26



27

GPU Concurrency and Performance

● Implicit synchronization penalty = Processes with MPS 
vs. Threads
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● Implicit synchronization penalty = Processes with MPS 
vs. Threads

● GPU concurrency benefit = Processes with MPS vs. 
Processes without MPS
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GPU Concurrency and Performance

● Implicit synchronization penalty = Processes with MPS 
vs. Threads

● GPU concurrency benefit = Processes with MPS vs. 
Processes without MPS

● MPS overhead = Threads vs. Threads with MPS
(not in plots)
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GPU Concurrency and Performance
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GPU Concurrency and Performance
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70% of the time, a single 
Hough transform iteration 
completed in 12 ms or less.



GPU Concurrency and Performance
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This occurred when four 
concurrent instances were 
running in separate CPU threads.



GPU Concurrency and Performance
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The observed WCET using threads 
was over 4x the WCET using 
multiple processes.
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GPU Concurrency and Performance
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➔ Pitfall 5. The suggestion from NVIDIA’s documentation to 
exploit concurrency through user-defined streams may be of 
limited use.
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Synchronous Defaults
if (!CheckCUDAError( 

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}
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Why does this cause implicit synchronization?
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• The CUDA docs say that memset
  causes implicit synchronization...
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• The CUDA docs say that memset
  causes implicit synchronization...

• But didn't slide 20 say memset
  doesn't cause implicit
  synchronization?



Synchronous Defaults
if (!CheckCUDAError( 

cudaMemsetAsync(
state->device_block_smids,
0, data_size))) {
return 0;

}
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if (!CheckCUDAError( 
cudaMemsetAsync(
state->device_block_smids,
0, data_size, 
state->stream))) {
return 0;

}

➔ Pitfall 6. Async CUDA functions use the 
GPU-synchronous NULL stream by default.



Other Perils
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➔ Pitfall 7. Observed CUDA behavior often diverges from 
what the documentation states or implies.



Other Perils

46

➔ Pitfall 8. CUDA documentation can be contradictory.
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➔ Pitfall 8. CUDA documentation can be contradictory.

CUDA Programming Guide, section 3.2.5.1:

The following device operations are asynchronous with respect to the host: 
[...] Memory copies performed by functions that are suffixed with Async

CUDA Runtime API Documentation, section 2:

For transfers from device memory to pageable host memory, 
[cudaMemcpyAsync] will return only once the copy has completed.



Other Perils
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➔ Pitfall 9. What we learn about current black-box GPUs 
may not apply in the future.



Conclusion
● The GPU ecosystem needs clarity and openness!

● Avoid pitfalls when using NVIDIA GPUs for 
real-time tasks in autonomous systems
○ GPU synchronization, application performance, and 

problems with documentation
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Thanks!
Questions?
Figure sources:
https://electrek.co/guides/tesla-vision/
https://www.quora.com/What-are-the-different-types-of-artificial-neural-network
https://www.researchgate.net/figure/Compute-unified-device-architecture-CUDA-threads-and-blocks-multidimensional_fig1_320806445?_sg=ziaY-gBKKiKX4pljRq4v
JSWZvDvdOidZ2aCRYnD1QVFBJDxIx3MEO1I03cI31e1It6pUr53qaS1L1w4Bt5fd8w
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