

A Measurement-based Model for Parallel Real-Time Tasks

KUNAL AGRAWAL&SANJOY BARUAHWashington University in St. Louis

Current models for parallel real-time workloads

Graph based: < graph G = (V, E); relative deadline D; period T>

- Vertices ≈ sequential code; edges ≈ dependencies
- Fork-join tasks a layered graph
- Sporadic DAG task any acyclic graph
- Conditional DAG task add conditional constructs

Graph based: < graph G = (V, E); relative deadline D; period T>

- 1. Analysis requires knowledge of DAG structure
 - may not be available/ known
- 2. Conditional tasks: many possible behaviors
 - Exhaustive enumeration yields exponential-time algorithms
- 3. Conditional tasks: worst-case behavior may be very rare

current models – proposed model – algorithms

Federated scheduling: each (high-util.) task gets exclusive access to some processors

work and span parameters of (regular) DAG tasks

- *work*: cumulative WCET of all vertices (
 - (on a single processor)
- *span*: maximum sum of WCET's of chain of vertices (on infinitely many processors)

Response time upon *m* dedicated processors

response time
$$\geq \max(\frac{work}{m}, span)$$

The list scheduling guarantee

response time \leq

$$\left[\frac{work}{m} + \left(1 - \frac{1}{m}\right) \times span
ight]$$

- a 2-approximation

current models – **proposed model** – algorithms

- Federated scheduling. Run-time dispatching using list scheduling
- IDEA I. Represent each task by its (work, span) parameters
- IDEA II. Measurement-based: work, span values obtained via measurement experiments – profiling run-time behavior (as in probabilistic WCET) work – upon a single processor span – upon a large number of processors

IDEA III. Two pairs of estimates

(*work_H*, *span_H*) are very conservative estimates (*work_L*, *span_L*) are less conservative estimates

For efficient implementation, assume that $(work_L, span_L)$ values hold Guarantee correctness if $(work_H, span_H)$ values hold

Proposed model – scheduling algorithms

 $\mathsf{PREPROCESS}(\langle work_H, span_H, work_L, span_L, D \rangle, m)$

- 1 if $\left(\frac{work_H}{m} + \left(1 \frac{1}{m}\right) \times span_H\right) > D$ then return FAILURE
- **2** else Compute m_L and $D_L \parallel$ Solve quadratic, linear equations $\Theta(1)$ time

 $\operatorname{runtime}(m_L, D_L, m)$

// An instance arrives at time-instant t_o

- 1 LIST-SCHEDULE upon m_L processors
- 2 **if** the instance has <u>not</u> completed by time-instant $(t_o + D_L)$ **then** *//* Less conservative assumptions do not hold

3 LIST-SCHEDULE upon all *m* processors

Proposed model – scheduling algorithms

Task models that expose intra-task parallelism

• Shortcomings of current models

Proposed model

- (*work, span*) characterization of DAGs
- + measurement-based estimation of parameters
- + multiple estimates of each parameter
- A scheduling algorithm that
 - guarantees correctness
 - and aims for efficiency
 - and is tunable during run-time