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Performance in Real-Time Systems 

• Future, more complex features require an increase in 
guaranteed performance 

• COTS hardware used in HPC/commodity domain offers higher 
performance 

• Common features: 
• Multicores 

• Caches 
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• We focus on multicore with multilevel caches (MLC) 
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At the heart of MLC write policy 
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Contributions 

• Analysis of most used policies 
• Write-Through (WT) 

• Write-Back (WB) 

• Write policies used in commercial processors 

• Proposal HWP: Hybrid Write Policy 
• Try to take the best of both policies 

• Evaluation 
• Guaranteed Performance 

• Energy 

• Reliability 

• Coherence complexity 
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Assumptions 

• Multi-core system 
• Private level of cache 
• Shared level of cache 
• Bus to connect the different cores 

 

• Reliability 
• Parity when no correction needed 
• SECDED otherwise 

 

• Coherence 
• Snooping based protocol 

• Good with a moderate number of cores 
• Also can be applied to directory based 

• We assume write-invalidate (MESI) 
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Write-Through 
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Write-Through 
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Shared bus writes 

 

• Each write is sent to the bus 
 

• Store takes k bus cycles 

• Bus admits 1/k accesses per cycle without saturation 

 

 

• 4 cores accessing 

• Bus admits 1/(4·k) 

 

 

• WT increases load on bus with writes 
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Store percentage in real-time applications 

• 9% stores on average 
• Data-intensive          

real-time applications 
have a higher 
percentage of memory 
operations 

 

• 4 cores: 36% stores 

 

• If store takes > 3 cycles 

 

Bus saturated 
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WT: reliability and coherence complexity 

• Reliability: 
• dL1 does not keep dirty data 

• No need to correct data in dL1 
• Just detect error and request to L2 

• Parity in dL1 
• 1,6% overhead 

 

• Data in L2 is always updated 

• SECDED in L2 
• 12,5% overhead 

 

• Coherence: 
• Data is always in L2, no dirty state 

• A simple valid/invalid protocol is enough 
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Write-though: summary 

1. Stores to bus can create 
contention and affect guaranteed 
performance 

 

2. More accesses to bus and L2 
increase energy consumption 

 

3. Only requires parity in L1 

 

4. Simple coherence protocol 
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Write-Back 
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Write-Back 
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Write-Back 
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Write-back: summary 

• Reduced pressure on bus improves 
guaranteed performance and 
energy consumption 

 

• ECC (SECDED) is required for private 
caches 
• There can be dirty data in L1 

 

• Increase in coherence protocol 
complexity 
• Due to private dirty lines tracking 
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Write Policies in Commercial Architectures 

• There is a mixture of WT/WB implementations 
• No obvious solution 

• Both solutions can be appropriate depending on the 
requirements 
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Processor Cores Frequency L1 WT? L1 WB? 

ARM Cortex R5 1-2 160MHz Yes, ECC/parity Yes, ECC/parity 

ARM Cortex M7 1-2 200MHz Yes, ECC Yes, ECC 

Freescale PowerQUICC 1 250MHz Yes, ECC Yes, parity 

Freescale P4080 8 1,5GHz No Yes, ECC 

Cobham LEON 3 2 100MHz Yes, parity No 

Cobham LEON 4 4 150MHz Yes, parity No 



WT and WB comparison 
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Write-through 
Write-back 

• Each policy has pros and cons 

 

• We want to get the best of each 
policy 

HWP 



Hybrid Write Policy: main idea 

• Observations: 
• Coherence complex with WB because shared cache lines accessed may 

be dirty in local L1 caches 

• Private data is unaffected by cache coherence 

• A significant percentage of data is only accessed by one processor 
(even in parallel applications), so no coherence management is needed 

• Based on these observations, we propose HWP: 
• Shared data is managed like in WT cache 

• Private data is managed like in WB caches 

• Elements to consider: 
• Classify data as private/shared 

• Implementation (cost, complexity…) 
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Hybrid Write Policy 
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Hybrid Write Policy 
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Private/Shared data classification 

• The hardware needs to know if data is shared or private 

 

• Page granularity is optimal for OS 

• If any data in a page is shared, the page is classified as shared 

 

• Techniques already exist in both OS (Linux) and real hardware 
platform (LEON3) 

 

• Possible techniques: 
• Dynamic classification 

• Predictability issues in RTS 

• Software address partitioning 
• We assume this solution 
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Implementation 

• Small hardware modifications 
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HWP: summary 

• Guaranteed performance 
• Accesses to bus are limited to shared 

data 

• Energy consumption of bus and L2 
also reduced 

• Reliability 
• Sensitive data could be marked as 

shared so is always in L2 

• For critical applications, SECDED 
needed, private data can be in L1 and 
not in L2 

• Coherence 
• Same coherence complexity as WT 
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WT, WB and HWT comparison 
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Write-through Write-back Hybrid Write Policy 



 

Evaluation: Setup 
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• SoCLib simulator for cycles 

• CACTI for energy usage 
• Architecture based on NGMP 

• With 8 cores instead of 4 

• Private iL1 and dL1, shared L2 
• Benchmarks: 

• EEMBC automotive, MediaBench 



Methodology 

• 4 different mixes from single thread benchmarks 

• Suppose different percentages of shared data to evaluate the 
different scenarios 

• Model for bus contention [1] 
• Uses PMC to count the type of the competing cores’ accesses 

• With this model we obtain partially time composable WCET estimates 

• To summarize, the model takes into consideration the worst possible 
accesses the other cores DO make 

 

• Task : 100 accesses to bus                  Other tasks: 50 accesses to bus 

• The model takes into account only the 50 potential interferences 

• More tight WCET estimates 
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[1] J. Jalle et al. Bounding resource contention interference 
in the next-generation microprocessor (NGMP)  



Guaranteed performance 
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• Normalized WCET bus contention 

• 10% of data is shared 

 
• WT does not scale well with the 

number of cores 
• HWP scales similar to WB 
• Some degradation due to shared 

accesses 

WT 

HWP 

WB 

Cores 



Guaranteed performance 
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0% shared data 10% shared data 20% shared data 40% shared data 

• Each plot normalized to its own single-core 
• Same trends we saw are seen across all setups 



Energy 
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• Coherence is higher in WB policy 
• Reliability has a small energy cost 
• Main difference: L2 access energy 

 

EEMBC MediaBench 



Coherence 
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EEMBC MediaBench 

• Invalidation messages 
• WT has a high number 
• WB and HWP only broadcast to shared data 

• Shared dirty data communication 
• Significant impact in WB 

    Invalidation messages 
    Shared dirty data communication 

    Invalidation messages 
    Shared dirty data communication 



Conclusions 

 

• Both WT and WB offer tradeoffs in different metrics 
• No best policy, commercial architectures show this 

 

 

• HWP tries to improve this 
• Not perfect, but improves overall 

• Guaranteed performance and energy similar to WB 

• Coherence complexity like WT 
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Thank you! 
Any questions? 

Pedro Benedicte, Carles Hernandez, 
Jaume Abella, Francisco J. Cazorla 


