

Barcelona Supercomputing Center Centro Nacional de Supercomputación

HWP: Hardware Support to Reconcile Cache Energy, Complexity, Performance and WCET Estimates in Multicore Real-Time Systems

Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla

Euromicro Conference on Real-Time Systems July 4th Barcelona, Spain

Performance in Real-Time Systems

- Future, more complex features require an increase in guaranteed performance
- COTS hardware used in HPC/commodity domain offers higher performance
- Common features:
 - Multicores
 - Caches

• We focus on multicore with multilevel caches (MLC)

At the heart of MLC write policy

Contributions

- Analysis of most used policies
 - Write-Through (WT)
 - Write-Back (WB)
 - Write policies used in commercial processors

Proposal HWP: Hybrid Write Policy

- Try to take the best of both policies
- Evaluation
 - Guaranteed Performance
 - Energy
 - Reliability
 - Coherence complexity

Assumptions

- Multi-core system
 - Private level of cache
 - Shared level of cache
 - Bus to connect the different cores
- Reliability
 - Parity when no correction needed
 - SECDED otherwise
- Coherence
 - Snooping based protocol
 - Good with a moderate number of cores
 - Also can be applied to directory based
 - We assume write-invalidate (MESI)

Write-Through

Write-Through

Shared bus writes

- Each write is sent to the bus
 - Store takes k bus cycles
 - Bus admits 1/k accesses per cycle without saturation

• WT increases load on bus with writes

Store percentage in real-time applications

- 9% stores on average
 - Data-intensive real-time applications have a higher percentage of memory operations

MediaBench store %

- 4 cores: 36% stores
- If store takes > 3 cycles
 Understand
 Bus saturated

EEMBC automotive store %

WT: reliability and coherence complexity

- Reliability:
 - dL1 does not keep dirty data
 - No need to correct data in dL1
 - Just detect error and request to L2
 - Parity in dL1
 - 1,6% overhead
 - Data in L2 is always updated
 - SECDED in L2
 - 12,5% overhead

64 bit line

64 bit line

SECDED

Ρ

• Coherence:

٠

- Data is always in L2, no dirty state
- A simple valid/invalid protocol is enough

Write-though: summary

- Stores to bus can create contention and affect guaranteed performance
- 2. More accesses to bus and L2 increase energy consumption
- 3. Only requires parity in L1
- 4. Simple coherence protocol

(higher is better)

Write-Back

Write-Back

Write-back: summary

- Reduced pressure on bus improves guaranteed performance and energy consumption
- ECC (SECDED) is required for private caches
 - There can be dirty data in L1
- Increase in coherence protocol complexity
 - Due to private dirty lines tracking

Write Policies in Commercial Architectures

Processor	Cores	Frequency	L1 WT?	L1 WB?
ARM Cortex R5	1-2	160MHz	Yes, ECC/parity	Yes, ECC/parity
ARM Cortex M7	1-2	200MHz	Yes, ECC	Yes, ECC
Freescale PowerQUICC	1	250MHz	Yes, ECC	Yes, parity
Freescale P4080	8	1,5GHz	No	Yes, ECC
Cobham LEON 3	2	100MHz	Yes, parity	No
Cobham LEON 4	4	150MHz	Yes, parity	No

• There is a mixture of WT/WB implementations

- No obvious solution
- Both solutions can be appropriate depending on the requirements

WT and WB comparison

- Each policy has pros and cons
- We want to get the best of each policy

HWP

Hybrid Write Policy: main idea

Observations:

- Coherence complex with WB because shared cache lines accessed may be dirty in local L1 caches
- Private data is unaffected by cache coherence
- A significant percentage of data is only accessed by one processor (even in parallel applications), so no coherence management is needed
- Based on these observations, we propose HWP:
 - Shared data is managed like in WT cache
 - Private data is managed like in WB caches
- Elements to consider:
 - Classify data as private/shared
 - Implementation (cost, complexity...)

Hybrid Write Policy

Hybrid Write Policy

Hybrid Write Policy

Private/Shared data classification

- The hardware needs to know if data is shared or private
- Page granularity is optimal for OS
- If any data in a page is shared, the page is classified as shared
- Techniques already exist in both OS (Linux) and real hardware platform (LEON3)
- Possible techniques:
 - Dynamic classification
 - Predictability issues in RTS
 - Software address partitioning
 - We assume this solution

Implementation

Small hardware modifications

HWP: summary

- Guaranteed performance
 - Accesses to bus are limited to shared data
- Energy consumption of bus and L2 also reduced
- Reliability
 - Sensitive data could be marked as shared so is always in L2
 - For critical applications, SECDED needed, private data can be in L1 and not in L2
- Coherence
 - Same coherence complexity as WT

WT, WB and HWT comparison

Evaluation: Setup

- SoCLib simulator for cycles
- CACTI for energy usage
- Architecture based on NGMP
 - With 8 cores instead of 4
- Private iL1 and dL1, shared L2
- Benchmarks:
 - EEMBC automotive, MediaBench

Methodology

- 4 different mixes from single thread benchmarks
- Suppose different percentages of shared data to evaluate the different scenarios
- Model for bus contention [1]
 - Uses PMC to count the type of the competing cores' accesses
 - With this model we obtain partially time composable WCET estimates
 - To summarize, the model takes into consideration the worst possible accesses the other cores DO make $\Delta_{cont}^{cont} \sum_{min(n-n_{c}^{t}) \times lat^{t}} \Delta_{cont}^{cont} + \sum_{min(n-n_{$

$$\Delta^{cont}_{b \rightarrow a} \!=\! \sum_{t \in \mathcal{T}} \min(n_a, n_b^t) \times lat^t$$

- Task : 100 accesses to bus
 Other tasks: 50 accesses to bus
- The model takes into account only the 50 potential interferences
- More tight WCET estimates

[1] J. Jalle et al. Bounding resource contention interference in the next-generation microprocessor (NGMP)

Guaranteed performance

- Normalized WCET bus contention
- 10% of data is shared
- WT does not scale well with the number of cores
- HWP scales similar to WB
- Some degradation due to shared accesses

Guaranteed performance

- Each plot normalized to its own single-core
- Same trends we saw are seen across all setups

Energy

- Coherence is higher in WB policy
- Reliability has a small energy cost
- Main difference: L2 access energy

Coherence

- Invalidation messages
 - WT has a high number
 - WB and HWP only broadcast to shared data
- Shared dirty data communication
 - Significant impact in WB

Conclusions

- Both WT and WB offer tradeoffs in different metrics
 - No best policy, commercial architectures show this

- HWP tries to improve this
 - Not perfect, but improves overall
 - Guaranteed performance and energy similar to WB
 - Coherence complexity like WT

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you! Any questions?

Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla