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int globalData[ 2 ] = -1, 1;
volatile int comm;

i n t main ( ) {

f o r ( i n t i = 0 ; i < 20 ; ++i ) {

i f ( comm == 0 ) {
globalData[ i % 2 ] = -1;

}

}

r e t u r n 0 ;
}
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⇒ Adapt path analysis techniques
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Event Arrival Functions

• Abstract notion of interfering events (e.g., task activations, shared memory
accesses, ...)

Definition
Let η+

i (∆t) and η−i (∆t) denote for each task i the maximum and minimum number of
events issued within a time window of size ∆t.
Their pseudo-inverse counterparts δ+(n) and δ−(n), return the maximum/minimum
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Evaluation Setup

• MRTC benchmark suite
• duff benchmark excluded (due to timing analysis tool incompatibility)

• Evaluations performed on an Intel Xeon Server (20 cores at 2.3 GHz, 94 GB RAM)
• ILPs solved using Gurobi 7.5.0
• Compiled with the WCET-aware C compiler (WCC) using the -O2 flag
• ARM7TDMI architecture (without caches)
• Data object access triggers an event
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• Two adjustable levels of granularity

Outlook
• Adding calling contexts

• Optimizations based on the extracted functions
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