
Push Forward: Global Fixed-Priority Scheduling
of Arbitrary-Deadline Sporadic Task Systems

Jian-Jia Chen, Georg von der Brüggen and Niklas Ueter

TU Dortmund University, Germany

06.07.2018 at ECRTS

Jian-Jia Chen et al. 1 / 23

Sporadic Task Model

τi (Ci , Di , Ti), Ui = Ci
Ti

WCETτi

Relative Deadline

Period

Utilization

Constrained Deadline: Di ≤ Ti , ∀τi

Jian-Jia Chen et al. 2 / 23

Sporadic Task Model

τi (Ci , Di , Ti), Ui = Ci
Ti

WCETτi

Relative Deadline

Period

Utilization

Constrained Deadline: Di ≤ Ti , ∀τi
Implicit Deadline: Di = Ti , ∀τi

Jian-Jia Chen et al. 2 / 23

Sporadic Task Model

τi (Ci , Di , Ti), Ui = Ci
Ti

WCETτi

Relative Deadline

Period

Utilization

Constrained Deadline: Di ≤ Ti , ∀τi
Implicit Deadline: Di = Ti , ∀τi
Arbitrary Deadline: otherwise. The jobs of a task must be
executed in the FCFS manner.

Jian-Jia Chen et al. 2 / 23

Scheduling Model

• M identical multiprocessors: all the processors have the same
characteristics

• Global scheduling:

• A job may execute on any processor
• The system maintains a global ready queue
• Execute the M highest-priority jobs in the ready queue

• Basic Terms: EDF, FP, RM, DM

• Global Scheduling: Global-EDF, Global-FP, Global-RM,
Global-DM

Jian-Jia Chen et al. 3 / 23

Good News for Global Scheduling

For frame-based task systems, McNaughton’s wrap-around rule for
P|pmtn|Cmax is optimal

D

split tasks

unsplit tasks

R. McNaughton. Scheduling with deadlines and loss functions. Management Science,

6:1-12, 1959.

Jian-Jia Chen et al. 4 / 23

Critical Instant?

• Synchronous release of higher-priority tasks and as early as
possible for the following jobs

• Example: M=2 and 3 tasks: (Ci , Di , Ti) are

τ1 = (1, 2, 2), τ2 = (1, 3, 3), τ3 = (5, 6, 6)

Feasible for τ3. Infeasible for τ3.

Baruah in RTSS 2007.

Jian-Jia Chen et al. 5 / 23

Identifying Interference for Constrained Deadlines

rk dk

τi τi τi τi

carry-in body tail

• For contrapositive, assume that a job of task τk misses its
absolute deadline at time dk with release time rk

• Problem window (interval) is defined in [rk , dk)

Jian-Jia Chen et al. 6 / 23

Necessary Condition for Deadline Misses

rk dk

τk τk τk

• demand E (∆): high-priority computation executed in the interval of
length ∆.

• If τk misses its deadline at time dk , then

E (Dk) > M × (Dk − Ck) + Ck

Jian-Jia Chen et al. 7 / 23

Carry-In Demand

• For contrapositive, assume that a job of task τk misses its
absolute deadline at time dk with release time rk .

time
rk dk

Dk

• An innovative idea by Baruah in RTSS 2007 for Global-EDF,
extended by Guan et al. in RTSS 2009 for Global-FP

• Let t0 be the earliest time instant such that the system
executes jobs on M processors from t0 to rk .

• Prior to t0, at least one processor idles

• For constrained-deadline systems, at most M-1 carry-in jobs

• For arbitrary-deadline systems, at most M-1 carry-in tasks and
there may be multiple jobs in a carry-in task

Jian-Jia Chen et al. 8 / 23

Carry-In Demand

• For contrapositive, assume that a job of task τk misses its
absolute deadline at time dk with release time rk .

time
rk dk

Dk

t0

some proc. idle

• An innovative idea by Baruah in RTSS 2007 for Global-EDF,
extended by Guan et al. in RTSS 2009 for Global-FP

• Let t0 be the earliest time instant such that the system
executes jobs on M processors from t0 to rk .

• Prior to t0, at least one processor idles

• For constrained-deadline systems, at most M-1 carry-in jobs

• For arbitrary-deadline systems, at most M-1 carry-in tasks and
there may be multiple jobs in a carry-in task

Jian-Jia Chen et al. 8 / 23

Carry-In Demand

• For contrapositive, assume that a job of task τk misses its
absolute deadline at time dk with release time rk .

time
rk dk

Dk

t0

some proc. idle

• An innovative idea by Baruah in RTSS 2007 for Global-EDF,
extended by Guan et al. in RTSS 2009 for Global-FP

• Let t0 be the earliest time instant such that the system
executes jobs on M processors from t0 to rk .

• Prior to t0, at least one processor idles

• For constrained-deadline systems, at most M-1 carry-in jobs

• For arbitrary-deadline systems, at most M-1 carry-in tasks and
there may be multiple jobs in a carry-in task

Jian-Jia Chen et al. 8 / 23

Carry-In Demand

• For contrapositive, assume that a job of task τk misses its
absolute deadline at time dk with release time rk .

time
rk dk

Dk

t0

some proc. idle

• An innovative idea by Baruah in RTSS 2007 for Global-EDF,
extended by Guan et al. in RTSS 2009 for Global-FP

• Let t0 be the earliest time instant such that the system
executes jobs on M processors from t0 to rk .

• Prior to t0, at least one processor idles

• For constrained-deadline systems, at most M-1 carry-in jobs

• For arbitrary-deadline systems, at most M-1 carry-in tasks and
there may be multiple jobs in a carry-in task

Jian-Jia Chen et al. 8 / 23

Global-FP: Arbitrary-Deadline

time

t0

some proc. idle

rk rk + ?Dk

?Dk

• Essential Problems

• How to define the window of interest?
• How many jobs should be considered in the window of interest?

• Existing Results

• Baker (RTSJ 2006): downward extension
• Baruah and Fisher (OPODIS 2007, ICDCN 2008):

to-be-detailed later
• Guan et al. (RTSS 2009): M-1 carry-in jobs (flawed)
• Sun et al. (RTCSA 2014): complex carry-in workload functions
• Huang and Chen (RTNS 2015): a more precise quantification

for the number of carry-in jobs

Jian-Jia Chen et al. 9 / 23

Global-FP: Arbitrary-Deadline

time

t0

some proc. idle

rk rk + ?Dk

?Dk

• Essential Problems

• How to define the window of interest?
• How many jobs should be considered in the window of interest?

• Existing Results

• Baker (RTSJ 2006): downward extension
• Baruah and Fisher (OPODIS 2007, ICDCN 2008):

to-be-detailed later
• Guan et al. (RTSS 2009): M-1 carry-in jobs (flawed)
• Sun et al. (RTCSA 2014): complex carry-in workload functions
• Huang and Chen (RTNS 2015): a more precise quantification

for the number of carry-in jobs

Jian-Jia Chen et al. 9 / 23

Resource Augmentation

Speedup (resource augmentation) factor ρ (ρ ≥ 1):

⇒
If the task set (system) is schedulable (feasible), Algorithm A also
returns a schedulable (feasible) answer when speeding up the
system by a factor ρ.

⇐
If Algorithm A does not return a schedulable (feasible) answer, the
system is also unschedulable (infeasible) when slowing down by a
factor ρ, i.e., at speed 1/ρ.

Jian-Jia Chen et al. 10 / 23

Resource Augmentation

Speedup (resource augmentation) factor ρ (ρ ≥ 1):

⇒
If the task set (system) is schedulable (feasible), Algorithm A also
returns a schedulable (feasible) answer when speeding up the
system by a factor ρ.

⇐
If Algorithm A does not return a schedulable (feasible) answer, the
system is also unschedulable (infeasible) when slowing down by a
factor ρ, i.e., at speed 1/ρ.

Jian-Jia Chen et al. 10 / 23

Resource Augmentation of Global DM

implicit deadlines constrained deadlines arbitrary deadlines

upper bounds
2.668 (Lundberg
2002)

3− 1/M (Baruch et al.
2011)

2(M−1)
4M−1−

√
12M2−8M+1

≤ 3.73

(Baruah and Fisher 2007)

2.823 (Chen et al.
2016)

3 − 1/M (Chen et al.
2016)

lower bounds
2.668 (Lundberg
2002)

2.668 (Lundberg 2002) 2.668 (Lundberg 2002)

Jian-Jia Chen et al. 11 / 23

Resource Augmentation of Global DM

implicit deadlines constrained deadlines arbitrary deadlines

upper bounds
2.668 (Lundberg
2002)

3− 1/M (Baruch et al.
2011)

2(M−1)
4M−1−

√
12M2−8M+1

≤ 3.73

(Baruah and Fisher 2007)

2.823 (Chen et al.
2016)

3 − 1/M (Chen et al.
2016)

3− 1
M

lower bounds
2.668 (Lundberg
2002)

2.668 (Lundberg 2002) 2.668 (Lundberg 2002)

3− 3
M+1

Jian-Jia Chen et al. 11 / 23

Outline

Introduction

Some Details

Conclusion

Jian-Jia Chen et al. 12 / 23

Push Forward (Basic Idea from Baruah and Fisher)

deadline miss

time
tdta

≥ (`− 1)Tk + Dk = D ′k

t0

∆

• τk is continuously active from ta to td with deadline miss at td

• t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk
• ∆ is td − t0

• time instant ti is the arrival time of a higher-priority carry-in
task τi if τi is continuously active in time interval [ti , t0 + ε],
where ti < t0 and ε > 0 is an arbitrarily small number

Jian-Jia Chen et al. 13 / 23

Push Forward (Basic Idea from Baruah and Fisher)

deadline miss

time
tdta

≥ (`− 1)Tk + Dk = D ′k

t0

∆

• τk is continuously active from ta to td with deadline miss at td
• t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk

• E (t, td): the amount of workload (sum of the execution times)
of the higher-priority jobs, i.e., from τ1, τ2, . . . , τk−1, executed
in the time interval [t, td)

• C∗k : amount of time that task τk is executed from ta to td
• `-th job of task τk misses its deadline, i.e., C∗k < `Ck = C ′k
• Ω(t, td) is

C∗k +E(t,td)
td−t

• ∆ is td − t0
• time instant ti is the arrival time of a higher-priority carry-in

task τi if τi is continuously active in time interval [ti , t0 + ε],
where ti < t0 and ε > 0 is an arbitrarily small number

Jian-Jia Chen et al. 13 / 23

Push Forward (Basic Idea from Baruah and Fisher)

deadline miss

time
tdta

≥ (`− 1)Tk + Dk = D ′k

t0

∆

• τk is continuously active from ta to td with deadline miss at td

• t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk
• ∆ is td − t0

• time instant ti is the arrival time of a higher-priority carry-in
task τi if τi is continuously active in time interval [ti , t0 + ε],
where ti < t0 and ε > 0 is an arbitrarily small number

Jian-Jia Chen et al. 13 / 23

Push Forward (Basic Idea from Baruah and Fisher)

deadline miss

time
tdta

≥ (`− 1)Tk + Dk = D ′k

t0

τi is active

ti

∆

• τk is continuously active from ta to td with deadline miss at td

• t0 is the smallest value of t ≤ ta such that Ω(t, td) ≥ µk
• ∆ is td − t0

• time instant ti is the arrival time of a higher-priority carry-in
task τi if τi is continuously active in time interval [ti , t0 + ε],
where ti < t0 and ε > 0 is an arbitrarily small number

Jian-Jia Chen et al. 13 / 23

Properties of Pushing Forward

Suppose that µk = M − (M − 1)ρ for a certain ρ with 1 ≥ ρ ≥ C ′k
D′k

.

Lemma

If τk misses its deadline at td , for any ρ with 1 ≥ ρ ≥ C ′k
D′k

, the time

t0 always exists with Ω(t0, td) ≥ µk and t0 ≤ ta.

Definition

A task τi is a carry-in task in the schedule S , if τi is continuously
active in a time interval [ti , t0 + ε], for ti < t0 and an arbitrarily
small ε > 0.

Lemma

For 1 ≥ ρ ≥ C ′k
D′k

, there are at most dM − (M − 1)ρe − 1 carry-in

tasks at t0 in schedule S.

Jian-Jia Chen et al. 14 / 23

Properties of Pushing Forward

Suppose that µk = M − (M − 1)ρ for a certain ρ with 1 ≥ ρ ≥ C ′k
D′k

.

Lemma

If τk misses its deadline at td , for any ρ with 1 ≥ ρ ≥ C ′k
D′k

, the time

t0 always exists with Ω(t0, td) ≥ µk and t0 ≤ ta.

Definition

A task τi is a carry-in task in the schedule S , if τi is continuously
active in a time interval [ti , t0 + ε], for ti < t0 and an arbitrarily
small ε > 0.

Lemma

For 1 ≥ ρ ≥ C ′k
D′k

, there are at most dM − (M − 1)ρe − 1 carry-in

tasks at t0 in schedule S.

Jian-Jia Chen et al. 14 / 23

Properties of Pushing Forward

Suppose that µk = M − (M − 1)ρ for a certain ρ with 1 ≥ ρ ≥ C ′k
D′k

.

Lemma

If τk misses its deadline at td , for any ρ with 1 ≥ ρ ≥ C ′k
D′k

, the time

t0 always exists with Ω(t0, td) ≥ µk and t0 ≤ ta.

Definition

A task τi is a carry-in task in the schedule S , if τi is continuously
active in a time interval [ti , t0 + ε], for ti < t0 and an arbitrarily
small ε > 0.

Lemma

For 1 ≥ ρ ≥ C ′k
D′k

, there are at most dM − (M − 1)ρe − 1 carry-in

tasks at t0 in schedule S.

Jian-Jia Chen et al. 14 / 23

Necessary Condition for Deadline Misses

t0 td

τk τk τk

∆

If task τk misses its deadline, then

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) > (M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 15 / 23

Necessary Condition for Deadline Misses

t0 td

τk τk τk

∆

If task τk misses its deadline, then

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

,

∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) > (M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 15 / 23

Necessary Condition for Deadline Misses

t0 td

τk τk τk

∆

If task τk misses its deadline, then

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) > (M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 15 / 23

Necessary Condition for Deadline Misses

t0 td

τk τk τk

∆

If task τk misses its deadline, then

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) > (M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 15 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

If task τk misses its deadline, then

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)>(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∃ a positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)>(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∀1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)>(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∃1 ≥ ρ ≥ C ′k
D′k

, ∃∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)>(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∃1 ≥ ρ ≥ C ′k
D′k

, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)>(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Sufficient Condition for τk

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∃1 ≥ ρ ≥ C ′k
D′k

, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆)≤(M − (M − 1)ρ)∆

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 16 / 23

Baruah and Fisher’s Analysis for Global-DM

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• ∃1 ≥ ρ ≥ C ′k
D′k

, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) ≤ M − (M − 1)ρ

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 17 / 23

Baruah and Fisher’s Analysis for Global-DM

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• for ρ = maxki {
Ci

Ti
, Ci

Di
}, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that
`Ck + E (∆) ≤ M − (M − 1)ρ

E (∆): high-priority computation executed in interval length ∆.

Jian-Jia Chen et al. 17 / 23

Baruah and Fisher’s Analysis for Global-DM

t0 td

τk τk τk

∆

Task τk always meets its deadline, if

• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively
interval) misses its deadline

• for ρ = maxki {
Ci

Ti
, Ci

Di
}, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that

`Ck+(dM − (M − 1)ρe − 1) ρ∆+

(
k−1∑
i=1

dbfi (∆ + Di)

)
≤ (M−(M−1)ρ)∆

Jian-Jia Chen et al. 17 / 23

Baruah and Fisher’s Analysis for Global-DM

t0 td

τk τk τk

∆

Task τk always meets its deadline, if
• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively

interval) misses its deadline

• for ρ = maxki {
Ci

Ti
, Ci

Di
}, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that

(dM − (M − 1)ρe − 1) ρ∆ +
k∑

i=1

2×dbfi (∆) ≤ (M − (M − 1)ρ)∆

since Di ≤ ∆

Jian-Jia Chen et al. 17 / 23

Baruah and Fisher’s Analysis for Global-DM

t0 td

τk τk τk

∆

Task τk always meets its deadline, if
• ∀ positive integer `, i.e., `-th job of τk (in a continuously actively

interval) misses its deadline

• for ρ = maxki {
Ci

Ti
, Ci

Di
}, ∀∆ ≥ D ′k = (`− 1)Tk + Dk

• such that

(dM − (M − 1)ρe − 1) ρ+ 2×
k∑

i=1

dbfi (∆)

∆
≤ (M − (M − 1)ρ)

since Di ≤ ∆

Jian-Jia Chen et al. 17 / 23

Enforcement Techniques (My Slide at ECRTS’17)

• Strong and/or early-design/analytical enforcements

• simplify the analysis

• at the expense of poor performance in practical settings when
compared to other algorithms or tests

Observation 6

Adding enforcements tailoring the design of a scheduling algorithm
or test to facilitate the derivation of a bounded speedup factor can
be counterproductive; it may severely compromise performance in
practical settings.

Jian-Jia Chen et al. 18 / 23

Enforcement Techniques (My Slide at ECRTS’17)

• Strong and/or early-design/analytical enforcements

• simplify the analysis
• at the expense of poor performance in practical settings when

compared to other algorithms or tests

Observation 6

Adding enforcements tailoring the design of a scheduling algorithm
or test to facilitate the derivation of a bounded speedup factor can
be counterproductive; it may severely compromise performance in
practical settings.

Jian-Jia Chen et al. 18 / 23

Enforcement Techniques (My Slide at ECRTS’17)

• Strong and/or early-design/analytical enforcements

• simplify the analysis
• at the expense of poor performance in practical settings when

compared to other algorithms or tests

Observation 6

Adding enforcements tailoring the design of a scheduling algorithm
or test to facilitate the derivation of a bounded speedup factor can
be counterproductive; it may severely compromise performance in
practical settings.

Jian-Jia Chen et al. 18 / 23

Workload Upper Bounds

Ti = 10,Ci = 3

p2 = d(∆− Ci)/Tie − 1, q2 = ∆− Ci − p2Ti

∆
0 5 10 15 20 25 30 35 40 45 50 55 60

0
2
4
6
8

10
12
14
16
18
20

worki (∆) (dotted)

• Executed workload of a non-carry-in task τi from t0 to td = t0 + ∆ is at
most worki (∆)

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
worki (∆ + Di)

Jian-Jia Chen et al. 19 / 23

Workload Upper Bounds

Ti = 10,Ci = 3

p2 = d(∆− Ci)/Tie − 1, q2 = ∆− Ci − p2Ti

∆
0 5 10 15 20 25 30 35 40 45 50 55 60

0
2
4
6
8

10
12
14
16
18
20

worki (∆) (dotted)

• Executed workload of a non-carry-in task τi from t0 to td = t0 + ∆ is at
most worki (∆)

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
ωheavy
i (∆) = worki (∆ + Di) if Ui > ρ

Jian-Jia Chen et al. 19 / 23

Workload Upper Bounds

Ti = 10,Ci = 3 p2 = d(∆− Ci)/Tie − 1, q2 = ∆− Ci − p2Ti

∆
0 5 10 15 20 25 30 35 40 45 50 55 60

0
2
4
6
8

10
12
14
16
18
20

ωlight
i (∆) = (p2 + 1)Ci + max{0,Ci − ρ(Ti − q2)} (solid)

worki (∆) (dotted)

• Executed workload of a non-carry-in task τi from t0 to td = t0 + ∆ is at
most worki (∆)

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
ωheavy
i (∆) = worki (∆ + Di) if Ui > ρ

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
ωlight
i (∆) if Ui ≤ ρ

Jian-Jia Chen et al. 19 / 23

Workload Upper Bounds

Ti = 10,Ci = 3 p2 = d(∆− Ci)/Tie − 1, q2 = ∆− Ci − p2Ti

∆
0 5 10 15 20 25 30 35 40 45 50 55 60

0
2
4
6
8

10
12
14
16
18
20

ωlight
i (∆) = (p2 + 1)Ci + max{0,Ci − ρ(Ti − q2)} (solid)

worki (∆) (dotted)

safe approximation of ωlight
i (∆) (dashed)

• Executed workload of a non-carry-in task τi from t0 to td = t0 + ∆ is at
most worki (∆) ≤ (Ci − UiDi) + Ui∆

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
ωheavy
i (∆) = worki (∆ + Di)≤ (Ci − UiDi) + Ui∆ + UiDi if Ui > ρ

• Executed workload of a carry-in task τi from t0 to td = t0 + ∆ is at most
ωlight
i (∆) ≤ (Ci − UiDi) + Ui∆ if Ui ≤ ρ

Jian-Jia Chen et al. 19 / 23

Putting Them Together (Theorem 4.4)

Task τk is schedulable by the given Global FP if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk + Dk), ∀∆ ≥ D ′k = (`− 1)Tk + Dk ,

`Ck +
∑

τi∈Tcarry−approx

γiUiDi +
k−1∑
i=1

(Ci − CiUi + Ui∆) ≤ µk∆

where µk = M − (M − 1)ρ,

γi =

{
1 if Ui > ρ

0 if Ui ≤ ρ

and Tcarry−approx is the set of the dµke − 1 tasks among the k − 1
higher-priority tasks with the largest values of γiUiDi .

The worst case of ∆ happens when ∆ = D ′k

Jian-Jia Chen et al. 20 / 23

Putting Them Together (Theorem 4.4)

Task τk is schedulable by the given Global FP if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk + Dk), ∀∆ ≥ D ′k = (`− 1)Tk + Dk ,

`Ck +
∑

τi∈Tcarry−approx

γiUiDi +
k−1∑
i=1

(Ci − CiUi + Ui∆) ≤ µk∆

where µk = M − (M − 1)ρ,

γi =

{
1 if Ui > ρ

0 if Ui ≤ ρ

and Tcarry−approx is the set of the dµke − 1 tasks among the k − 1
higher-priority tasks with the largest values of γiUiDi .
The worst case of ∆ happens when ∆ = D ′k

Jian-Jia Chen et al. 20 / 23

Further Approximations

• Which ρ? (Theorem 4.6)

Task τk is schedulable by the given Global-FP if

∀` ∈ N,
`Ck

D ′k
+

k−1∑
i=1

(
Ci − CiUi

D ′k
+ Ui

)
≤ (M − (M − 1)Umax

δ,k)

D ′k is (`− 1)Tk + Dk and Umax
δ,k = max{maxk−1i=1 Ui ,

Ck
Tk
, Ck
Dk
}

• Which `? (Theorem 4.7)

Task τk is schedulable by the given Global-FP if

max

{
Ck

Tk
,
Ck

Dk

}
+

k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤ M − (M − 1)Umax

δ,k

Jian-Jia Chen et al. 21 / 23

Further Approximations

• Which ρ? (Theorem 4.6)

Task τk is schedulable by the given Global-FP if

∀` ∈ N,
`Ck

D ′k
+

k−1∑
i=1

(
Ci − CiUi

D ′k
+ Ui

)
≤ (M − (M − 1)Umax

δ,k)

D ′k is (`− 1)Tk + Dk and Umax
δ,k = max{maxk−1i=1 Ui ,

Ck
Tk
, Ck
Dk
}

• Which `? (Theorem 4.7)

Task τk is schedulable by the given Global-FP if

max

{
Ck

Tk
,
Ck

Dk

}
+

k−1∑
i=1

(
Ci − CiUi

Dk
+ Ui

)
≤ M − (M − 1)Umax

δ,k

Jian-Jia Chen et al. 21 / 23

Conclusion

• We prove that Sanjoy’s idea can yield a speedup factor of 3
for Global-DM

Future work
• Priority assignment: OPA-Compatible

• Proofs for the speedup bound of the optimal Global-FP

• Soft real-time tasks

Jian-Jia Chen et al. 22 / 23

Conclusion

• We prove that Sanjoy’s idea can yield a speedup factor of 3
for Global-DM

Future work
• Priority assignment: OPA-Compatible

• Proofs for the speedup bound of the optimal Global-FP

• Soft real-time tasks

Jian-Jia Chen et al. 22 / 23

(Have you seen Sanjoy during the talk?)

More materials: (links are in the paper)

• Impl. of Thm. 4.4 in O(N logN) for
testing whether τk meets its deadline

• Evaluation results with many figures

0.0 0.2 0.4 0.6 0.8 1.0Utilization / M (%)
0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

 (%
)

0 20 40 60 80 100
0

20

40

60

80

100
(a) Period ∈ [1ms,10ms]

BAK LOAD HC OUR-4.4 OUR-4.6 OUR-4.7 ALL

0 20 40 60 80 100
0

20

40

60

80

100
(b) Period ∈ [1ms,100ms]

0 20 40 60 80 100
0

20

40

60

80

100
(c) Period ∈ [1ms,1000ms]

Figure: Global-DM, M = 8, N = 40, Di

Ti
∈ [0.8, 2].

Jian-Jia Chen et al. 23 / 23

	Introduction
	Some Details
	Conclusion

