Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task Systems

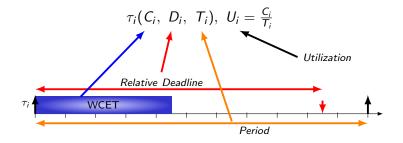
Jian-Jia Chen, Georg von der Brüggen and Niklas Ueter

TU Dortmund University, Germany

06.07.2018 at ECRTS

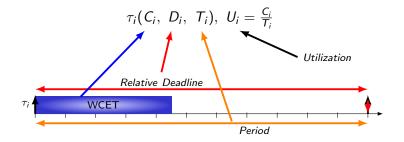
SFB 876 Verfügbarkeit von Information durch Analyse unter Ressourcenbeschränkung

Sporadic Task Model



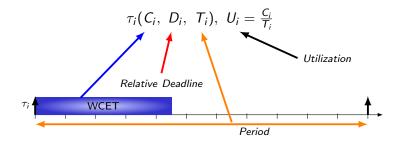
Constrained Deadline: $D_i \leq T_i, \forall \tau_i$

Sporadic Task Model



Constrained Deadline: $D_i \leq T_i, \forall \tau_i$ Implicit Deadline: $D_i = T_i, \forall \tau_i$

Sporadic Task Model



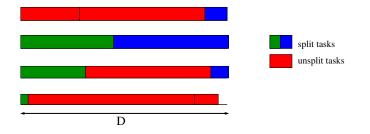
Constrained Deadline: $D_i \leq T_i$, $\forall \tau_i$ Implicit Deadline: $D_i = T_i$, $\forall \tau_i$ Arbitrary Deadline: otherwise. The jobs of a task must be executed in the FCFS manner.

Scheduling Model

- M identical multiprocessors: all the processors have the same characteristics
- Global scheduling:
 - A job may execute on any processor
 - The system maintains a global ready queue
 - Execute the M highest-priority jobs in the ready queue
- Basic Terms: EDF, FP, RM, DM
- Global Scheduling: Global-EDF, Global-FP, Global-RM, Global-DM

Good News for Global Scheduling

For frame-based task systems, McNaughton's wrap-around rule for $P|pmtn|C_{max}$ is optimal

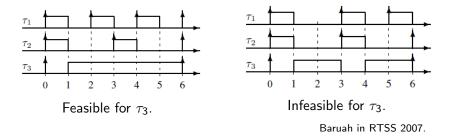


R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6:1-12, 1959.

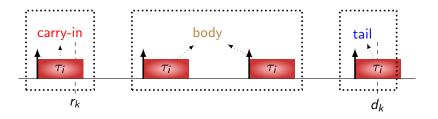
Critical Instant?

- Synchronous release of higher-priority tasks and as early as possible for the following jobs
- Example: M=2 and 3 tasks: (C_i, D_i, T_i) are

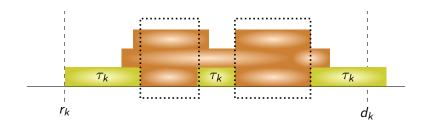
$$\tau_1 = (1, 2, 2), \tau_2 = (1, 3, 3), \tau_3 = (5, 6, 6)$$



Identifying Interference for Constrained Deadlines



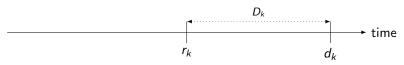
- For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time r_k
- Problem window (interval) is defined in $[r_k, d_k)$



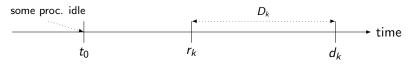
- demand E(Δ): high-priority computation executed in the interval of length Δ.
- If τ_k misses its deadline at time d_k , then

$$E(D_k) > M \times (D_k - C_k) + C_k$$

• For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time r_k .

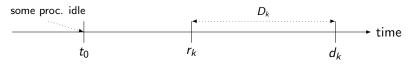


 For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time r_k.



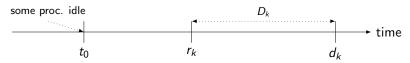
- An innovative idea by Baruah in RTSS 2007 for Global-EDF, extended by Guan et al. in RTSS 2009 for Global-FP
- Let t_0 be the earliest time instant such that the system executes jobs on M processors from t_0 to r_k .
 - Prior to t_0 , at least one processor idles

 For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time r_k.



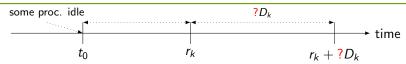
- An innovative idea by Baruah in RTSS 2007 for Global-EDF, extended by Guan et al. in RTSS 2009 for Global-FP
- Let t_0 be the earliest time instant such that the system executes jobs on M processors from t_0 to r_k .
 - Prior to t_0 , at least one processor idles
 - For constrained-deadline systems, at most M-1 carry-in jobs

 For contrapositive, assume that a job of task τ_k misses its absolute deadline at time d_k with release time r_k.



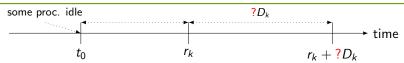
- An innovative idea by Baruah in RTSS 2007 for Global-EDF, extended by Guan et al. in RTSS 2009 for Global-FP
- Let t_0 be the earliest time instant such that the system executes jobs on M processors from t_0 to r_k .
 - Prior to t_0 , at least one processor idles
 - For constrained-deadline systems, at most M-1 carry-in jobs
 - For arbitrary-deadline systems, at most M-1 carry-in tasks and there may be multiple jobs in a carry-in task

Global-FP: Arbitrary-Deadline



- Essential Problems
 - How to define the window of interest?
 - How many jobs should be considered in the window of interest?

Global-FP: Arbitrary-Deadline



- Essential Problems
 - How to define the window of interest?
 - How many jobs should be considered in the window of interest?
- Existing Results
 - Baker (RTSJ 2006): downward extension
 - Baruah and Fisher (OPODIS 2007, ICDCN 2008): to-be-detailed later
 - Guan et al. (RTSS 2009): M-1 carry-in jobs (flawed)
 - Sun et al. (RTCSA 2014): complex carry-in workload functions
 - Huang and Chen (RTNS 2015): a more precise quantification for the number of carry-in jobs

Resource Augmentation

Speedup (resource augmentation) factor ρ ($\rho \ge 1$):

If the task set (system) is schedulable (feasible), Algorithm A also returns a schedulable (feasible) answer when speeding up the system by a factor ρ .

Resource Augmentation

Speedup (resource augmentation) factor ρ ($\rho \ge 1$):

If the task set (system) is schedulable (feasible), Algorithm A also returns a schedulable (feasible) answer when speeding up the system by a factor ρ .

\Leftarrow

If Algorithm A does not return a schedulable (feasible) answer, the system is also unschedulable (infeasible) when slowing down by a factor ρ , i.e., at speed $1/\rho$.

Resource Augmentation of Global DM

	implicit deadlines	constrained deadlines	arbitrary deadlines
upper bounds	2.668 (Lundberg 2002)	3 – 1/ <i>M</i> (Baruch et al. 2011)	$\frac{2(M-1)}{4M-1-\sqrt{12M^2-8M+1}} \le 3.73$ (Baruah and Fisher 2007)
	2.823 (Chen et al. 2016)	3 — 1/ <i>M</i> (Chen et al. 2016)	
lower bounds	2.668 (Lundberg 2002)	2.668 (Lundberg 2002)	2.668 (Lundberg 2002)

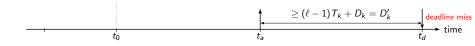
Resource Augmentation of Global DM

	implicit deadlines	constrained deadlines	arbitrary deadlines
upper bounds	2.668 (Lundberg 2002)	3 – 1/ <i>M</i> (Baruch et al. 2011)	$\frac{2(M-1)}{4M-1-\sqrt{12M^2-8M+1}} \leq 3.73$ (Baruah and Fisher 2007)
	2.823 (Chen et al. 2016)	3 – 1/ <i>M</i> (Chen et al. 2016)	$3-\frac{1}{M}$
lower bounds	2.668 (Lundberg 2002)	2.668 (Lundberg 2002)	2.668 (Lundberg 2002)
			$3 - \frac{3}{M+1}$

Introduction

Some Details

Conclusion



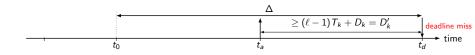
• τ_k is continuously active from t_a to t_d with deadline miss at t_d

$$\geq (\ell - 1)T_k + D_k = D'_k \qquad \qquad \text{deadline miss}$$

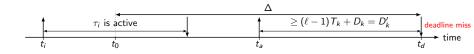
$$t_0 \qquad t_a \qquad t_d \qquad \text{time}$$

- τ_k is continuously active from t_a to t_d with deadline miss at t_d
- t_0 is the smallest value of $t \leq t_a$ such that $\Omega(t, t_d) \geq \mu_k$
 - E(t, t_d): the amount of workload (sum of the execution times) of the higher-priority jobs, i.e., from τ₁, τ₂,..., τ_{k-1}, executed in the time interval [t, t_d)
 - C_k^* : amount of time that task τ_k is executed from t_a to t_d
 - ℓ -th job of task au_k misses its deadline, i.e., $C_k^* < \ell C_k = C_k'$

•
$$\Omega(t, t_d)$$
 is $\frac{C_k^* + E(t, t_d)}{t_d - t}$



- τ_k is continuously active from t_a to t_d with deadline miss at t_d
- t_0 is the smallest value of $t \leq t_a$ such that $\Omega(t, t_d) \geq \mu_k$
- Δ is t_d t₀
- time instant t_i is the arrival time of a higher-priority carry-in task τ_i if τ_i is continuously active in time interval $[t_i, t_0 + \varepsilon]$, where $t_i < t_0$ and $\varepsilon > 0$ is an arbitrarily small number



- τ_k is continuously active from t_a to t_d with deadline miss at t_d
- t_0 is the smallest value of $t \leq t_a$ such that $\Omega(t, t_d) \geq \mu_k$

• time instant t_i is the arrival time of a higher-priority carry-in task τ_i if τ_i is continuously active in time interval $[t_i, t_0 + \varepsilon]$, where $t_i < t_0$ and $\varepsilon > 0$ is an arbitrarily small number

Properties of Pushing Forward

Suppose that $\mu_k = M - (M - 1)\rho$ for a certain ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$.

Lemma

If τ_k misses its deadline at t_d , for any ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$, the time t_0 always exists with $\Omega(t_0, t_d) \ge \mu_k$ and $t_0 \le t_a$.

Properties of Pushing Forward

Suppose that $\mu_k = M - (M - 1)\rho$ for a certain ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$.

Lemma

If τ_k misses its deadline at t_d , for any ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$, the time t_0 always exists with $\Omega(t_0, t_d) \ge \mu_k$ and $t_0 \le t_a$.

Definition

A task τ_i is a carry-in task in the schedule *S*, if τ_i is continuously active in a time interval $[t_i, t_0 + \varepsilon]$, for $t_i < t_0$ and an arbitrarily small $\varepsilon > 0$.

Properties of Pushing Forward

Suppose that $\mu_k = M - (M - 1)\rho$ for a certain ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$.

Lemma

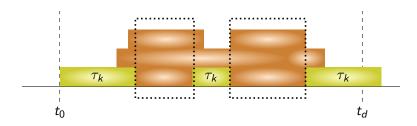
If τ_k misses its deadline at t_d , for any ρ with $1 \ge \rho \ge \frac{C'_k}{D'_k}$, the time t_0 always exists with $\Omega(t_0, t_d) \ge \mu_k$ and $t_0 \le t_a$.

Definition

A task τ_i is a carry-in task in the schedule *S*, if τ_i is continuously active in a time interval $[t_i, t_0 + \varepsilon]$, for $t_i < t_0$ and an arbitrarily small $\varepsilon > 0$.

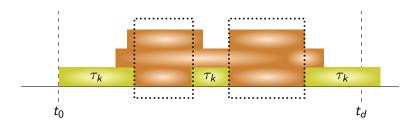
Lemma

For $1 \ge \rho \ge \frac{C'_k}{D'_k}$, there are at most $\lceil M - (M-1)\rho \rceil - 1$ carry-in tasks at t_0 in schedule S.



If task τ_k misses its deadline, then

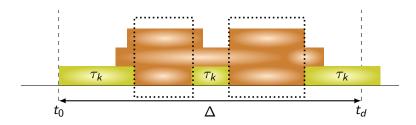
∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline



If task τ_k misses its deadline, then

∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

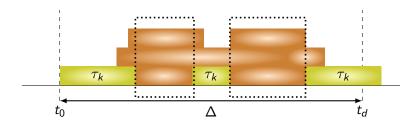
•
$$\forall 1 \geq \rho \geq rac{C'_k}{D'_k}$$
,



If task τ_k misses its deadline, then

 ∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\forall 1 \ge \rho \ge rac{C'_k}{D'_k}, \ \exists \Delta \ge D'_k = (\ell - 1)T_k + D_k$$



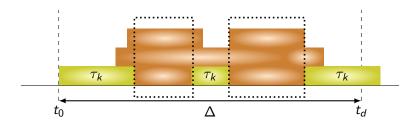
If task τ_k misses its deadline, then

∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\forall 1 \geq \rho \geq rac{C'_k}{D'_k}, \ \exists \Delta \geq D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$



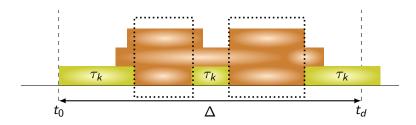
If task τ_k misses its deadline, then

∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\forall 1 \ge \rho \ge \frac{C'_k}{D'_k}, \ \exists \Delta \ge D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$



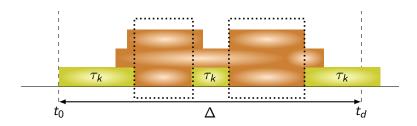
Task τ_k always meets its deadline, if

∃ a positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\forall 1 \ge \rho \ge \frac{C'_k}{D'_k}, \ \exists \Delta \ge D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$



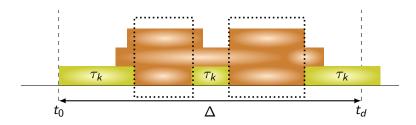
Task τ_k always meets its deadline, if

 ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\forall 1 \ge \rho \ge \frac{C'_k}{D'_k}, \ \exists \Delta \ge D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$



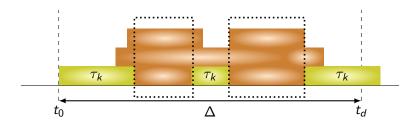
Task τ_k always meets its deadline, if

 ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\exists 1 \geq \rho \geq \frac{C'_k}{D'_k}, \ \exists \Delta \geq D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$



Task τ_k always meets its deadline, if

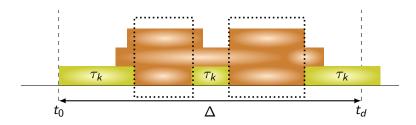
 ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\exists 1 \geq \rho \geq rac{C'_k}{D'_k}, \ \forall \Delta \geq D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) > (M - (M - 1)\rho)\Delta$$

Sufficient Condition for τ_k



Task τ_k always meets its deadline, if

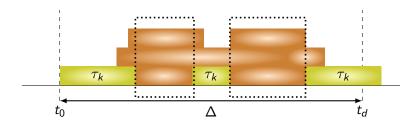
 ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\exists 1 \geq \rho \geq rac{C'_k}{D'_k}, \ \forall \Delta \geq D'_k = (\ell - 1)T_k + D_k$$

such that

$$\ell C_k + E(\Delta) \leq (M - (M - 1)\rho)\Delta$$

 $E(\Delta)$: high-priority computation executed in interval length Δ .



Task τ_k always meets its deadline, if

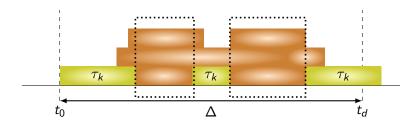
 ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline

•
$$\exists 1 \geq
ho \geq rac{C'_k}{D'_k}$$
 , $orall \Delta \geq D'_k = (\ell-1)T_k + D_k$

such that

$$\ell C_k + E(\Delta) \leq M - (M-1)\rho$$

 $E(\Delta)$: high-priority computation executed in interval length Δ .

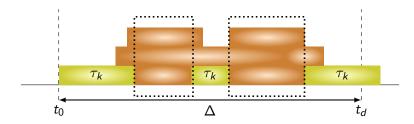


Task τ_k always meets its deadline, if

- ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline
- for $\rho = \max_{i}^{k} \{ \frac{C_{i}}{T_{i}}, \frac{C_{i}}{D_{i}} \}$, $\forall \Delta \ge D'_{k} = (\ell 1)T_{k} + D_{k}$
- such that

$$\ell C_k + E(\Delta) \leq M - (M-1)\rho$$

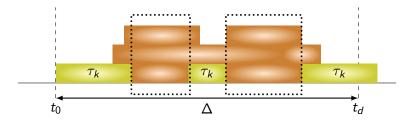
 $E(\Delta)$: high-priority computation executed in interval length Δ .



Task τ_k always meets its deadline, if

- ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline
- for $\rho = \max_i^k \{ \frac{C_i}{T_i}, \frac{C_i}{D_i} \}$, $\forall \Delta \ge D'_k = (\ell 1)T_k + D_k$
- such that

$$\ell C_k + (\lceil M - (M-1)\rho \rceil - 1) \rho \Delta + \left(\sum_{i=1}^{k-1} dbf_i(\Delta + D_i)\right) \leq (M - (M-1)\rho)\Delta$$



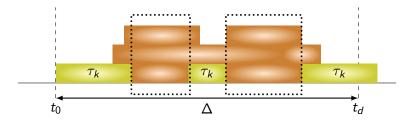
Task τ_k always meets its deadline, if

- ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline
- for $\rho = \max_{i}^{k} \{ \frac{C_{i}}{T_{i}}, \frac{C_{i}}{D_{i}} \}, \forall \Delta \ge D'_{k} = (\ell 1)T_{k} + D_{k}$
- such that

$$(\lceil M - (M-1)\rho \rceil - 1)\rho\Delta + \sum_{i=1}^{k} 2 \times dbf_i(\Delta) \le (M - (M-1)\rho)\Delta$$

since $D_i \leq \Delta$

tu technische universität dortmund



Task τ_k always meets its deadline, if

- ∀ positive integer ℓ, i.e., ℓ-th job of τ_k (in a continuously actively interval) misses its deadline
- for $\rho = \max_{i}^{k} \{ \frac{C_{i}}{T_{i}}, \frac{C_{i}}{D_{i}} \}, \forall \Delta \ge D'_{k} = (\ell 1)T_{k} + D_{k}$
- such that

$$\left(\left\lceil M-(M-1)\rho \right\rceil-1
ight)
ho+2 imes\sum_{i=1}^{k}rac{dbf_{i}(\Delta)}{\Delta}\leq (M-(M-1)
ho)$$

since $D_i \leq \Delta$

to technische universität dortmund

Enforcement Techniques (My Slide at ECRTS'17)

- Strong and/or early-design/analytical enforcements
 - simplify the analysis

Enforcement Techniques (My Slide at ECRTS'17)

- Strong and/or early-design/analytical enforcements
 - simplify the analysis
 - at the expense of poor performance in practical settings when compared to other algorithms or tests

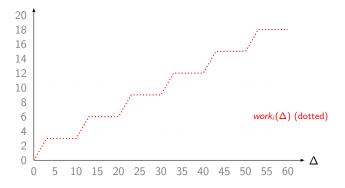
Enforcement Techniques (My Slide at ECRTS'17)

- Strong and/or early-design/analytical enforcements
 - simplify the analysis
 - at the expense of poor performance in practical settings when compared to other algorithms or tests

Observation 6

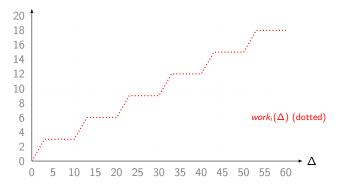
Adding enforcements tailoring the design of a scheduling algorithm or test to facilitate the derivation of a bounded speedup factor can be counterproductive; it may severely compromise performance in practical settings.

 $T_i = 10, C_i = 3$

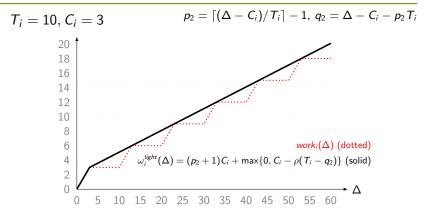


- Executed workload of a non-carry-in task τ_i from t₀ to t_d = t₀ + Δ is at most work_i(Δ)
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $work_i(\Delta + D_i)$

 $T_i = 10, C_i = 3$

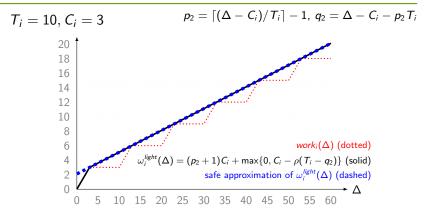


- Executed workload of a non-carry-in task τ_i from t₀ to t_d = t₀ + Δ is at most work_i(Δ)
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $\omega_i^{heavy}(\Delta) = work_i(\Delta + D_i)$ if $U_i > \rho$



- Executed workload of a non-carry-in task τ_i from t₀ to t_d = t₀ + Δ is at most work_i(Δ)
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $\omega_i^{heavy}(\Delta) = work_i(\Delta + D_i)$ if $U_i > \rho$
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $\omega_i^{light}(\Delta)$ if $U_i \leq \rho$

technische universität dortmund



- Executed workload of a non-carry-in task τ_i from t₀ to t_d = t₀ + Δ is at most work_i(Δ) ≤ (C_i − U_iD_i) + U_iΔ
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $\omega_i^{heavy}(\Delta) = work_i(\Delta + D_i) \leq (C_i U_iD_i) + U_i\Delta + U_iD_i$ if $U_i > \rho$
- Executed workload of a carry-in task τ_i from t_0 to $t_d = t_0 + \Delta$ is at most $\omega_i^{light}(\Delta) \leq (C_i U_i D_i) + U_i \Delta$ if $U_i \leq \rho$

technische universitä dortmund

Putting Them Together (Theorem 4.4)

Task τ_k is schedulable by the given Global FP if

$$\forall \ell \in \mathbb{N}, \exists 1 \ge \rho \ge \ell C_k / ((\ell - 1)T_k + D_k), \forall \Delta \ge D'_k = (\ell - 1)T_k + D_k, \\ \ell C_k + \sum_{\tau_i \in \mathbf{T}^{carry-approx}} \gamma_i U_i D_i + \sum_{i=1}^{k-1} (C_i - C_i U_i + U_i \Delta) \le \mu_k \Delta$$

where $\mu_k = M - (M-1)
ho$,

$$\gamma_i = \begin{cases} 1 & \text{if } U_i > \rho \\ 0 & \text{if } U_i \le \rho \end{cases}$$

and $\mathbf{T}^{carry-approx}$ is the set of the $\lceil \mu_k \rceil - 1$ tasks among the k-1 higher-priority tasks with the largest values of $\gamma_i U_i D_i$.

Putting Them Together (Theorem 4.4)

Task τ_k is schedulable by the given Global FP if

$$\forall \ell \in \mathbb{N}, \exists 1 \ge \rho \ge \ell C_k / ((\ell - 1)T_k + D_k), \forall \Delta \ge D'_k = (\ell - 1)T_k + D_k, \\ \ell C_k + \sum_{\tau_i \in \mathbf{T}^{carry-approx}} \gamma_i U_i D_i + \sum_{i=1}^{k-1} (C_i - C_i U_i + U_i \Delta) \le \mu_k \Delta$$

where $\mu_k = M - (M-1)
ho$,

$$\gamma_i = \begin{cases} 1 & \text{if } U_i > \rho \\ 0 & \text{if } U_i \le \rho \end{cases}$$

and $\mathbf{T}^{carry-approx}$ is the set of the $\lceil \mu_k \rceil - 1$ tasks among the k-1 higher-priority tasks with the largest values of $\gamma_i U_i D_i$. The worst case of Δ happens when $\Delta = D'_k$

Further Approximations

Which ρ? (Theorem 4.6)
 Task τ_k is schedulable by the given Global-FP if

$$\forall \ell \in \mathbb{N}, \frac{\ell C_k}{D'_k} + \sum_{i=1}^{k-1} \left(\frac{C_i - C_i U_i}{D'_k} + U_i \right) \leq (M - (M - 1)U_{\delta,k}^{\max})$$

 D'_k is $(\ell - 1)T_k + D_k$ and $U_{\delta,k}^{\max} = \max\{\max_{i=1}^{k-1} U_i, \frac{C_k}{T_k}, \frac{C_k}{D_k}\}$

Further Approximations

Which ρ? (Theorem 4.6)
 Task τ_k is schedulable by the given Global-FP if

$$\forall \ell \in \mathbb{N}, \frac{\ell C_k}{D'_k} + \sum_{i=1}^{k-1} \left(\frac{C_i - C_i U_i}{D'_k} + U_i \right) \leq (M - (M - 1)U_{\delta,k}^{\max})$$

 D'_k is $(\ell - 1)T_k + D_k$ and $U_{\delta,k}^{\max} = \max\{\max_{i=1}^{k-1} U_i, \frac{C_k}{T_k}, \frac{C_k}{D_k}\}$

• Which ℓ ? (Theorem 4.7) Task τ_k is schedulable by the given Global-FP if

$$\max\left\{\frac{C_k}{T_k}, \frac{C_k}{D_k}\right\} + \sum_{i=1}^{k-1} \left(\frac{C_i - C_i U_i}{D_k} + U_i\right) \le M - (M-1)U_{\delta,k}^{\max}$$

Conclusion

• We prove that Sanjoy's idea can yield a speedup factor of 3 for Global-DM

Conclusion

• We prove that Sanjoy's idea can yield a speedup factor of 3 for Global-DM

Future work

- Priority assignment: OPA-Compatible
- Proofs for the speedup bound of the optimal Global-FP
- Soft real-time tasks

(Have you seen Sanjoy during the talk?)

More materials: (links are in the paper)

- Impl. of Thm. 4.4 in O(N log N) for testing whether τ_k meets its deadline
- Evaluation results with many figures

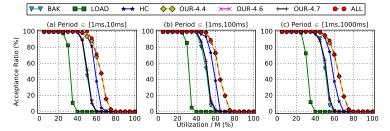


Figure: Global-DM, M = 8, N = 40, $\frac{D_i}{T_i} \in [0.8, 2]$.

