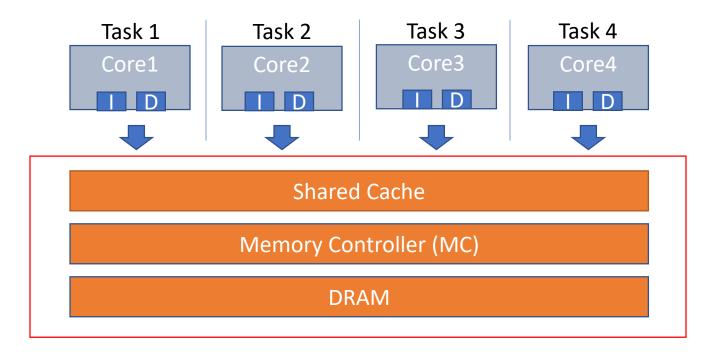
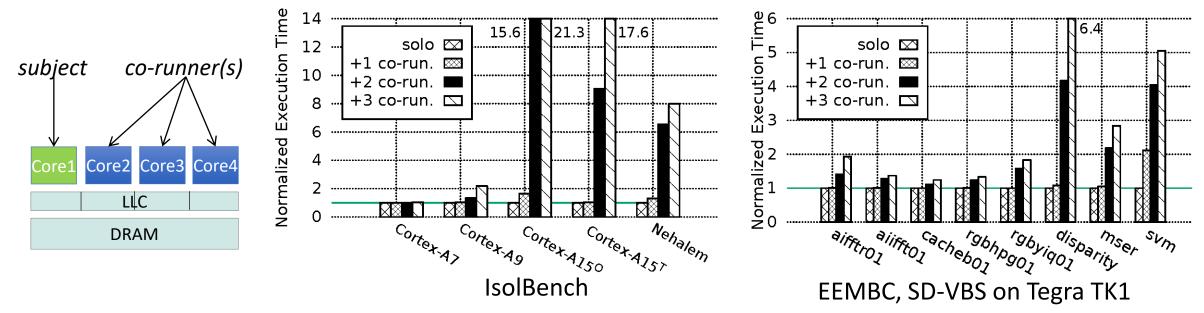
Deterministic Memory Abstraction and Supporting Multicore System Architecture

Farzad Farshchi^{\$}, Prathap Kumar Valsan[^], Renato Mancuso^{*}, <u>Heechul Yun^{\$}</u> ^{\$} University of Kansas, [^] Intel, ^{*} Boston University


Multicore Processors in CPS

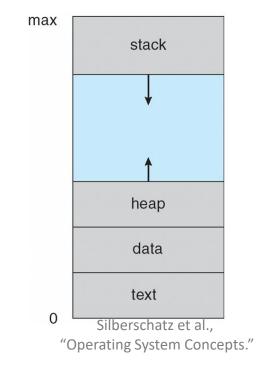
- Provide high computing **performance** needed for intelligent CPS
- Allow consolidation reducing cost, size, weight, and power.


Challenge: Shared Memory Hierarchy

- Memory performance varies widely due to interference
- Task WCET can be **extremely pessimistic**

Challenge: Shared Memory Hierarchy

- Many shared resources: cache space, MSHRs, dram banks, MC buffers, ...
- Each optimized for performance with no high-level insight
- Very **poor worst-case behavior**: >10X, >100X observed in real platforms
 - even after cache partitioning is applied.



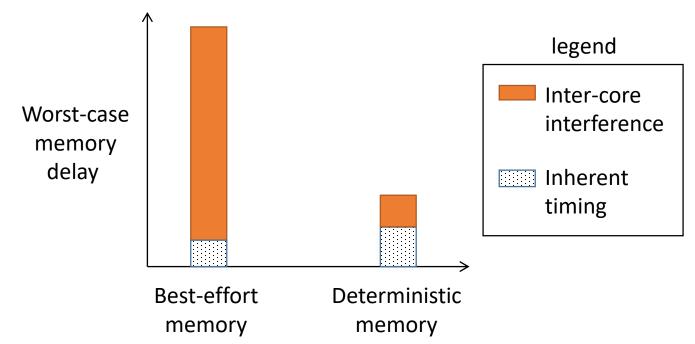
- P. Valsan, et al., "Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems." RTAS, 2016

- P. Valsan, et al., "Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time Systems." Real-time Systems Journal. 2017

The Virtual Memory Abstraction

- Program's logical view of memory
- No concept of timing
- OS maps *any* available physical memory blocks
- Hardware treats all memory requests as same
- But some memory may be more important
 - E.g., code and data memory in a time critical control loop

 Prevents OS and hardware from making informed allocation and scheduling decisions that affect memory timing


New memory abstraction is needed!

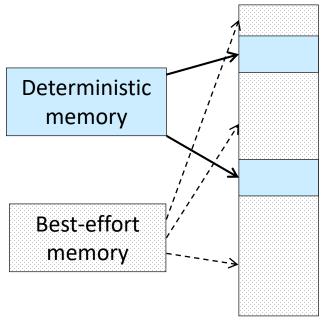
Outline

- Motivation
- Our Approach
 - Deterministic Memory Abstraction
 - DM-Aware Multicore System Design
 - Implementation
- Evaluation
- Conclusion

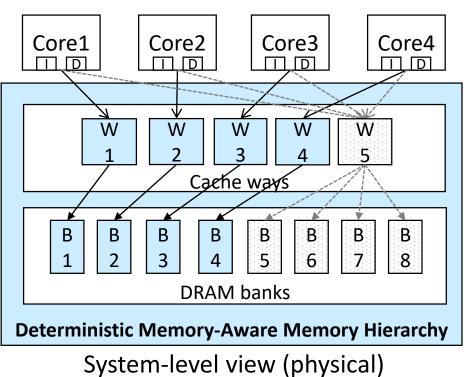
Deterministic Memory (DM) Abstraction

- Cross-layer memory abstraction with bounded worst-case timing
- Focusing on tightly bounded inter-core interference
- Best-effort memory = conventional memory abstraction

DM-Aware Resource Management Strategies

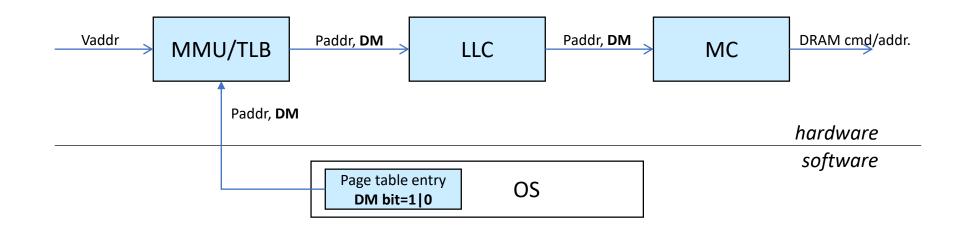

- Deterministic memory: Optimize for time predictability
- Best effort memory: Optimize for average performance

	Space allocation	Request scheduling	WCET bounds
Deterministic memory	Dedicated resources	Predictability focused	Tight
Best-effort memory	Shared resources	Performance focused	Pessimistic

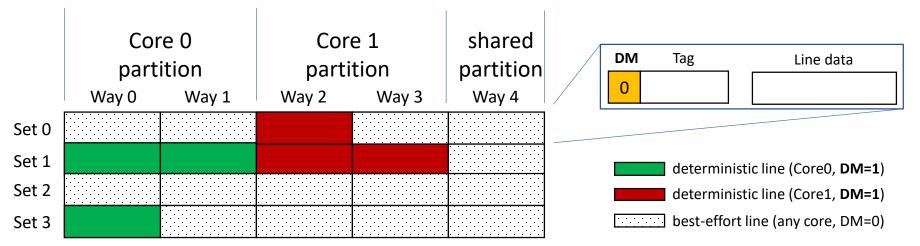

Space allocation: e.g., cache space, DRAM banks Request scheduling: e.g., DRAM controller, shared buses

System Design: Overview

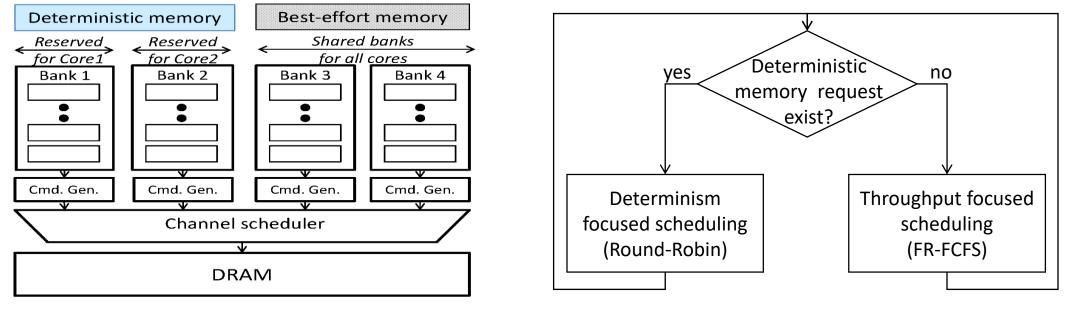
- Declare all or part of RT task's address space as deterministic memory
- End-to-end DM-aware resource management: from OS to hardware
 - Assumption: partitioned fixed-priority real-time CPU scheduling



Application view (logical)


OS and Architecture Extensions for DM

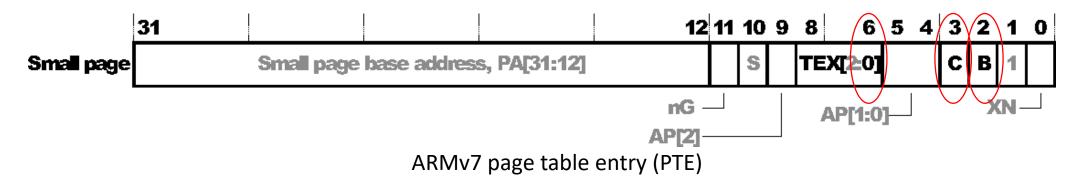
- OS updates the **DM bit** in each page table entry (PTE)
- MMU/TLB and bus *carries* the DM bit.
- Shared memory hierarchy (cache, memory ctrl.) uses the DM bit.


DM-Aware Shared Cache

- Based on cache way partitioning
- Improve space utilization via DM-aware cache replacement algorithm
 - Deterministic memory: allocated on its own dedicated partition
 - Best-effort memory: allocated on any non-DM lines in any partition.
 - Cleanup: DM lines are recycled as best-effort lines at each OS context switch

DM-Aware Memory (DRAM) Controller

- OS allocates DM pages on reserved banks, others on shared banks
- Memory-controller implements **two-level scheduling** (*)



(a) Memory controller (MC) architecture

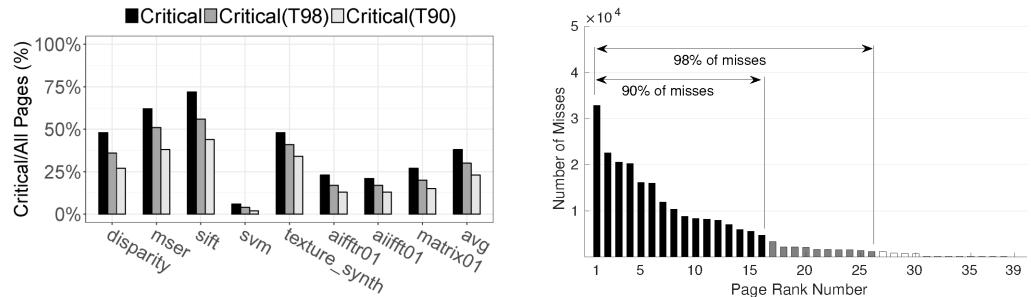
(b) Scheduling algorithm

Implementation

- Fully functional end-to-end implementation in Linux and Gem5.
- Linux kernel extensions
 - Use an unused bit combination in ARMv7 PTE to indicate a DM page.
 - Modified the ELF loader and system calls to declare DM memory regions
 - DM-aware page allocator, replacing the buddy allocator, based on PALLOC (*)
 - Dedicated DRAM banks for DM are configured through Linux's CGROUP interface.

Implementation

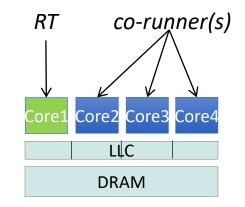
- Gem5 (a cycle-accurate full-system simulator) extensions
 - MMU/TLB: Add DM bit support
 - Bus: Add the DM bit in each bus transaction
 - Cache: implement way-partitioning and DM-aware replacement algorithm
 - DRAM controller: implement DM-aware two-level scheduling algorithm.
- Hardware implementability
 - MMU/TLB, Bus: adding 1 bit is not difficult. (e.g., Use AXI bus QoS bits)
 - Cache and DRAM controllers: logic change and additional storage are minimal.


Outline

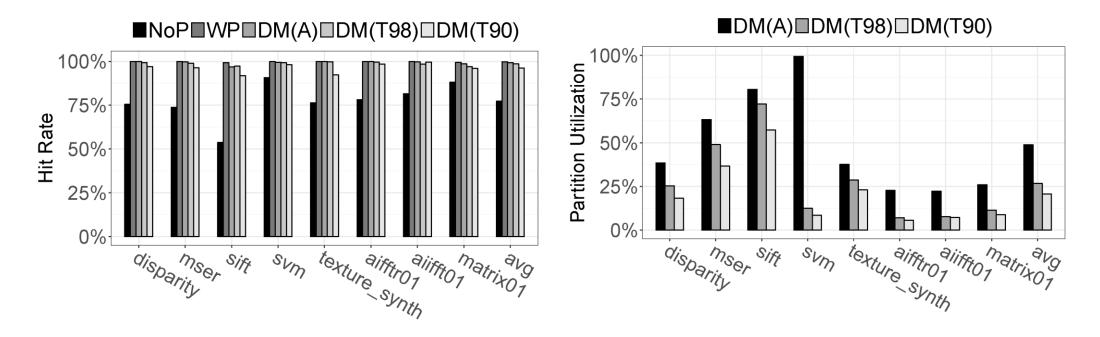
- Motivation
- Our Approach
 - Deterministic Memory Abstraction
 - DM-Aware Multicore System Design
 - Implementation
- Evaluation
- Conclusion

Simulation Setup

- Baseline Gem5 full-system simulator
 - 4 out-of-order cores, 2 GHz
 - 2 MB Shared L2 (16 ways)
 - LPDDR2@533MHz, 1 rank, 8 banks
 - Linux 3.14 (+DM support)
- Workload
 - EEMBC, SD-VBS, SPEC2006, IsolBench


Real-Time Benchmark Characteristics

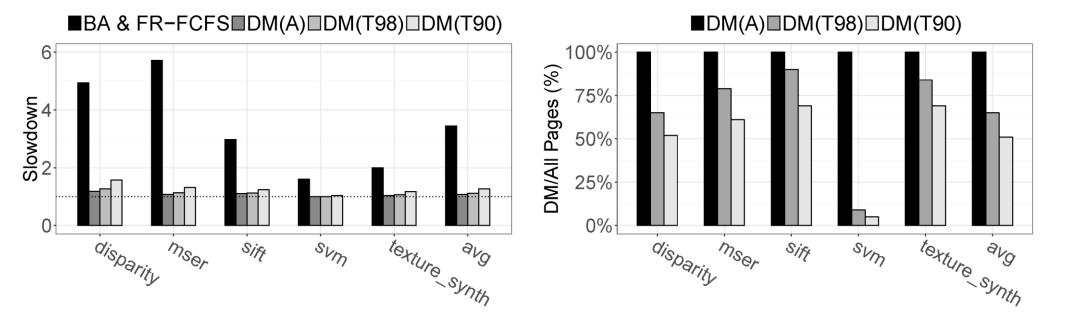
- Critical pages: pages accessed in the main loop
 - Critical (T98/T90): pages accounting 98/90% L1 misses of all L1 misses of the critical pages.
- Only 38% of pages are critical pages
- Some pages contribute more to L1 misses (hence shared L2 accesses)
- Not all memory is equally important


Effects of DM-Aware Cache

- Questions
 - Does it provide strong cache isolation for real-time tasks using DM?
 - Does it improve cache space utilization for best-effort tasks?
- Setup
 - RT: EEMBC, SD-VBS, co-runners: 3x Bandwidth
- Comparisons
 - NoP: free-for-all sharing. No partitioning
 - WP: cache way partitioning (4 ways/core)
 - DM(A): all critical pages of a benchmark are marked as DM
 - DM(T98): critical pages accounting 98% L1 misses are marked as DM
 - DM(T90): critical pages accounting 98% L1 misses are marked as DM

Effects of DM-Aware Cache

- Does it provide strong cache isolation for real-time tasks using DM?
 - Yes. DM(A) and WP (way-partitioning) offer equivalent isolation.
- Does it improve cache space utilization for best-effort tasks?
 - Yes. DM(A) uses only 50% cache partition of WP.



Effects of DM-Aware DRAM Controller

- Questions
 - Does it provide strong isolation for real-time tasks using DM?
 - Does it reduce reserved DRAM bank space?
- Setup
 - RT: SD-VBS (input: CIF), co-runners: 3x Bandwidth
- Comparisons
 - BA & FR-FCFS: Linux's default buddy allocator + FR-FCFS scheduling in MC
 - DM(A): DM on private DRAM banks + two-level scheduling in MC
 - DM(T98): same as DM(A), except pages accounting 98% L1 misses are DM
 - DM(T90): same as DM(A), except pages accounting 90% L1 misses are DM

Effects of DM-Aware DRAM Controller

- Does it provide strong isolation for real-time tasks using DM?
 - Yes. BA&FR-FCFS suffers 5.7X slowdown.
- Does it reduce reserved DRAM bank space?
 - Yes. Only 51% of pages are marked deterministic in DM(T90)

Conclusion

- Challenge
 - Balancing performance and predictability in multicore real-time systems
 - Memory timing is important to WCET
 - The current memory abstraction is limiting: no concept of timing.
- Deterministic Memory Abstraction
 - Memory with tightly bounded worst-case timing.
 - Enable predictable and high-performance multicore systems
- DM-aware multicore system designs
 - OS, MMU/TLB, bus support
 - DM-aware cache and DRAM controller designs
 - Implemented and evaluated in Linux kernel and gem5
- Availability
 - <u>https://github.com/CSL-KU/detmem</u>

Ongoing/Future Work

- SoC implementation in FPGA
 - Based on open-source *RISC-V* quad-core SoC
 - Basic DM support in bus protocol and Linux
 - Implementing DM-aware cache and DRAM controllers

- Tool support and other applications
 - Finding "optimal" deterministic memory blocks
 - Better timing analysis integration (initial work in the paper)
 - Closing micro-architectural side-channels.

Thank You

Disclaimer:

Our research has been supported by the National Science Foundation (NSF) under the grant number CNS 1718880

