
Compiler-based Extraction of Event Arrival Functions
for Real-Time Systems Analysis

Dominic Oehlert Selma Saidi Heiko Falk

Institute of Embedded Systems
Hamburg University of Technology

firstname.surname@tuhh.de

30th Euromicro Conference on Real-Time Systems (ECRTS), 2018

Motivation Background Evaluation Conclusion

1 / 20

Motivation Background Evaluation Conclusion

1 / 20

Motivation Background Evaluation Conclusion

2 / 20

Motivation Background Evaluation Conclusion

2 / 20

Motivation Background Evaluation Conclusion

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000
0

10

20

30

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

η+(∆t)

η−(∆t)

3 / 20

Motivation Background Evaluation Conclusion

0 1,000 2,000 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

4 / 20

Motivation Background Evaluation Conclusion

0 1,000 2,000 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

4 / 20

Motivation Background Evaluation Conclusion

0 1,000 2,000 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

4 / 20

Motivation Background Evaluation Conclusion

0 1,000 2,000 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

4 / 20

Motivation Background Evaluation Conclusion

0 5 10 15 20 25
t

0 5 10 15 20
0

1

2

3

∆t

5 / 20

Motivation Background Evaluation Conclusion

0 5 10 15 20 25
t

0 5 10 15 20
0

1

2

3

∆t

5 / 20

Motivation Background Evaluation Conclusion

int globalData[2] = -1, 1;
volatile int comm;

i n t main () {

f o r (i n t i = 0 ; i < 20 ; ++i) {

i f (comm == 0) {
globalData[i % 2] = -1;

}

}

r e t u r n 0 ;
}

0 500 1,000 1,500 2,000 2,500 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

?

6 / 20

Motivation Background Evaluation Conclusion

int globalData[2] = -1, 1;
volatile int comm;

i n t main () {

f o r (i n t i = 0 ; i < 20 ; ++i) {

i f (comm == 0) {
globalData[i % 2] = -1;

}

}

r e t u r n 0 ;
}

0 500 1,000 1,500 2,000 2,500 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

?

6 / 20

Motivation Background Evaluation Conclusion

int globalData[2] = -1, 1;
volatile int comm;

i n t main () {

f o r (i n t i = 0 ; i < 20 ; ++i) {

i f (comm == 0) {
globalData[i % 2] = -1;

}

}

r e t u r n 0 ;
}

0 500 1,000 1,500 2,000 2,500 3,000
0

20

40

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

?

6 / 20

Motivation Background Evaluation Conclusion

Extracting Curves?

• Capture traces
⇒ Potentially unsafe

• Rely on specifications
⇒ Potentially overly pessimistic

• Extraction based on the low-level representation

7 / 20

Motivation Background Evaluation Conclusion

Extracting Curves?

• Capture traces
⇒ Potentially unsafe

• Rely on specifications
⇒ Potentially overly pessimistic

• Extraction based on the low-level representation

7 / 20

Motivation Background Evaluation Conclusion

Extracting Curves?

• Capture traces
⇒ Potentially unsafe

• Rely on specifications
⇒ Potentially overly pessimistic

• Extraction based on the low-level representation

7 / 20

Motivation Background Evaluation Conclusion

Extracting Curves?

• Capture traces
⇒ Potentially unsafe

• Rely on specifications
⇒ Potentially overly pessimistic

• Extraction based on the low-level representation

7 / 20

Motivation Background Evaluation Conclusion

Extracting Curves?

• Capture traces
⇒ Potentially unsafe

• Rely on specifications
⇒ Potentially overly pessimistic

• Extraction based on the low-level representation

7 / 20

Motivation Background Evaluation Conclusion

8 / 20

Motivation Background Evaluation Conclusion

8 / 20

Motivation Background Evaluation Conclusion

0 5 10 15 20 25
t

9 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

0 10 20 30 40 50 60 70

A B E

t

0 20 40 60 80

A C F G
...

t

0 20 40 60 80

A C F H
...

t

0 20 40 60 80

A C F G
...

t

. . .

10 / 20

Motivation Background Evaluation Conclusion

Path Analysis for Arrival Functions

• Explicit path analysis quickly becomes practically infeasible
⇒ Sliding window for all traces

⇒ Adapt path analysis techniques

⇒ Introduce granularity
• Trade-off between precision and runtime

11 / 20

Motivation Background Evaluation Conclusion

Path Analysis for Arrival Functions

• Explicit path analysis quickly becomes practically infeasible
⇒ Sliding window for all traces

⇒ Adapt path analysis techniques

⇒ Introduce granularity
• Trade-off between precision and runtime

11 / 20

Motivation Background Evaluation Conclusion

Path Analysis for Arrival Functions

• Explicit path analysis quickly becomes practically infeasible
⇒ Sliding window for all traces

⇒ Adapt path analysis techniques

⇒ Introduce granularity
• Trade-off between precision and runtime

11 / 20

Motivation Background Evaluation Conclusion

Path Analysis for Arrival Functions

• Explicit path analysis quickly becomes practically infeasible
⇒ Sliding window for all traces

⇒ Adapt path analysis techniques

⇒ Introduce granularity
• Trade-off between precision and runtime

11 / 20

Motivation Background Evaluation Conclusion

Path Analysis for Arrival Functions

• Explicit path analysis quickly becomes practically infeasible
⇒ Sliding window for all traces

⇒ Adapt path analysis techniques

⇒ Introduce granularity
• Trade-off between precision and runtime

11 / 20

Motivation Background Evaluation Conclusion

Overview

Motivation

Background

Evaluation

Conclusion

11 / 20

Motivation Background Evaluation Conclusion

Overview

Motivation

Background

Evaluation

Conclusion

11 / 20

Motivation Background Evaluation Conclusion

Event Arrival Functions

• Abstract notion of interfering events (e.g., task activations, shared memory
accesses, ...)

Definition
Let η+

i (∆t) and η−i (∆t) denote for each task i the maximum and minimum number of
events issued within a time window of size ∆t.
Their pseudo-inverse counterparts δ+(n) and δ−(n), return the maximum/minimum
time interval between the first and the last event in any sequence of n event arrivals.

12 / 20

Motivation Background Evaluation Conclusion

Event Arrival Functions

• Abstract notion of interfering events (e.g., task activations, shared memory
accesses, ...)

Definition
Let η+

i (∆t) and η−i (∆t) denote for each task i the maximum and minimum number of
events issued within a time window of size ∆t.
Their pseudo-inverse counterparts δ+(n) and δ−(n), return the maximum/minimum
time interval between the first and the last event in any sequence of n event arrivals.

12 / 20

Motivation Background Evaluation Conclusion

Event Arrival Functions

• Abstract notion of interfering events (e.g., task activations, shared memory
accesses, ...)

Definition
Let η+

i (∆t) and η−i (∆t) denote for each task i the maximum and minimum number of
events issued within a time window of size ∆t.
Their pseudo-inverse counterparts δ+(n) and δ−(n), return the maximum/minimum
time interval between the first and the last event in any sequence of n event arrivals.

12 / 20

Motivation Background Evaluation Conclusion

Implicit Path Enumeration Technique

• Describe all feasible paths by formulating an Integer Linear
Program (ILP) [DAC95]

• Enforcing complete path through a program using junction rules

13 / 20

Motivation Background Evaluation Conclusion

Implicit Path Enumeration Technique

• Describe all feasible paths by formulating an Integer Linear
Program (ILP) [DAC95]

• Enforcing complete path through a program using junction rules

13 / 20

Motivation Background Evaluation Conclusion

Implicit Path Enumeration Technique

• Describe all feasible paths by formulating an Integer Linear
Program (ILP) [DAC95]

• Enforcing complete path through a program using junction rules

13 / 20

Motivation Background Evaluation Conclusion

Implicit Path Enumeration Technique

• Describe all feasible paths by formulating an Integer Linear
Program (ILP) [DAC95]

• Enforcing complete path through a program using junction rules

13 / 20

Motivation Background Evaluation Conclusion

Implicit Path Enumeration Technique

• Describe all feasible paths by formulating an Integer Linear
Program (ILP) [DAC95]

• Enforcing complete path through a program using junction rules

13 / 20

Motivation Background Evaluation Conclusion

Adapted IPET

• First introduced by Jacobs et al. [RTNS15]

• Introduce “movable” sources and sinks

• Determine max. (resp. min.) number of events per basic block

• Maximize (resp. minimize) accumulated number of events over
sub-path
⇒ While accumulated time w ≤ ∆t (resp. w ≥ ∆t)

14 / 20

Motivation Background Evaluation Conclusion

Adapted IPET

• First introduced by Jacobs et al. [RTNS15]

• Introduce “movable” sources and sinks

• Determine max. (resp. min.) number of events per basic block

• Maximize (resp. minimize) accumulated number of events over
sub-path
⇒ While accumulated time w ≤ ∆t (resp. w ≥ ∆t)

14 / 20

Motivation Background Evaluation Conclusion

Adapted IPET

• First introduced by Jacobs et al. [RTNS15]

• Introduce “movable” sources and sinks

• Determine max. (resp. min.) number of events per basic block

• Maximize (resp. minimize) accumulated number of events over
sub-path
⇒ While accumulated time w ≤ ∆t (resp. w ≥ ∆t)

14 / 20

Motivation Background Evaluation Conclusion

Adapted IPET

• First introduced by Jacobs et al. [RTNS15]

• Introduce “movable” sources and sinks

• Determine max. (resp. min.) number of events per basic block

• Maximize (resp. minimize) accumulated number of events over
sub-path
⇒ While accumulated time w ≤ ∆t (resp. w ≥ ∆t)

14 / 20

Motivation Background Evaluation Conclusion

Adapted IPET

• First introduced by Jacobs et al. [RTNS15]

• Introduce “movable” sources and sinks

• Determine max. (resp. min.) number of events per basic block

• Maximize (resp. minimize) accumulated number of events over
sub-path
⇒ While accumulated time w ≤ ∆t (resp. w ≥ ∆t)

14 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

Automated Extraction

• Two dimensions of
granularity:

• Events per basic block
• Sample rate

• Adjustable trade-off between
runtime and tightness

• Albeit, arrival functions will
be safe 0

2

4

6

15 / 20

Motivation Background Evaluation Conclusion

0 100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

Binary Search (696 Sample Points)

16 / 20

Motivation Background Evaluation Conclusion

0 100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

Binary Search (696 Sample Points)
100 Sample Points

16 / 20

Motivation Background Evaluation Conclusion

0 100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

Binary Search (696 Sample Points)
100 Sample Points
50 Sample Points

16 / 20

Motivation Background Evaluation Conclusion

Overview

Motivation

Background

Evaluation

Conclusion

16 / 20

Motivation Background Evaluation Conclusion

Overapproximation Metric

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

Pessimistic
Curve

Extracted
Curve

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

dappr = APess−AExtr
APess

17 / 20

Motivation Background Evaluation Conclusion

Overapproximation Metric

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

Pessimistic
Curve

Extracted
Curve

∆t in Cycles

N
um

be
r
of

E
ve
nt
s

dappr = APess−AExtr
APess

17 / 20

Motivation Background Evaluation Conclusion

Evaluation Setup

• MRTC benchmark suite
• duff benchmark excluded (due to timing analysis tool incompatibility)

• Evaluations performed on an Intel Xeon Server (20 cores at 2.3 GHz, 94 GB RAM)
• ILPs solved using Gurobi 7.5.0
• Compiled with the WCET-aware C compiler (WCC) using the -O2 flag
• ARM7TDMI architecture (without caches)
• Data object access triggers an event

18 / 20

Motivation Background Evaluation Conclusion

ad
pc
m
_
de
c

ad
pc
m
_
en
c

bin
ar
ys
ea
rc
h

bs
or
t1
00

co
m
pr
es
sd
at
a

co
un
tn
eg
at
ive cr

c
ed
n

fd
ct fft

1 fir

ins
er
tso
rt

jfd
ct
int

lcd
nu
m lm

s

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pe
tri
ne
t

qs
or
t-e
xa
m

qu
rt

se
lec
t
sq
rt st

sta
te
m
at
e

0%

10%

20%

30%

40%

50%

d a
pp

r

N. Refined BBs (100 Samples) Refined BBs (100 Samples)
Refined BBs (1000 Samples) Refined BBs (Binary Search)

19 / 20

Motivation Background Evaluation Conclusion

ad
pc
m
_
de
c

ad
pc
m
_
en
c

bin
ar
ys
ea
rc
h

bs
or
t1
00

co
m
pr
es
sd
at
a

co
un
tn
eg
at
ive cr

c
ed
n

fd
ct fft

1 fir

ins
er
tso
rt

jfd
ct
int

lcd
nu
m lm

s

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pe
tri
ne
t

qs
or
t-e
xa
m

qu
rt

se
lec
t
sq
rt st

sta
te
m
at
e

0%

10%

20%

30%

40%

50%

d a
pp

r

N. Refined BBs (100 Samples) Refined BBs (100 Samples)
Refined BBs (1000 Samples) Refined BBs (Binary Search)

ad
pc
m
_
de
c

ad
pc
m
_
en
c

bin
ar
ys
ea
rc
h

bs
or
t1
00

co
m
pr
es
sd
at
a

co
un
tn
eg
at
ive cr

c
ed
n

fd
ct fft

1 fir

ins
er
tso
rt

jfd
ct
int

lcd
nu
m lm

s

lud
cm
p

m
at
m
ult

m
inv
er

nd
es ns

pe
tri
ne
t

qs
or
t-e
xa
m

qu
rt

se
lec
t
sq
rt st

sta
te
m
at
e

0%

10%

20%

30%

40%

50%

d a
pp

r

N. Refined BBs (100 Samples) Refined BBs (100 Samples)
Refined BBs (1000 Samples) Refined BBs (Binary Search)

19 / 20

Motivation Background Evaluation Conclusion

Overview

Motivation

Background

Evaluation

Conclusion

19 / 20

Motivation Background Evaluation Conclusion

Conclusion

• Automated upper and lower event arrival function extraction from code-level
analysis

• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions

20 / 20

Motivation Background Evaluation Conclusion

Conclusion

• Automated upper and lower event arrival function extraction from code-level
analysis

• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions

20 / 20

Motivation Background Evaluation Conclusion

Conclusion

• Automated upper and lower event arrival function extraction from code-level
analysis

• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions

20 / 20

Motivation Background Evaluation Conclusion

Conclusion

• Automated upper and lower event arrival function extraction from code-level
analysis

• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions

20 / 20

Motivation Background Evaluation Conclusion

Conclusion

• Automated upper and lower event arrival function extraction from code-level
analysis

• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions

20 / 20

	Motivation
	Background
	Evaluation
	Conclusion

