
ECRTS 2018

Proceedings of the
Work-in-Progress Session

Barcelona, Spain, July 4th
Edited by Martina Maggio

Message from the Chair

Welcome to the Work in Progress (WiP) Session of the 30th Euromicro Conference on

Real-Time Systems (ECRTS), held in Barcelona on July 4th, 2018. This session provides

an opportunity for researchers to present their ongoing work and get feedback that will

help them in identifying promising future research, and in gaterhing new insights on their

research topics.

The program, this year, contains 10 papers, on multiple aspects of Real-Time Systems,

spanning from mixed criticality scheduling to cache-aware scheduling, and from operating

systems to demand-bound functions. Each paper describes, in three pages, the current

research status and future potential directions. I wish to all the authors to find inspiration,

collaborators, and a forum to openly discuss new ideas.

The Session proceedings are available online, at the address

https://erts18.ecrts.org

selecting the menu item “Work in Progress Session”. This collection of articles is the

result of the work of many authors, that should be acknowledged for their contribution.

Additionally, I would like to thank the members of the Technical Program Committee,

that have done an impressive job at providing meaningful and constructive comments in

a very limited time.

On behalf of the Program Committee, I wish you a pleasant and fruitful session. I hope

you find the program inspiring and that you will take the opportunity to look at the

poster and talk with the authors.

Martina Maggio

Lund University

ECRTS 2018 Work-in-Progress Chair

https://erts18.ecrts.org

Organizers

• Martina Maggio, Lund University, Sweden

Program Committee

• Arne Hamann, Robert Bosch Gmbh, Germany

• Patrick Meumeu Yomsi, CISTER/INESC TEC and ISEP, Portugal

• Rodolfo Pellizoni, University of Waterloo, Canada

• Marcus Völp, University of Luxembourg, Luxembourg

ECRTS 2018 Work-in-progress Papers

Handling Intra-Task Parallelism for Real-Time DAG Tasks
Scheduled on Multiple Cores
Johnathon Soulis, Jaewoo Lee and Chang-Gun Lee . 1

Towards Optimal Offline Scheduling for Multi-Core Systems with
Partitioned Caches
Darshit Shah and Jan Reineke . 4

Towards Synchronization in Prosa
Antonin Riffard, Felipe Cerqueira and Björn Brandenburg 7

Towards System-Wide Timing Analysis of Real-Time–Capable
Operating Systems
Simon Schuster, Peter Wägemann, Peter Ulbrich and Wolfgang Schröder-
Preikschat . 10

FF-DBF-WIN: On the Forced-Forward Demand-Bound Function
Analysis for Wireless Industrial Networks
Miguel Gutiérrez-Gaitán and Patrick Meumeu Yomsi. 13

On Multi-Level Preemption in Ethernet
Mubarak Ojewale, Patrick Meumeu Yomsi and Geoffrey Nelissen. 16

Task Mapping in a Regularity-based Resource Partitioning
Hierarchical Real-Time System
Guangli Dai, Pavan Kumar Paluri and Albert Cheng . 19

Implementing the Regularity-based Resource Partition Model on
RT-Xen
Kevin Bailey, Albert Cheng, Pavan Kumar Paluri, Guangli Dai and Carlos
Rincon . 22

Towards a model-based framework for prototyping performance
analysis tests
Thanh Dat Nguyen, Yassine Ouhammou and Emmanuel Grolleau 25

Handling Intra-Task Parallelism for Real-Time DAG
Tasks Scheduled on Multiple Cores

Johnathon Soulis∗, Jaewoo Lee†, and Chang-Gun Lee∗
∗Department of Computer Science and Engineering, Seoul National University, Seoul, Korea

†Department of Industrial Security, Chung-Ang University, Seoul, Korea
Email: {taylor, cglee}@rubis.snu.ac.kr, jaewoolee@cau.ac.kr

Abstract—In this paper, we discuss a method for scheduling
a set of parallel tasks modeled by a generic DAG task model.
We present a method that handles the intra-task parallelism
between computational units as well as the parallelization of
individual computational units in order to schedule the tasks on
multiple CPU cores. We introduce a density packing problem
that describes our approach for handling intra-task parallelism
in order to minimize the overall task minimum peak density.

I. INTRODUCTION

Compared to traditional real-time applications, recent real-
time applications such as sensor processing, vision processing
and deep learning neural networks [2] require more computa-
tion bounded requirements and have complicated task model
structures such as multi-segment [3] and DAG [4] task models.
Following this trend, even simple and cheap embedded boards
have recently adopted multi-core CPU architectures [5] to
support the parallel execution of tasks. For real-time tasks
requiring heavy computation and modeled by complicated
structures such as the one shown in Figure 1, methods to
parallelize and schedule these tasks on multi-core processors
are needed.

An optimal algorithm for parallelizing and scheduling a
set of parallel tasks with multiple parallelization options on
multiple CPU cores is presented in [1]. This paper addresses
the scheduling problem as a density minimization problem,
seeking to minimize the peak task set density of a task set
described by a multi-segment task model. While this paper
addresses scheduling multiple parallel tasks and determines the
parallelization options for task segments during the scheduling
process, it does not consider tasks in which intra-task segments
are run in parallel. In other words, it only considers a multi-
segment task model in which each task is represented as a
sequential series of executable units. However, there is need
to consider tasks in which computational units within a task
itself can be scheduled to be run in parallel. This introduces a
new layer of complexity to the scheduling problem addressed
by [1]. For tasks that can be represented by a directed acyclic
graph (DAG), we must determine how we will group or
arrange parallel segments and how we will determine the
density of these grouped segments.

In this paper, we address this scheduling problem of assign-
ing parallelization options as a part of the scheduling process
for tasks that can be represented by a DAG task model.

Fig. 1: Automotive task described by DAG task model

II. PROBLEM & APPROACH

As mentioned, an optimal algorithm for parallelizing and
scheduling a set of parallel tasks with multiple parallelization
options assuming a multi-segment task model underlies the
tasks of interest has been introduced. Each segment Sk of
the multi-segment task has p parallelization options such
that a possible option for the segment could be represented
as Optk = p. For example, consider that segment S1 has
parallelization option Opt1 = 2 for task τi. This means that
segment S1 of τi is parallelized into 2 threads. As p increases
and the number of threads increases, the time it takes to
execute a given segment decreases and thus the segment can
be completed by a shorter deadline. However, because the
execution of the segment has been divided across multiple
threads, the computational resources it takes to complete a
segment that has been heavily parallelized also increases. In
other words, The density of a segment with Optk = pb is
greater than a segment where Optk = pa if pb > pa. This
is because, as the parallelization of a segment increases, the
parallelization overhead increases as well.

In this paper, we consider a a set of n independent tasks
running on a system with m CPU cores. Each task τi is a
sporadic task released repeatedly with a minimum inter-release
time Ti and should be completed by its relative deadline Di.
We assume the deadline is taken to be equal to the minimum
inter-release time, Di = Ti. Each task τi will execute a program
that can be parallelized and the task will be represented by a
DAG task model. Each node of the DAG can be thought of as

1

Fig. 2: Gap in density for good and bad handling of intra-task
parallelism

a computational unit that carries out a specific function or role
for task τi. Also, each node of the DAG can be parallelized into
multiple threads. These threads can be executed independently.
We assume that the thread executions on CPU cores can be
preempted and migrated at any time with negligible cost.

The DAG task model presents a new challenge compared
to the multi-segment task model in that we must consider the
intra-task parallelism that exists between nodes of a DAG that
can be executed in parallel. Our first approach to address the
intra-task parallelism of nodes in a DAG was to explore the
different ways in which nodes of the DAG could be grouped
and serialized while satisfying precedent constraints between
nodes. A naive solution that can be quickly imagined is to
serialize the nodes of the DAG entirely so that the DAG task
model reduces into a multi-segment task model. The schedul-
ing methodology of [1] for multi-segment task model can then
be applied directly. However, given a specific DAG topology,
like the one shown in Figure 1, which depicts an example
automotive task, we can generate not only this naive solution
but also an exhaustive list of all possible ways to group
and serialize nodes while preserving precedent constraints
between nodes. We can then apply the scheduling method
used for the multi-segment task model to each serialization
to determine the minimized peak task density possible for the
given serialization. While an exhaustive search for all possible
ways to group nodes is not an ideal long term solution because
the number of serializations possible grows exponentially as
the number of nodes increases, it reveals insight into how
handling the intra-task parallelism of the DAG poorly can
result in a high task density that could have otherwise been
avoided if the intra-task parallelism was handled differently.

We conducted an experiment to quantify how the handling
of the intra-task parallelism has an effect on the peak task
density of the task. Given a DAG topology we generated an
exhaustive list of all the serializations. We then calculated
the min peak task density on all the different serializations
100 times, varying the starting task parameters each time.
Finally, we found which serializations the task experienced
the lowest density compared to other serializations and the
serialization it experienced the largest density. The difference
of these two densities was then taken to represent the density

Fig. 3: Base transformation by observing precedent constraints

gap experienced between good and poor handling of the intra-
task parallelism. We performed this experiment in entirety for
10 different DAG topologies.

As we can see from Figure 2, the way in which we handle
intra-task parallelism for a task can have huge impacts on the
min peak density and subsequent schedulability of the task.
Therefore it is important to have a good strategy in place
for handling intra-task parallelism for the DAG task model.
Motivated by these findings, we present our current work in
progress and envisioned solution regarding scheduling tasks
described by a DAG task model.

III. ENVISIONED SOLUTION

Our envisioned solution for this research is as follows:
1) Generate the base transformation for the DAG topology
2) Compute the approximate density graph for each node
3) Pack density blocks in way to minimize peak task density
We first generate the base transformation for the DAG

topology. Given a task represented by a DAG like the one
shown in Figure 1, we first generate our base transformation
as shown in Figure 3. The base transformation puts an order
on the nodes such that nodes in group i+ 1 have all of their
predecessors in groups i, i− 1, and so on.

Next we must compute the approximate density graph for
each node, n. The approximate density graph will show us all
of the density values that a certain node can take on for every
parallelization option and possible virtual deadline for a given
node. The density values calculated will be a an over estima-
tion of the actual density values possible for a given deadline
and parallelization option. This overestimation is due to the
linear approximation we use to calculate the density values
for each node. We are considering an approximate version of
the density graph to make downstream calculations simpler.
Especially calculations that involve the parallel or sequential
alignment of nodes when producing the final schedule. This is
essential as the number of calculations made with this structure
in the case of the DAG task model is much more than the
multi-segment task model considered previously.

The approximate density graph can be found fairly easily.
First, we consider the cases in which the parallelization option
for a node equals 1 and the max value for the number of
threads, Optn = 1 and Optn = MAX respectfully. For

2

Fig. 4: An example of density blocks for a given DAG

each of these parallelization options we must calculate the
execution time for each node, Eopt

n , as well as the sum of the
individual thread execution times, Csum,opt

n , so that we can
calculate the density of the task. In [1], to generate the density
graph, all virtual deadlines, Vn, such that Vn ≥ Eopt=MAX

n

but Vn < Di, overall task deadline, were considered. For
each Vn, the density was calculated using Eopt

n . The resulting
density graph is similar to that shown in Figure 5 (a). For
our simplified approach, we will calculate the density ρhigh

when Optn = MAX and Vn = Eopt=max
n , because this

is when the execution time of the node is shortest and the
density highest. When Optn = 1 and Vn = Eopt=1

n , the
density will be 1, ρn = 1. This is because Csum,opt=1

n =
Eopt=1

n . With these points, (Vn = Eopt=MAX
n , ρhighn) and

(Vn = Eopt=1
n , ρn = 1), we can approximate the minimum

density values that the node can achieve for parallelization
options Optn = MAX to Optn = 1 when Vn ≤ Eopt=1

n .
Lastly, we must approximate the varying density values the
node can take when Optn = 1 and Eopt=1

n < Vn ≤ Di.
This can be done by calculating the minimum density of the
task ρlown , which occurs when Vn = Di. With these three
points, (Vn = Eopt=MAX

n , ρhighn), (Vn = Eopt=1
n , ρn = 1)

and (Vn = Di, ρ
low
n), we can approximate all of the minimum

density values that a node can take on for any parallelization
option and virtual deadline value. This graph is shown in
Figure 5 (b).

Once we have generated an approximate density graph for
each node, we can easily calculate the density for a node at
a given virtual deadline and vice versa. These graphs allow
us to imagine that each node is a block of density that can
be arranged until we find a packing arrangement that results
in the lowest density. For example, starting from our base

Fig. 5: Example density graph for one node

Fig. 6: An improved packing solution

transformation in Figure 1, we calculate the density of each
node by assigning a virtual deadline at the end of each group.
In that way, nodes in the same group share the same virtual
deadline. We then are able to come up with something as
shown in Figure 4. From this starting point, we can see how we
might be able to move blocks around as long as we adhere to
precedence constraints outlined by Figure 1. For example, we
can see that node 4 does not have any successors and as a result
can be run over a longer virtual deadline in order to reduce the
impact it has to increasing the overall task density. We can see
how after considering precedent constraints, different virtual
deadlines and parallelization options for different nodes, we
are left with a packing problem. Figure 6 shows an example
solution of how we can improve on the baseline introduced in
Figure 4.

IV. CONCLUSION

In this paper we introduced a method for scheduling real-
time tasks described by a DAG task model with parallelization
option freedom for each node. We emphasized the need of
handling intra-task parallelism by introducing a density block
packing problem as a model for determining how to schedule
nodes. By observing the precedent constraints of nodes and
the approximate density graphs of nodes, we can pack and re-
arrange nodes in order to create a schedule with minimal peak
task density. We are currently working on the implementation
of this design and researching efficient ways to solve the
density packing problem.

REFERENCES

[1] Jihye Kwon, Kang-Wook Kim, Sangyoung Paik, Jihwa Lee, and Chang-
Gun Lee. Multicore scheduling of parallel real-time tasks with multiple
parallelization options. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015.

[2] Young Jong Mo, Joongheon Kim, Jong-Kook Kim, Aziz Mohaisen, and
Woojoo Lee. Performance of deep learning computation with TensorFlow
software library in GPU-capable multi-core computing platforms. Ninth
International Conference on Ubiquitous and Future Networks(ICUFN),
2017.

[3] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-
pher D. Gill. Multi-core real-time scheduling for generalized parallel task
models. Real-Time Systems, 49(4):404-435, 2013.

[4] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang
Lu, and Christopher D. Gill. Parallel Real-Time Scheduling of DAGs.
Real-Time Systems, 25(12):3242-3252, 2014.

[5] Intel, Multicore Scalability for Embedded Systems. http://www.
embeddedintel.com/special features.php?article=2241.

3

Towards Optimal Offline Scheduling for
Multi-Core Systems with Partitioned Caches

Darshit Shah∗, Jan Reineke∗∗
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

Email: ∗s8dashah@stud.uni-saarland.de, ∗∗reineke@cs.uni-saarland.de

Abstract—Cache partitioning is often used in multi-core sys-
tems to improve predictability. Prior work has mostly focused on
per-core cache partitioning. We conjecture that there is significant
remaining potential if the cache is partitioned at the granularity
of individual jobs. In this paper, we discuss our ideas for a new
algorithm—an extension of the A* algorithm—to find optimal
schedules for non-recurrent sets of jobs.

I. APPLICATION DOMAIN AND CHALLENGE

To address size, weight, and power constraints (SWaP) there
is a trend to transition from federated architectures, where each
application is deployed on a private single-core processor, to
integrated architectures, where multiple applications share a
single multi-core platform. In safety-critical real-time systems
this trend poses a major challenge for the verification process
due to the possibility of interference on shared resources,
such as buses, networks-on-chip, shared caches, and memory
controllers. Safely and tightly bounding this interference is
extremely difficult as the shared resources and their hardware
management mechanisms have usually not been designed with
predictability in mind.

A rather general approach to address this challenge is to
partition the shared resources in space and time. By partitioning
the resources, interference can be eliminated, making the use
of multi-core platforms feasible. Such an approach is also
advocated in the recent position paper on certification issues
CAST-32A [1], where it is referred to as robust partitioning. In
this work, we focus on the challenge of efficiently partitioning
shared caches.

II. MOTIVATION

Caches are a major source of unpredictability and pessimism
in the analysis of multi-core hard real-time systems. This
is because it is usually difficult to know the exact memory
behavior of the tasks running simultaneously with the task
under analysis. There are multiple ways of dealing with the
issues of unpredictability due to a shared cache. Approaches
that deal with a shared cache in a multi-core system, do so in
one of the two following ways:

1) Cache Partitioning: These approaches [2]–[4] partition
the shared cache using either hardware or software
techniques. In this way they achieve temporal isolation
between different jobs, thereby easing timing verification.

2) Analyzing Cache Interference: Other approaches [5]–[8]
compute bounds on the interference between different
jobs on a shared cache and use these bounds within
response-time analysis.

Precisely analyzing cache interference is very challenging, as
very different cache states and cache behaviors may arise,
depending on the precise relative timing of memory accesses
coming from different cores. The problem is slightly easier
if jobs are scheduled non-preemptively. Still, even analyses
assuming non-preemptive scheduling [8] make use of coarse
abstractions of the cache behavior, and thus we expect them
to be rather imprecise.

Cache partitioning is often the suggested way to improve
the predictability of multi-core hard real-time systems. This is
largely due to the fact that partitioning the cache helps prevent
inter-task contention for the same cache line, thus simplifying
the computation of the worst-case execution time (WCET) of
a task. However, even outside the realm of real-time systems,
cache partitioning is used to improve the predictability and the
overall throughput of systems [2], [9], [10].

We are aware of two lines of prior work on real-time
scheduling with cache partitioning:

1) Per-core cache partitioning [3], [4]: Here, the shared
cache is partitioned among the cores of a multi-core,
and tasks are assigned to cores depending on their cache
footprint.

2) Per-task cache partitioning [11]: Here, each task is
allocated a certain share of the cache, and whenever
a job of a task is scheduled, its share of the cache is
made available to it privately.

Per-task cache partitioning is more flexible and may thus
provide better performance. However, the prior work by
Guan et al. [11] considers the cache space allocated to each task
to be an input to their non-preemptive scheduling algorithm. In
other words, the amount of cache space allocated to each task
is not optimized to globally improve schedulability. Our aim
is to fill this gap, by developing a novel method for computing
offline schedules of sets of non-preemptable tasks using per-job
cache partitioning. We initially limit the problem to sets of
non-recurring tasks, but plan to extend it to recurrent task sets
in the future.

4

III. PROBLEM STATEMENT

A. Machine Model

We consider a machine with c identical cores and a shared
cache of size M . The shared cache consists of m cache slices,
each of size M/m. At runtime, the set of cache slices may be
partitioned arbitrarily among the cores.

Given a set-associative cache and way-based partitioning, the
cache slices would correspond to the ways of the cache. Given
a set-associative cache and set-based partitioning, which can
be implemented in software, the cache slices would correspond
to subsets of the cache’s sets.

B. Task Model

We consider a system which must schedule a set of n real-
time jobs, B = {J1, J2, . . . , Jn} on a machine as described
in Section III-A. Each job Ji is characterized by a 3-tuple
(Ci, ai, di), where Ci is the job’s worst-case execution time, ai
is the arrival time of job Ji, and di is the (absolute) deadline
before which the job must be completed. As the execution
time depends on the amount of allocated cache space, Ci is a
function from {0, . . . ,m− 1} to N, capturing the dependence
of the job’s execution time on the number of cache slices.

Given a particular schedule, the lateness of a job Ji is defined
as Li = fi − di, where fi denotes the finishing time of job Ji
under the given schedule.

C. Scheduling Model

We consider global non-preemptive scheduling, where each
job is assigned a fixed number of cache slices throughout its
execution. Our goal is to compute an offline schedule that
considers the available number of cores and cache slices and in
which each job meets its deadline. For an optimal schedule, we
would like to minimize the maximum lateness across all jobs.

IV. PROPOSED APPROACH AND PRELIMINARY RESULTS

A. Partition Size Sensitivity

We used our low level timing analysis tool, LLVMTA [12]
to analyze the worst-case execution times of jobs. For our
evaluation, we used all the tasks in TACLeBench [13] and
seven tasks generated from models using the SCADE tool [14]
assuming fully-associative instruction and data caches ranging
from 16 bytes to 16 KiB.

Figure 1 shows the results of this analysis for a subset
of the tasks in TACLeBench1. Both the instruction and data
caches were varied in lockstep for the analysis. All results
are normalized to the WCET bound obtained for a cache of
size 16 bytes. We observe that the tasks have differing timing
behavior as the amount of cache available to them changes.
Some smaller tasks benefit from additional cache space only at
smaller cache sizes, and once their entire working set fits into
the cache, there is no further improvement in the execution
times. On the other hand, other tasks show only minor or no

1Due to space constraints, we can show only a subset of the experimental
results here. The full set of results can be found at: http://embedded.cs.
uni-saarland.de/publications/ECRTS2018WIPExtended.pdf.

improvements in execution time until a significant part of their
working set fits in the larger sized caches. Hence, we can see
from Figure 1 that there is a benefit to partitioning the cache
based on the actual requirements of each executing task.

 0

 20

 40

 60

 80

 100

16 B 32 B 64 B 128 B 256 B 512 B 1 KiB 2 KiB 4 KiB 8 KiB 16 KiB

R
e
la

ti
v
e
 E

xe
cu

ti
o
n
 T

im
e

Cache Size

filterbank

jfdctint

dijkstra

gsm_dec

rijndael_enc

statemate

powerwindow

Fig. 1. Partition size sensitivity of selected TACLeBench tasks

B. State Space Exploration
We model the scheduling problem as a path-finding problem

in a directed acyclic graph. In such a graph, each edge
represents a potential scheduling decision and each node
represents the state of the systems after all the previous
decisions have been carried out. Thus, each complete path
in the graph represents a potential schedule of all the tasks.
Such a graph will contain a large number of states and possible
schedules, making an explicit search through all the possible
paths infeasible for all but the smallest job sets.

We propose to use a variant of the A* algorithm [15], [16]
to efficiently explore this graph. Using a heuristic function h,
A* is steered towards promising schedules. Furthermore,
if the heuristic function is admissible, the algorithm may
safely discard large parts of the graph without sacrificing
optimality. The characteristics of a heuristic cost function and
the admissibility criteria are described in Section IV-C.

Following existing conventions, our algorithm uses a priority
queue called OPEN and a list called CLOSED. The OPEN
queue contains the set of states that have not yet been examined
in increasing order of their heuristic cost. The CLOSED list is
the set of states that have already been examined. We define
goal states as those in which there remain no jobs that are yet
to be scheduled. The state-space exploration algorithm then
functions as follows:

1) Put initial state Φ in the OPEN queue.
2) Remove the lowest ranked element, s, which corresponds

to the smallest heuristic cost, h(s) and add it to CLOSED.
3) If based on the heuristic function, h, s is guaranteed

to not lead to a feasible schedule, then the job set is
deemed infeasible and the algorithm stops2; else go to
next step.

2As, following from A*, all other states in OPEN are then also guaranteed
not to lead to a feasible schedule.

5

4) If s is a goal state, then, according to A*, an optimal
schedule has been found and the algorithm stops; else
go to next step.

5) Expand the state s by exhaustively matching all the ready
jobs to available processors for each possible partition
size from the available cache space. Each such matching
produces a new state, s′. Compute the heuristic cost for
each of the new states and add them to the OPEN queue.
Then, go to step (2).

C. Heuristic Cost Function

In this section we discuss the properties of a good heuristic
cost function and our ideas for devising one. Since the heuristic
cost function must be computed for a large number of states,
it is imperative that it is cheap to compute.

An admissible heuristic cost function is one in which h(s)
always underestimates the value of the optimization goal for
all schedules that can be constructed from s. The A* algorithm
is guaranteed to find an optimal solution if the heuristic
cost function is admissible. Hence, our heuristic should be
admissible.

The heuristic cost function must also be “end-to-end”, as
the aim is to minimize the goal across the entire path, and not
only for the remaining schedule that is yet to be explored. This
is important, since otherwise, the algorithm would degenerate
into a depth-first search.

Since the heuristic’s job is to guide the algorithm towards
the optimal schedule, the closer it estimates the maximum
lateness of all completions of a partial schedule, the better the
algorithm will perform.

We have two ideas to approximate the maximum lateness
of all completions of a partial schedule from below:

1) By disregarding competition for cache space, assuming
each remaining task is allocated the entire cache space.

2) By assuming that each task may be scheduled at its
“resource-optimal” configuration, i.e. the one that mini-
mizes the time-space product C(h) · h.

D. State Space Pruning

The original A* algorithm was designed to work with
arbitrary graphs, i.e., with no knowledge of their structure.
However, in our case, we can use the knowledge of what
each state represents in order to prune certain paths which
are guaranteed not to produce optimal results. We propose
to extend the A* algorithm with an additional step as was
previously suggested by Kwok et al. [17] to prune states which
cannot possibly lead to an optimal schedule. The following
types of states may be pruned:

1) States that are dominated by another: If it can be
shown that one state is dominated by another state, we
can safely prune it, since it cannot lead to an optimal
solution. If S1 and S2 are two states such that every job
scheduled in S2, has either finished or is scheduled to
finish earlier in S1, then S1 is said to dominate S2. The
efficient identification of dominated states is an important
goal of future work.

2) States which are identical: When expanding a state s,
multiple new states may be generated by matching a
ready task to isomorphic processors [17]. These are sets
of processors which are in a state such that assigning a
task to either of them will produce equivalent schedules.

V. ENVISIONED SOLUTION

In this paper, we introduce our idea for offline non-
preemptive multi-core scheduling with job-aware cache par-
titioning. We propose to generate schedules using a variant
of the A* algorithm. Based on the preliminary results of the
partition-size sensitivity of execution times, we are confident
that this approach will yield significant improvements in the
response times of jobs and in overall schedulability. Coming
up with good heuristic cost functions and state-space pruning
techniques is the subject of ongoing work. We also plan to
extend our approach to recurrent task sets.

REFERENCES

[1] Certification Authorities Software Team (CAST), “Position Paper CAST-
32A Multi-core Processors,” November 2016.

[2] A. M. Molnos, S. D. Cotofana, M. J. M. Heijligers, and J. T. J.
van Eijndhoven, “Throughput optimization via cache partitioning for
embedded multiprocessors,” in ICSAMOS. IEEE, 2006, pp. 185–192.

[3] S. Plazar, P. Lokuciejewski, and P. Marwedel, “WCET-aware Software
Based Cache Partitioning for Multi-Task Real-Time Systems,” in WCET,
ser. OASICS, vol. 10. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2009, pp. 1–11.

[4] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache
partitioning on multi-tasking real time embedded systems,” in RTCSA.
IEEE Computer Society, 2008, pp. 101–110.

[5] J. H. Anderson, J. M. Calandrino, and U. C. Devi, “Real-time scheduling
on multicore platforms,” in IEEE Real Time Technology and Applications
Symposium. IEEE Computer Society, 2006, pp. 179–190.

[6] Y. Ding and W. Zhang, “Multicore real-time scheduling to reduce inter-
thread cache interferences,” JCSE, vol. 7, no. 1, pp. 67–80, 2013.

[7] W. Zheng, H. Wu, and C. Nie, “Integrating task scheduling and cache
locking for multicore real-time embedded systems,” in LCTES. ACM,
2017, pp. 71–80.

[8] J. Xiao, S. Altmeyer, and A. D. Pimentel, “Schedulability analysis of
non-preemptive real-time scheduling for multicore processors with shared
caches,” in RTSS. IEEE Computer Society, 2017, pp. 199–208.

[9] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on modern
hardware,” in ASPLOS. ACM, 2012, pp. 37–48.

[10] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: improving resource efficiency at scale,” in ISCA. ACM, 2015,
pp. 450–462.

[11] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-Aware Scheduling and
Analysis for Multicores,” Emsoft’09, p. 245, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1629335.1629369

[12] S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in RTNS. ACM, 2016, pp. 299–308.

[13] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sorensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in WCET, ser. OASICS, vol. 55. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:10.

[14] “SCADE Suite.” [Online]. Available: http://www.esterel-technologies.
com/products/scade-suite/

[15] V. Kumar and L. N. Kanal, “A general branch and bound formulation
for understanding and synthesizing and/or tree search procedures,” Artif.
Intell., vol. 21, no. 1-2, pp. 179–198, 1983.

[16] J. Pearl and J. H. Kim, “Studies in semi-admissible heuristics,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 4, no. 4, pp. 392–399, 1982.

[17] Y. Kwok and I. Ahmad, “On multiprocessor task scheduling using
efficient state space search approaches,” J. Parallel Distrib. Comput.,
vol. 65, no. 12, pp. 1515–1532, 2005.

6

Towards Synchronization in Prosa
Antonin Riffard

MPI-SWS
Kaiserslautern, Germany

Felipe Cerqueira
MPI-SWS

Kaiserslautern, Germany

Björn B. Brandenburg
MPI-SWS

Kaiserslautern, Germany

Abstract—We report on our ongoing work on the formalization
of real-time resource sharing in Prosa, a framework based on
the Coq proof assistant for the development of machine-checked
schedulability analysis. We review the goals of the project, present
a preliminary specification of a generic resource model, and then
discuss the next steps and planned verification goals.

I. INTRODUCTION

Certification standards call for the temporal requirements of
safety-critical real-time systems to be thoroughly checked and
validated. For this purpose, the real-time systems community
has proposed a wealth of schedulability analysis techniques.
However, the complexity inherent in state-of-the-art analyses
has made it increasingly difficult to verify such analyses “by
hand,” and in fact there are ample recent examples that suggest
that human error is a significant cause for concern [1, 2, 3,
4, 5, 6, 7]. This unfortunately raises a fundamental question:
why should certification processes admit schedulability analysis
results as evidence of temporal correctness if the underlying
analysis methods may not be entirely sound?

To address this question and provide a trustworthy analyt-
ical foundation for the real-time systems of tomorrow, the
PROSA project [8] seeks to develop rigorous, provably-correct
schedulability analyses. Specifically, PROSA is an open-source
framework based on the COQ proof assistant that provides
a general and extensible formal specification of real-time
scheduling theory and allows users to develop machine-checked
schedulability analyses that are guaranteed to be correct.

To date, PROSA has been successfully used to reason
about various aspects of real-time scheduling theory, including
uniprocessor and multiprocessor scheduling, response-time anal-
yses [8], arbitrary processor affinity (APA) scheduling [1, 2],
sustainability in the context of self-suspending tasks [9], and
work on the certification of analysis tools by Guo et al. [10].

Nevertheless, despite these promising initial results, PROSA
still has limited applicability in the analysis of real-world
systems since it offers no support for mutual exclusion. To
address this issue, we are currently working towards support for
the verification of real-time synchronization protocols as well as
their associated blocking analyses in PROSA. In this paper, we
first discuss the goals of this extension and specific challenges,
then present our preliminary model of critical sections and
mutual exclusion, and finally conclude with a summary of the
next steps and planned verification goals.

This work was funded by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — 391919384.

II. AN INITIAL MODEL OF MUTUAL EXCLUSION

A. Goals and Challenges

The main goal of this project is to extend the current PROSA
specification with a generic resource model. Initially, we will
only target mutual exclusion, but plan to include additional
types of relaxed concurrency control mechanisms in the future,
such as reader-writer locks and k-exclusion protocols.

To formalize this resource model, we must define resources
and critical sections, restrict the notion of a valid schedule
to enforce mutual exclusion, and also adapt the properties of
work conservation and priority compliance to be coherent with
the resource model.

Those changes must be applied to both uniprocessor and
multiprocessor scheduling. In case of the latter, we must
additionally consider that jobs are allowed to spin (i.e., busy-
wait) when a resource is not available. Thus, when defining
this new schedule state, we must be careful to maintain
compatibility with existing definitions.

Moreover, to match the assumptions of existing analyses, we
must define the various types of nesting of critical sections. For
example, a restrictive, but also common, assumption is that a
job can hold at most one resource at a time (i.e., non-nested
critical sections). Another variation is to only allow well-nested
critical sections (i.e., given two critical sections A and B, either
A is completely inside B or they do not overlap). An even more
general model, such as found in the Linux kernel, allows critical
sections to be nested arbitrarily, as long as requests are ordered
to prevent deadlocks. In PROSA, we seek a single model for
critical sections that is able to express all types of nesting.

B. PROSA Foundations

Since PROSA already provides a foundation of common real-
time scheduling concepts, we can focus directly on formalizing
the resource model. To better understand the required changes,
we begin with an overview of key definitions in PROSA.

The most basic notion in PROSA is that of jobs, which
are represented by an opaque type called Job . Each Job is
associated with certain parameters, modeled as functions, such
as its actual execution cost:

Variable job cost : Job → progress.

The above syntax expresses that each Job has a parameter
called job cost that maps a job to a value of type progress,
which represents the amount of processor service required by
a given job. The type progress, in turn, is just an alias of nat
(the natural numbers), our model of discrete time.

7

Based on the notion of jobs, PROSA defines a uniprocessor
schedule as a function that maps each time instant optionally
to a job, represented by the type option Job (i.e., either None
or Some j with j ∈ Job), meaning that at any time, either the
processor is idle or exactly one job is scheduled. The type
time, in turn, is also an alias of nat.

Definition schedule := time → option Job .

Next, to model the progress and completion of execution,
we define the central notion of service received by a job. Given
a schedule sched , instantaneous and cumulative service of a
job j are defined in PROSA as follows.

Definition service at (j: Job) (t: time) : progress :=
if sched t == Some j then 1 else 0.

Definition service (j: Job) (t: time) : progress :=
\sum (t’ < t) service at j t’.

When moving to the multiprocessor case, the only major
change is the definition of schedule. Given the set of processors
processor num cpus , represented by integers in [0, num cpus),
PROSA defines a multiprocessor schedule as follows.

Definition schedule :=
processor num cpus → time → option Job .

Correspondingly, the definition of instantaneous service must
also consider multiple processors. The definition of cumulative
service, on the other hand, remains unchanged.

Definition service at (j: Job) (t: time) : progress :=
\sum (cpu < num cpus | sched cpu t == Some j) 1.

C. Formalization of Resource Sharing
Having presented an overview of the basic concepts in

PROSA, we now introduce critical sections, add constraints to
the schedule to respect mutual exclusion, and finally integrate
the task and resource models.

1) Introducing Critical Sections: During execution, a job
may be required to access certain shared resources in isolation.
Each of those execution intervals that are subject to mutual
exclusion is called a critical section.

We model a critical section cs as an execution interval
[cs start , cs end) that requires some resource cs resource.
More precisely, critical sections and resources are represented
by opaque types CriticalSection and Resource , with parameters
cs start , cs end (the bounds of the interval) and cs resource
(the targeted resource). In addition, for any job j, we ensure
that 0 ≤ cs start < cs end ≤ job cost j.

Variable cs: CriticalSection .
Variable cs start : CriticalSection → progress.
Variable cs end : CriticalSection → progress.
Variable cs resource: CriticalSection → Resource .

Note that cs start and cs end are expressed in terms of
progress, the service received by the job up to a given time.

Next, we associate with each Job a list of critical sections.

Variable job critical sections: Job → list CriticalSection .

Since jobs can have multiple critical sections, each with
arbitrary start and end times, our model is very permissive

and allows any type of nesting. Nevertheless, it can also
accommodate more restrictive constraints. For instance, non-
nested critical sections can be specified as follows.

Definition no overlapping critical sections :=
∀ j, ∀ cs1 cs2,

cs1 ∈ job critical sections j →
cs2 ∈ job critical sections j →
critical sections overlap cs1 cs2 → cs1 = cs2.

This predicate states that, if two critical sections cs1 and
cs2 intersect, they must be the same. To test for intersection,
we use the predicate critical sections overlap, which compares
the boundaries of the critical sections.

2) Scheduling and Resource Allocation: Having defined
critical sections, we now specify the conditions under which a
schedule is valid assuming a given resource model.

First, we must identify critical sections in the schedule. We
say that job j has entered a critical section cs by time t iff at
an earlier time t’ ≤ t, (a) job j has received enough service to
enter the left boundary cs start of the critical section, and (b)
job j is effectively executing at time t’.

Definition job has entered section
(j: Job) (cs: CriticalSection) (t: time) :=

∃ t’, t’ ≤ t ∧
service sched j t’ ≥ cs start cs ∧
service at sched j t’ > 0.

Next, we say that job j has exited the critical section iff its
received service is no longer within the right boundary cs end .

Definition job has exited section
(j: Job) (cs: CriticalSection) (t: time) :=

service sched j t ≥ cs end cs.

Using the predicates above, we define whether job j has
entered but not yet exited a critical section at time t.

Definition job in section
(j: Job) (cs: CriticalSection) (t: time) :=

job has entered section j cs t ∧
¬ job has exited section j cs t.

Considering that multiple critical sections can refer to the
same resource, we also define whether job j is holding a
resource r at time t.

Definition job holds resource
(j: Job) (r: Resource) (t: time) :=

∃ cs, cs ∈ job critical sections j ∧
cs resource cs = r ∧ job in section j cs t.

Finally, we formalize the key property of mutual exclusion,
i.e., at any time t, at most one job can access each resource.

Definition enforces mutual exclusion :=
∀ r t, ∀ (j1 j2: Job),

job holds resource j1 r t →
job holds resource j2 r t → j1 = j2.

Note that when formalizing reader-writer or k-exclusion
synchronization in the future, this definition will no longer be
valid, but it can be easily generalized to such cases.

8

3) Incorporating Spinning: Recall that in uniprocessor
systems, jobs must suspend when waiting for a resource. In
multiprocessors, however, it is sometimes more desirable to
spin (i.e., busy-wait) while waiting for a resource that is going
be released shortly.

Since a job that spins does not make progress in terms of
service, incorporating spinning requires changing the represen-
tation of a schedule as follows.

Inductive cpu state :=
Idle | Running of Job | Spinning of Job .

Definition schedule :=
processor num cpus → time → cpu state.

In the definition above, the keyword Inductive indicates
that cpu state is an enumerated type with three possible values:

• Idle, when the processor has no job scheduled (this
corresponds to None in the old definition);

• Running j, when the processor is executing a job j ∈ Job
(this corresponds to Some j in the old definition);

• Spinning j, when the currently scheduled job j ∈ Job is
busy-waiting for a resource.

Using the new processor state, we adapt the definition of
service at to count service only from Running processors:

Definition service at (j: Job) (t: time) : progress :=
\sum (cpu < num cpus | sched cpu t == Running j) 1.

Since the other definitions are built on top of ser-
vice at, no other changes are required and the property
valid resource allocation remains valid.

4) Incorporating Resources into the Task Model: The
remaining step is to incorporate job critical sections into the
task model, so that we can later formalize blocking analyses.

For each task we define the maximum number and maximum
length of critical sections (task num cs and task length cs,
respectively). Then, we define two predicates to enforce such
constraints for each individual job and critical section.

Variable task num cs: Task → Resource → nat.
Variable task length cs: Task → Resource → progress.

Definition num critical sections is bounded :=
∀ (j : Job), ∀ (r: Resource),

count mem r (map cs resource (job critical sections j))
≤ task num cs (job task j) r.

Definition critical section length is bounded :=
∀ (j : Job), ∀ cs, cs ∈ job critical sections j →

cs length cs
≤ task length cs (job task j) (cs resource cs).

In the above definition, the operation count mem r (map . . .)
counts the number of sections of job j that access resource r.

III. FUTURE WORK

As future work, we plan to extend the specification by
defining other types of nesting and formalizing reader-writer
and k-exclusion synchronization. In addition, we aim to define
real-time synchronization protocols and important concepts
such as the notion of priority inversion.

After concluding the specification, we seek to verify ex-
isting blocking analyses, so that they can be integrated with
schedulability analysis frameworks in PROSA.

As a first step, we will focus on the uniprocessor case with
the stack resource policy (SRP) and verify the existing blocking
bounds. Next, we will consider an extension of the protocol to
multiprocessor platforms and formalize results for spin-based
protocols, namely the multiprocessor SRP (MSRP) [11]. After
verifying the analysis developed by Gai et al. [11] for non-
nested critical sections, we will focus on the improved bound
based on linear programming by Wieder and Brandenburg [12].
Ultimately, we plan to formalize the blocking analysis for well-
ordered nested critical sections by Biondi et al. [13], and if
possible, generalize this result by incrementally removing or
weakening nesting hypotheses, using COQ’s abilities to detect
and flag required changes in the proofs.

REFERENCES
[1] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Revised Version:

Schedulability analysis of the Linux push and pull scheduler
with arbitrary processor affinities, revision 1,” Available at: https:
//www.mpi-sws.org/∼bbb/papers/, 2015.

[2] ——, “Correspondence article: A correction of the reduction-
based schedulability analysis for APA scheduling. To appear.”
Real-Time Systems, 2018.

[3] R. Bril, J. Lukkien, R. Davis, and A. Burns, “Message response
time analysis for ideal controller area network (CAN) refuted,”
Proceedings of the 5th International Workshop on Real-Time
Networks (RTN’06), 2006.

[4] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis, “Timing analysis
of fixed priority self-suspending sporadic tasks,” in Proceed-
ings of the 27th Euromicro Conference on Real-Time Systems
(ECRTS’15), 2015.

[5] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Ra-
jkumar, and D. de Niz, “Many suspensions, many problems: A
review of self-suspending tasks in real-time systems,” Department
of Computer Science, TU Dortmund, Tech. Rep. 854, 2016.

[6] R. Davis, A. Burns, J. Marinho, V. Nelis, S. Petters, and
M. Bertogna, “Global fixed priority scheduling with deferred pre-
emption revisited,” Univ. of York, Tech. Rep. YCS-2013-483,
2013.

[7] R. Devillers and J. Goossens, “Liu and Layland’s schedulability
test revisited,” Information Processing Letters, vol. 73, no. 5, pp.
157–161, 2000.

[8] F. Cerqueira, F. Stutz, and B. Brandenburg, “PROSA: A case
for readable mechanized schedulability analysis,” in Proceed-
ings of the 28th Euromicro Conference on Real-Time Systems
(ECRTS’16), 2016.

[9] F. Cerqueira, G. Nelissen, and B. Brandenburg, “On strong and
weak sustainability, with an application to self-suspending real-
time tasks,” in Proceedings of the 30th Euromicro Conference on
Real-Time Systems (ECRTS’18), 2018.

[10] X. Guo, S. Quinton, P. Fradet, and J.-F. Monin, “Work In Progress:
Toward a Coq-certified Tool for the Schedulability Analysis of
Tasks with Offsets,” in Work in Progress Session, Real-Time
Systems Symposium (RTSS’17), Paris, France, 2017.

[11] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utiliza-
tion of real-time task sets in single and multi-processor systems-
on-a-chip,” in Proceedings of the 22nd Real-Time Systems Sympo-
sium (RTSS’01), 2001.

[12] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR:
Blocking analysis of FIFO, unordered, and priority-ordered spin
locks,” in Proceedings of the 34th Real-Time Systems Symposium
(RTSS’13), 2013.

[13] A. Biondi, B. Brandenburg, and A. Wieder, “A blocking bound
for nested FIFO spin locks,” in Proceedings of the 37th Real-Time
Systems Symposium (RTSS’16), 2016.

9

Towards System-Wide Timing Analysis of
Real-Time–Capable Operating Systems

Simon Schuster, Peter Wägemann, Peter Ulbrich, Wolfgang Schröder-Preikschat
Department of Computer Science, Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract—In the context of static timing analysis of real-time
operating systems, the usage of generically implemented algo-
rithms necessitates annotation languages to express application-
specific knowledge. That is, developers have to provide precise
loop bounds or exclude program paths if automatic timing
analysis fails or yields too pessimistic results. Current annotation
approaches are not able to express and propagate information
across all layers of complete real-time systems (i.e., application
and system-call layer, operating system, machine-code level).

To solve this problem, we present our work in progress within
the SWAN project to enable System-wide WCET Analyses. Specif-
ically, we provide details on PLATINA, a high-level annotation
language, which is processed by an optimization-aware compiler
and timing-analysis infrastructure. PLATINA enables expressing
parametric program-flow facts based on the real-time system’s
context-sensitive state (e.g., number of currently active tasks),
which are propagated through and usable on all layers of the
real-time system. Eventually, PLATINA allows determining if a
generically implemented system is real-time–capable and whether
timing bounds can be guaranteed during execution.

I. INTRODUCTION & MOTIVATION

The worst-case response time (WCRT) is a vital temporal
property of tasks with hard deadlines. Its evaluation demands
a sound worst-case execution time (WCET) analysis of all
implementation artifacts. Accordingly, static timing analysis of
real-time applications is a well-established field with commer-
cially available tools (e.g., aiT [1]) that yield precise bounds
on the WCET in practice. They, nonetheless, rely on a largely
static program structure, which is inherent to safety-critical
applications, to accurately infer data and control flows, to, for
instance, bound loops and resolve function pointers.

However, tasks are typically embedded and executed in
a broader system’s context using a real-time operating sys-
tem (RTOS). Consequently, its implementation has to be
subject to the same temporal analysis. The induced overhead
is typically treated as constant and pessimistically added in
a deferred analysis step to each task’s WCRT [2], [3]. The
reason is that system calls and preemptive scheduling intermit
data and control flows and thus necessitate a dedicated analysis
of kernel paths. The use of such a compositional approach is
consequently only feasible when given a static setting, which
means that operating system (OS) implementations are tailored
to a specific set of statically decidable application parameters.

A relatively new development in safety-critical real-time
systems is the employment of dynamic runtime environments,

Acknowledgments: This work is supported by the German Research Founda-
tion (DFG), in part by Research Grant no. SCHR 603/9-2, the SFB/Transregio
89 “Invasive Computing” (Project C1), and the Bavarian Ministry of State for
Economics under grant no. 0704/883 25.

such as Real-Time Linux [4], [5] that correspond more to a
general-purpose OS and promote code reuse by generically
implemented algorithms and interfaces. A reliable indicator
of this development is the future Adaptive AUTOSAR stan-
dard [6], which addresses the increasing complexity of driver-
assistance and autopilot functions in vehicles. Here, the aggre-
gation of the individual (i.e., application and kernel) WCETs is
fraught with inevitable overestimations that rise tremendously
with system complexity [7]. The cause is in the loss of a
tailored and static OS implementation and the decoupling
of control flows within the application and the OS kernel
resulting from the system’s dynamic system-call layer and
runtime reconfigurability. Consequently, system facilities are
designed to serve all possible application scenarios and thus
exhibit dynamic data structures and execution paths, which in
turn jeopardize conventional analyses [3]. However, flexible
deployment of dynamic RTOS in safety-critical settings still
requires realistic bounds for the induced overheads.

Our Contribution: We present our work in progress on
system-wide WCET analysis that makes available context-
specific knowledge to the kernel analysis by PLATINA, an
expressive annotation language. PLATINA features parametric
flow facts that can be linked to system state (e.g., number of
currently active tasks) in an application- and context-sensitive
manner. In conjunction with an optimization-aware compiler
and timing-analysis infrastructure, we can infer tighter yet
sound bounds for generically implemented real-time systems.

II. RELATED WORK & PROBLEM STATEMENT

Colin and Puaut [8] were among the first to pinpoint the
fundamental problems of OS WCET analysis: meaningful
construction of global control-flow graphs over kernel bound-
aries. They identified indirect function calls, immanent in
the system calls interface, as well as dependencies between
application properties and kernel loop bounds as crucial issues.
Their approach was to modify the system’s source code,
restoring a statically analyzable implementation. Despite these
tedious and non-generalizable measures, a high degree of
overestimation (avg. 86 %) remained. Later Sandell et al. [9]
reported a large number of “uninteresting” kernel paths (e.g.,
error handling) in their analysis. Furthermore, they observed
the mediocre performance of the data-flow analysis within the
OS kernel. They used an annotation language with constant
expressions at assembly level to address the problems, which,
however, involved a high degree of recurring effort with still
unsatisfactory reduction of pessimism.

10

Among others, Schneider [7] determined the dynamic re-
configurability and system-call interface, the tracing of call
graphs, as well as the internal feedback between the RTOS
and the applications as further challenges towards realistic
WCET estimations. He proposed an integrated WCET and
scheduling analysis as a potential solution. In 2009 Lv et
al. compiled a survey [3] on RTOS-analysis attempts, from
which they derived a set of challenges. Like Schneider, they
question the usefulness of single, global WCET estimates for
individual operations but instead suggest a parametric analysis
that captures specific WCETs for each invocation.

Since then, research focused on circumventing the problem
by tailoring the OS to be deterministic again. Undecidable
artifacts (e.g., loop iterations, indirect calls) are eliminated by
application-specific source-code modifications: For example,
in the seL4 kernel [2] preemption points in loops are added to
limit the length of consecutive kernel execution. In our work
on SysWCET [10], we leveraged the scheduling semantics to
eliminate globally infeasible system execution paths by using
a tailored operating system. However, for larger RTOSs (e.g.,
Real-Time Linux) these code-tailoring approaches are not
feasible, due to the high complexity and recurring effort.

Our challenge: Instead of tailoring, we opt for a generic
annotation of the OS implementation and subsequent context-
aware WCET analysis that proves real-time capabilities specif-
ically for a given application setting. We identified three
practical symptoms on the fundamental problem of context-
sensitive control flows: (1) Control-flow reconstruction issues,
(2) paths that are either unanalyzable or become infeasible in
certain contexts, and (3) overly pessimistic bounds as context
knowledge cannot be automatically inferred. The resulting
challenge is therefore to provide a unified way of formulating,
passing, and evaluating state- and context-sensitive flow facts
in a system-wide WCET analysis, especially when analysing
OS operations. As assembly-level annotations [2], [9] are not
an option due to their poor reusability and manageability, this
requires parametric annotations at the source-code level.

III. APPROACH

We tackle our challenge by SWAN, an approach to enable
System-wide WCET Analyses. Figure 1 illustrates its funda-
mental concept: the core (middle) is PLATINA, a parametric
annotation language expressing context-sensitive information
on the source-code level. The annotations are associated with
system facts (top) that hold context-dependent information.
Finally, to achieve a context-aware WCET analysis (bottom),
SWAN provides a semantic-preserving transformation from
code to assembly level. We detail those steps in the following.

Our goal with PLATINA is to bridge the immanent semantic
gap between application and kernel analysis by propagating
context-dependent information (system facts) to the low-level
WCET analysis in an automated fashion. Hence, we provide
parametric (i.e., context-dependent) annotations to address said
three challenging symptoms that so far prevent tighter bounds
on generic OS operations: (1) Annotation of indirect function
calls to aid the control-flow reconstruction. This is a key

...

�
context-aware

WCET analysis

ü

NUM
TASKSX >= 10&&Y == 42

PLATINA:

parametric

annotations

NUM
TASKS:21

X:1337Y:
42

NUM
TASKS:21

X:1337Y:
42

systemfacts

s1

s3

s2

s4 s5

Fig. 1. Information propagation within SWAN: semantic system facts are
gathered from a semantic model. Parametric annotations use these pieces of
information to express the semantics of context-sensitive execution flow at the
source code level. After lowering to the assembly-code level, the static WCET
analysis leverages this information to exclude infeasible execution flows.

enabler for the subsequent propagation of context-dependent
flow facts. (2) State-dependent annotation of branches in con-
ditional executions to eliminate paths that become infeasible
only in certain contexts. (3) Context-sensitive annotations to
bound computations by application and configuration knowl-
edge. These building blocks form an expressive annotation
language that allows associating the semantics of individual
system facts with the actual execution flow. To reflect the com-
plexity of control flows within the OS, PLATINA’s annotation
language allows the programmer to combine multiple system
facts and even reuse expressions by defining custom facts or
functions. Furthermore, to foster long-term maintainability of
annotations, we decided to integrate them at the annotated
program point within the source code (e.g., C++ program).

The system-facts layer parametrizes and instantiates
PLATINA annotations. Therefore, the layer provides and stores
static and application-specific configuration knowledge as well
as context-dependent information, which we call system facts:
the atomic entities on which the annotation language operates.
Higher-level analysis, such as our SysWCET [10] approach to
incorporate scheduling semantics, also engage at this level to
further derive and enrich the model with further system facts.

Finally, the annotation expressions are evaluated over a
given context of system-fact values within our context-aware
WCET analysis, which is based on and extends the PLATIN
toolkit [11]. While boosting (re-)usability, our earlier decision
to keep the annotations at source-code level poses the question
of how they can be propagated soundly to the assembly-code
level of the WCET analysis. Here, we rely on optimization-

11

aware compilation [12] to transform context-specific flow
information into the machine-code–level control-flow graph.
Consequently, our lowering preserves the annotation seman-
tics, which ultimately allows us to infer specific facts on the
execution flow from the contexts of system calls. Examples
include loop bounds that are specific to the number of runnable
tasks or paths that are only infeasible in the given context.
That way, we obtain context-sensitive and thus more accurate
bounds for OS overheads, which proofs that the OS is real-
time capable in the given setting. Our lowering, while based
on an optimization-aware compilation, enables parametrization
without recompilation: the same binary can be evaluated for
arbitrary system facts and in multiple contexts, which retains
scalability and usability even for large implementations.

In summary, SWAN provides sound propagation of high-
level, semantic, context-sensitive information throughout the
compilation and analysis processes down to the level of the
static WCET analysis. The parametric annotation mechanism
allows obtaining tailored, context-aware timing bounds even
for generic OS kernels. Thus, SWAN proves their real-time
capability in a specific context with potentially higher analysis
accuracy compared to traditional decoupled WCET analysis.

IV. PRELIMINARY RESULTS

To demonstrate the feasibility of SWAN, we conducted a
case study on FreeRTOS and relevant parts of the Linux ker-
nel (i.e., scheduler). In both cases, traditional WCET analysis
does not obtain realistic bounds; partly it even fails in the
reconstruction of the control-flow graph. This observation,
first of all, substantiates the need for an integrated, context-
sensitive approach to WCET analysis. Our first results with
SWAN are promising, and we were already able to annotate and
analyze various intricate parts of both settings. As quantitative
results depend on the given application scenario, we graphed
the impact of our approach on the example of FreeRTOS’s
vSuspendTask system call in Figure 2: Whenever a task is
suspended, a reschedule is triggered, entailing the selection
of the next runnable task. Here, FreeRTOS relies on a set of
queues (one per priority level), which are probed with decreas-
ing priority. For our experiments, we configured FreeRTOS
for the ARM Cortex-M4 platform and a total of 42 priority
levels. Without our extensions, PLATIN computed (supported
by constant annotations) a static upper bound of 6485 cycles
for the worst case, which assumes no runnable task in any of
the queues and therefore requires 42 probing steps. However,
as there is a linear relationship between the number of probing
steps and the system call’s WCET, this bound is too pes-
simistic in most cases: we observed divergence of over 178%.
With SWAN, we were able to accurately express this context
dependency by combining the number of priority levels and the
priority of the next task. The former is a system-configuration
property; the latter is a context-dependent property (e.g.,
available from our state-transition graph [10]). Consequently,
our bounds correctly reflect the maximum number of runnable
tasks for any given state and context; thus ultimately relieving
OS overheads from unnecessary pessimism.

0 10 20 30 40

Queues to probe

3000

4000

5000

6000

W
C

E
T

[c
yc

le
s]

static upper bound

SWAN’s
context-sensitive bound

Fig. 2. Runtime of the vTaskSuspend system call in relation to the number
of task queues (total set of 42) that are probed until a runnable task is found.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented SWAN, our ongoing effort on
context-sensitive WCET analysis of RTOSs. Its key element is
PLATINA, a parametric annotation language to express depen-
dencies between a system’s control-flow and application states
generically. Combined with system facts and an optimization-
aware compiler and timing analysis, we can both prove real-
time capabilities in a given context as well as eliminate overly
pessimistic constant bounds on RTOS overheads.

We currently finish our prototype and case study of
FreeRTOS and Linux. Beyond this proof of concept, we
consider the sheer size of, for example, Real-Time Linux as
another fundamental challenge. Thus, our next steps are de-
voted to improving traceability of system facts and annotations
as well as the overall scalability and usability. In the future, we
see great promise for the integration of high-level application
and RTOS semantics to further reduce analysis pessimism.

REFERENCES
[1] AbsInt., “aiT worst-case execution time analyzers,” absint.com/ait.
[2] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and

G. Heiser, “Timing analysis of a protected operating system kernel,”
in Proc. of RTSS ’11, 2011.

[3] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A survey
of WCET analysis of real-time operating systems,” in Proc. of ICESS
’09, 2009.

[4] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A testbed for empirically comparing real-time
multiprocessor schedulers,” in Proc. of RTSS ’06, 2006.

[5] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, UNC, 2011.

[6] AUTOSAR, “AUTOSAR the next generation – the adaptive platform,”
autosar.org/fileadmin/files/presentations/EUROFORUM Elektronik-
Systeme im Automobile 2016 - FUERST Simon.pdf, 2016.

[7] J. Schneider, “Why you can’t analyze RTOSs without considering
applications and vice versa,” in Proc. of WCET ’02, 2002.

[8] A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Proc. of ECRTS ’01, 2001.

[9] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static timing
analysis of real-time operating system code,” in Leveraging Applications
of Formal Methods, ser. Lecture Notes in Comp. Science, 2004.

[10] C. Dietrich, P. Wägemann, P. Ulbrich, and D. Lohmann, “SysWCET:
Whole-System Response-Time Analysis for Fixed-Priority Real-Time
Systems,” in Proc. of RTAS’17, 2017.

[11] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in Proc. of SEUS ’13, 2013.

[12] B. Huber, D. Prokesch, and P. Puschner, “Combined WCET Analysis
of Bitcode and Machine Code Using Control-flow Relation Graphs,” in
Proc. of LCTES ’13, 2013.

12

FF-DBF-WIN: On the Forced-Forward Demand-Bound Function Analysis for
Wireless Industrial Networks

Miguel Gutiérrez-Gaitán and Patrick Meumeu Yomsi
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

Email: {mjggt, pamyo}@isep.ipp.pt

Abstract—Wireless Industrial Networks (WINs) have
brought to the forefront the need for real-time strategies to
ensure network schedulability. The Demand Bound Function
(DBF) has recently been borrowed from the multicore
scheduling theory and adapted to the wireless industrial
domain to compute the network demand. However, a more
precise estimation can be obtained by using alternative
supply/demand analyses. This paper proposes the forced-
forward demand bound function to estimate the network
demand and better determine the schedulability of WINs.

1. Application domain

Wireless Industrial Networks (WINs) have become
one of the enabling technologies of Industry 4.0.
Advantages such as flexibility, easy deployment and
low cost devices have led to its gradual incorporation
into smart factories, intelligent manufacturing systems,
among other industrial contexts. Nevertheless, from a
communication and network viewpoint, WINs still pose
significant technical challenges compared to traditional
wireless sensor networks (WSNs). WirelessHART,
ISA100.11a, WIA-PA and IEEE 802.15.4e are a few
examples of standards developed during the last two
decades to specifically address some of these industrial
requirements. Here, techniques such as interference
minimization, redundancy, frequency hopping and power
efficiency are combined together with recommendations
in the standards to satisfy reliability and real-time
requirements. Along the same line, with the advent of
recent Cyber-Physical Systems and Internet of Things,
protocols such as 6LowPAN (IPv6 over Low-Power
Wireless Personal Area Networks), RPL (Routing
Protocol for Low-Power and Lossy Networks), CoAP
(Constrained Application Protocol) and 6TiSCH (IP over
the TSCH mode of IEEE 802.15.4e) [1] have focused
their standardization efforts on aspects such as the
integration of smart devices into the Internet.

Despite all the attempts so far and the entire body
of knowledge available in the literature (see [1] for
a comprehensive survey) to address common wireless
industrial requirements, important hurdles such as real-
time schedulability analysis, i.e., the ability of each flow
to meet all its timing requirements, have received very
little attention in the context of WINs.

2. Motivation

Willig et al. [2] recognize both reliability and timing
guarantees as two of the most desirable characteristics

of WINs. Because wireless channels are usually prone to
transmission errors, a cornerstone on the way to guarantee
these features for such a system is the schedulability of the
network flows. To this end purpose, channel contention
and transmission conflicts are the two common delays
that affect the end-to-end transmission of each network
flow and thus its schedulability. Recently, Xia et. al [3]
have studied these two components and factored the
contribution of each in the end-to-end transmission delay
of each flow by borrowing analysis techniques from
the multicore scheduling theory. Specifically, the authors
focused on the relationship between the network supply
and demand of the flows in any time interval. However,
the proposed analysis was based on the “Demand
Bound Function” (DBF) [4] concept to determine the
schedulability of the flow set, which does not consider
all flows that can potentially contribute to the network
demand, unfortunately.

In the literature on multicore scheduling theory, the
forced-forward demand bound function (FF-DBF) [5]
offers a tighter alternative to estimate the workload
demand of a system as it includes potential contributions
that are left aside by DBF.

3. Problem statement

We consider the model of execution proposed in [3]
where a wireless industrial network is represented as
a graph G = (V,E,m). Here, V denotes the set of
network devices (or nodes), E represents the set of edges
between the nodes and m is the number of channels. For
implementation purpose, we assume that a number x ≥ 2
of nodes can communicate if they are not more than d
meters apart in an area A such that the following equation
holds true:

x

A
=

2π

d2
√

27
(1)

Given this setting, we consider a set of n network
flows F

def
= {F1, F2, . . . , Fn} to be transmitted from

their respective source to their respective destination by
following an Earliest Deadline First (EDF) scheduling
algorithm [6]. Each flow Fi, with i ∈ [1, n], is modeled
by using a periodic end-to-end communication scheme
between its source and its destination through a 4-tuple
〈Ci, Di, Ti, φi〉, where Ci is the number of hops between
source and destination; Di is the relative deadline; Ti is
the period; and φi is the routing path of the flow. These
parameters are given with the interpretation that: each
flow releases a potentially infinite number of instances

13

(or jobs). The kth job (with k ≥ 1) of flow Fi is
denoted as Fi,k and is released at time ri,k such that
ri,k+1 − ri,k

def
= Ti. Job Fi,k has to be completely

transmitted to its destination node by its absolute deadline,
i.e., di,k

def
= ri,k +Di. We assume that Di ≤ Ti, i.e., only

a single job of flow Fi is being/can be transmitted at any
time instant. The number of hops between the source and
the destination of flow Fi, denoted as Ci, represents its
transmission time when it does not suffer any external
interference whatsoever from the other flows. The last
parameter, φi, represents the actual route of all jobs issued
from flow Fi. Figure 1 depicts an example of a WIN
with two flows F1 and F2 together with their associated
parameters according to this model. In this figure, flow F1

is transmitted from node V1 to V9 via nodes V4, V6 and
V8; and flow F2 is transmitted from node V2 to V7 via
nodes V3, V4, V5 and V6. Note that there are transmission
conflicts at nodes V4 and V6.

Figure 1. An example of a wireless industrial network.

The objective is to provide an accurate network
supply/demand analysis by using the forced-forward
demand bound function, in order to guarantee the
schedulability of all the flows in the system. A simulation
experiment will be carried out to compare the performance
for both the DBF and FF-DBF-based analyses. Finally, a
rigorous per flow analysis will be conducted and the gain
in terms of accuracy of the analysis will be evaluated.

4. Observations and preliminary results

As mentioned in Section 2, channel contention
and transmission conflicts are the two common delays
affecting the end-to-end transmission time of network
flows in WINs.

1) Channel contention: refers to the delay
produced by a high priority job occupying all
channels at a time instant.

2) Transmission conflict: refers to a job
transmission delayed by the transmission of
a higher priority job.

Xia et al. [3] factored these two delays in their proposed
supply/demand bound analysis method.
. About Point 1), the authors assume that the flows are
executed on a multi-processor platform and each channel
of the WIN is mapped as one processor. They bound the

supply bound function (sbf)1 of an industrial network as
follows.

sbf(0) = 0 ∧ ∀`, k ≥ 0 : sbf(` + k)− sbf(`) ≤ Ch×k (2)

where Ch is the number of channels in the network
and they derive the network demand caused by channel
contention in any time interval of length ` as

DBF(`)Ch =
1

m

n∑

i=1

max

{(⌊
`−Di

Ti

⌋
+ 1

)
· Ci, 0

}
(3)

. About Point 2), the authors provided an estimation of
the network demand caused by the transmission conflicts
under the EDF scheduling algorithm by tuning the result
proposed by Saifullah et al. in [7]. Here, the transmission
of two flows are in conflict when their paths overlap, i.e., if
we consider two flows Fi and Fj such that Fi has a higher
priority than Fj , then at a given node, say Vx, the progress
of the jobs generated from Fi cannot be delayed by jobs
generated from Fj , but jobs generated from Fj may be
delayed by jobs generated from Fi at node Vx and at all
subsequent nodes shared by the transmission paths of Fi
and Fj . Based on this observation, Xia et al. [3] estimated
the network demand caused by the transmission conflicts
as follows

n∑

i,j=1

(
∆(ij) max

{⌈ `

Ti

⌉
,
⌈ `

Tj

⌉})
(4)

In Equation 4, ∆(ij)
def
=

∑δ(ij)
k=1 Lenk(ij) −∑δ′(ij)

k′=1 (Lenk′(ij)−3). Here, Lenk(ij) denotes the length
of the kth path overlap and δ(ij) is the number of path
overlaps; and Lenk′(ij) and δ′(ij) refer to the delay
caused by path overlaps with length as least 4. Finally, Xia
et al. computed an upper bound on the network demand
in any time interval of length ` by summing Equations 3
and 4. They concluded on the schedulability of the flow
set F by checking if Equation 5 is satisfied.

∑

Fi∈F

DBF(Fi, `) ≤ sbf(`), ∀` ≥ 0 (5)

Since Equation 3 is using the DBF function to estimate
the network demand, the contributions of some jobs
arriving and/or having deadlines outside the interval of
interest are not taken into account, unfortunately. This
would lead to an underestimation of the network demand,
which in turn may result in a less accurate supply/demand
bound analysis. In order to circumvent this issue, we
propose to borrow the FF-DBF function2 from the multi-
core scheduling theory, instead. This function is defined
for a single flow Fi as follows.

FF-DBF(Fi, `)
def
= qi·Ci+

Ci if γi ≥ Di

Ci − (Di − γi) if Di > γi ≥ Di − Ci

0 otherwise
(6)

In Equation 6, qi
def
=

⌊
`
Ti

⌋
and γi = ` mod Ti. Figure 2

illustrates a comparison between the demand evaluated
by using FF-DBF and the demand evaluated by using the
classical DBF in an interval of length ` for an arbitrary
task (or flow).

1. The supply bound function - sbf(`) - of a network is the minimal
transmission capacity provided within a time interval of length `.

2. The FF-DBF refines the DBF and allows us to include the potential
missing contributions into the cumulative computational demand.

14

Figure 2. Pictorial representation of FF-DBF vs. DBF.

Given the model defined in Section 3, we adapt the FF-
DBF function to the wireless industrial networks domain
by revisiting Equations 3 and 4 as follows.
. About Equation 3: We recall that this equation provides
us with the network demand caused by channel contention
in any time interval of length `. By using the FF-DBF
function instead to this end, that estimation is given by:

FF-DBF(`)Ch =
1

m

n∑

i=1

FF-DBF(Fi, `) (7)

. About Equation 4: This equation allowed us to estimate
the network demand caused by the transmission conflicts.
Since these conflicts are agnostic to the network topology,
there is no need to alterate this contribution, therefore this
factor remains the same as previously.

As a result of these two observations, a more precise
upper-bound of network demand is obtained by using the
FF-DBF(`) function defined as follows:

FF-DBF-WIN. A forced-forward demand bound function
FF-DBF(`) of a given WIN in any time interval of length `
is defined by summing Equations 4 and 7. Formally,

FF-DBF(`) =
1

m

n∑

i=1

FF-DBF(Fi, `)+

n∑

i,j=1

∆(ij) max
{⌈ `

Ti

⌉
,
⌈ `

Tj

⌉} (8)

A pseudo-code for the computation of this function is
presented in Algorithm 1.

5. Envisioned Solution and Conclusion

In this ongoing research, we proposed the forced-
forward demand bound function (FF-DBF) as a refinement
of the demand bound function (DBF) to charactize the
network demand in wireless industrial networks. We
believe that Equation 8 is more accurate for the estimation
of an upper bound on the network demand as it allows us
to take into account potential missing contributions, left
aside by the classical DBF function, into the cumulative
computational demand in any time interval (see Figure 2).
Also, we are confident that it will outperform the analysis
proposed by Xia et al. [3] for the schedulability of
periodic flows in WINs and will lead us to a more

Algorithm 1 FF-DBF Algorithm for WINs
Input: m;Fi(Ci, Di, Ti, øi); `; ∆(ij);n;
Output: FF-DBF(`)

Initialisation : FF-DBF(`) ← 0; qi ← 0; γi ← 0;
1: for i = 1 to n do
2: qi ←

⌊
`
Ti

⌋
;

3: γi ← ` mod Ti;
4: if (γi ≥ Di) then
5: FF-DBF(`) += qi × Ci + Ci;
6: else
7: if (γi ≥ Di − Ci) then
8: FF-DBF(`) += qi × Ci + Ci − (Di − γi);
9: else

10: FF-DBF(`) += qi × Ci;
11: end if;
12: end if
13: end for
14: FF-DBF(`)← 1

m × FF-DBF(`);
15: for i = 1 to n do
16: aux← max

{⌈
`
Ti

⌉
,
⌈
`
Tj

⌉}
;

17: FF-DBF(`) += ∆(ij)× aux;
18: end for
19: return FF-DBF(`)

accurate supply/demand bound analysis. Now we seek
to: (i) formally demonstrate this claim; (ii) conduct
simulation experiments to compare the performances for
both DBF and FF-DBF-based analyses and (iii) thus
validate the efficiency of the proposed approach. Finally,
we will also derive a rigorous per flow analysis and
evaluate the gain in terms of computational complexity.

Acknowledgments

This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and co-financed by
ERDF (European Regional Development Fund) under the Portugal2020
Program, within the CISTER Research Unit (CEC/04234).

References

[1] D. V. Queiroz, M. S. Alencar, R. D. Gomes, I. E. Fonseca, and
C. Benavente-Peces, “Survey and systematic mapping of industrial
wireless sensor networks,” Journal of Network and Computer
Applications, 2017.

[2] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in
industrial networks,” Proceedings of the IEEE, vol. 93, no. 6, pp.
1130–1151, 2005.

[3] C. Xia, X. Jin, and P. Zeng, “Resource analysis for wireless
industrial networks,” in Mobile Ad-Hoc and Sensor Networks (MSN),
2016 12th International Conference on. IEEE, 2016, pp. 424–428.

[4] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor,” Real-time systems, vol. 2, no. 4, pp.
301–324, 1990.

[5] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller,
“Improved multiprocessor global schedulability analysis,” Real-Time
Systems, vol. 46, no. 1, pp. 3–24, 2010.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of the
ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[7] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end communication
delay analysis in industrial wireless networks,” IEEE Transactions
on Computers, vol. 64, no. 5, pp. 1361–1374, 2015.

15

On Multi-Level Preemption in Ethernet
Mubarak Adetunji Ojewale, Patrick Meumeu Yomsi and Geoffrey Nelissen

CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal
Email: {mkaoe, pamyo, grrpn}@isep.ipp.pt

Abstract—Ethernet is increasingly being considered as the
solution to high bandwidth requirements in the next generation of
timing critical applications that make their way in cars, planes
or smart factories to mention a few examples. Until recently,
ethernet frames used to be transmitted exclusively in a non-
preemptive manner. That is, once a frame starts transmitting on
a switch output port, its transmission cannot be interrupted by
any other frame until completion. This constraint may cause
time critical frames to be blocked for long periods of time
because of the transmission of non-critical frames. The IEEE
802.3br standard addressed this issue by introducing a one-level
ethernet frame preemption paradigm. In this approach, frames
transmitted through a switch output port are classified as express
frames or preemptable frames, depending on their priority levels.
Express frames can preempt preemptable frames and two frames
belonging to the same class cannot preempt each other. While this
partially solves the problem for express frames, all preemptable
frames can still suffer blocking irrespective of their priority level.
In this work, we investigate the feasibility and advantages of
multi-level preemptions in time-sensitive ethernet networks.

I. INTRODUCTION

Most systems today are made of several embedded devices
interconnected through networks. Cars, planes, train and facto-
ries for instance contain tens to hundreds of sensors, actuators
and computers that must communicate with timing guarantees.
Real-time applications require responsiveness i.e., timely and
correct reaction to events, which largely depends on the ability
of data to move in a predictable manner on the network. Eth-
ernet is the emerging communication technology in industrial
and automotive domains. Its relatively cheaper price and its
high bandwidth capacity make it the ideal replacement for
previous communication infrastructures generally adopted in
these domains. However, the legacy ethernet standard was
mainly targeting non real-time applications and desirable capa-
bilities like preemption, global time synchronisation across the
network, frame duplication and re-transmission were initially
missing. In order to provide system designers with these
desirable features, several modifications have been made to
the standards over the years. The IEEE 802.1p task group,
for example, introduced a mechanism to specify a Class of
Service (CoS) for ethernet frames in order to expedite the
transmission of high priority frames [1]. The CoS of a frame
signifies its priority and the frames are transmitted according
to their CoS, highest priority first. Other features like time-
triggered transmission, global clock synchronisation, credit
based shaping, among others, have also been added to the
ethernet to make it more suitable for real-time applications [2].

One modification made to the ethernet to support real-time
communication is reported in the IEEE 802.3br and 802.1Qbu

Frame
Arrivals

Transmission
Frame Arrivals

Completions

High priority frames

Lower priority frame

Preemption Overheads

Fig. 1: Illustration of frame preemption.

standards, which specify a frame preemption protocol for
ethernet networks. Preemption implies that a frame that has
already started its transmission on a switch output can be
suspended in order for a more “urgent frame” to be transmitted
through the same port. The transmission of the preempted
frame is resumed only after the urgent frame has been fully
transmitted. Preemption allows a high priority frame with
stringent timing requirements to be transmitted more promptly,
but this is achieved at the cost of some overheads. Fig. 1
illustrates a scenario where a high priority frame is transmitted
by preempting a low-priority one. Upon the occurrence of each
preemption, the standards specify some additional information
to be added to the preempted frames so as to notify the
network devices about the preemption, thereby impacting the
transmission link utilization.

Before the specification of the IEEE802.3br standard, eth-
ernet frames used to be transmitted in a non-preemptive
manner [3]. Any low-priority frame could block any high
priority frame for long periods of time depending on the low-
priority frame’s size. It is to circumvent this limitation that
frame preemption was defined in the IEEE 802.1Qbu [4]. This
standard specifies one-level preemption for ethernet frames
since only two MAC service interfaces are supported: a
preemptable MAC (pMAC) interface and an express MAC
(eMAC) interface. Frames assigned to the eMAC service
interface are referred to as express frames and those assigned
to the pMAC interface as preemptable frames.

A critical look at the one-level preemption, however, raises
some concerns. With the current specification, only express
frames are allowed to preempt preemptable frames and frames
of the same class cannot preempt each other [2]. In typical
real-time applications, there are traffic classes that are not
classified as express but nevertheless have timing constraints
and should not be blocked for long periods by lower pri-
ority frames. To illustrate this, consider a medium priority
frame (black frame in Fig. 2). With one-level preemption, the

16

Frame
Arrivals

Transmission

Express frames

Preemptable Frames with
timing constraints
Preemptable Frames with no
timing constraints
Preemption overhead

Fig. 2: Frame transmission under 1-level preemption.

Fig. 3: The MAC merge sublayer managing service interfaces.

medium priority frame, which may be important to the smooth
operation of a real-time application, can be blocked by a large
lower priority frame (green frame) if both share the pMAC
interface. This is because a preempted frame must complete
its transmission before any other non-express frame can be
transmitted. Consequently, this limitation has a negative effect
on medium priority frames that are not uncommon in real-
time applications. Note that if the medium priority frame was
instead classified as express, then it could block more urgent
frames, thereby defeating the whole purpose of introducing
express frames in the first place.

Most work in the literature on this topic have been studying
the effect of frame preemption on worst-case end-to-end
transmission delays. The authors in [5] and [3], for example,
showed that frame preemption reduces the transmission delays
of express traffic significantly, but it has adverse effect on
preemptable traffic. Thiele and Ernst [3] presented a Compo-
sitional Based Analysis (CPA) to provide guarantee on the
end-to-end transmission delay of ethernet traffic with one-
level preemption under Standard Ethernet and Time Sensitive
Networking (TSN). To the best of our knowledge, no work
has investigated the feasibility of multiple preemption levels
on ethernet networks, especially for the scheduled traffic that
are non-express, but with stringent timing constraints. In this
work, we consider three levels of priorities and 2 levels of pre-
emption to investigate the feasibility of multi-level preemption
in ethernet.

II. PROBLEM STATEMENT

We consider a network traffic consisting of n streams
s1, s2, . . . , sn partitioned into traffic classes: express traffic,
medium priority preemptable traffic (mpFrames) and Best Ef-
fort preemptable traffic (bpFrames). Stream si, with i ∈ [1, n],
consists of a potentially infinite number of frames sji (j ≥ 1)
with an inter-arrival time of at least Ti units between two
consecutive frames. Frame sji is characterised by its arrival
time aji and its size cji . Express traffic frames have very strict
timing requirements. Preemptable traffic frames are divided

Preamble

SFD

MAC DA

MAC SA

Ethertype

Data

FCS

≥64

Preamble

SMD-E

MAC DA

MAC SA

Ethertype

Data

FCS

7
1
6
6
2

4

Preamble

SMD-Sx

MAC DA

MAC SA

Ethertype

Data

FCS

Preamble

SMD-Sx

MAC DA

MAC SA

Ethertype

Data

MCRC

7
1
6
6
2

4

Preamble

SMD-Cx

Frag Count

Data

MCRC

Preamble

SMD-Cx

Frag Count

Data

FCS

6
1
1

4

6
1
1

4

(b) An Express
Frame Format

(c) A Non-fragmented
Preemptable Frame Format(a) A MAC

Frame Format

Fragmented
Preemptable

Frame Format

(d) First
Fragment

(e) Intermediate
Fragment

(f) Last
Fragment

SFD: Source Frame delimiter
SMD: Start mPacket Delimiter
SMD-E: Express mPacket
SMD-Sx: Start Fragment
SMD-Cx: Continue Fragment
MCRC: CRC of non-final fragment
FCS: CRC of final fragment
MAC SA: MAC Source Address
MAC DA: MAC Destination Address
Frag Count: Fragment Count

7
1
6
6
2

4

7
1
6
6
2

4

Fig. 4: Ethernet frame formats as specified in IEEE 802.3
Standards. Numbers represent sizes of each field (in bytes)

into two classes: mpFrames with strict timing constraints
yet not as stringent as those of express traffic frames and
the bpframes with no timing constaints at all. We assume
that each stream is assigned a unique fixed priority and all
frames generated from this stream inherit its priority. We also
assume that any express frame has a higher priority than all
preemptable frames and the following constraints are enforced:

. Any express frame can preempt all preemptable frames,

. Any mpFrame has higher priority than all bpFrames and
therefore, can preempt these,

. Frames from the same class cannot preempt each other.
With the above assumptions and contraints, we investigate

the feasibility of supporting multi-level preemption to limit the
blocking of mpFrames by bpFrames.

III. PREEMPTION IN ETHERNET NETWORKS

Preemption occurs at the MAC merge sublayer, which is be-
tween the physical and the MAC layers (See Fig. 3). Frames at
this sublayer are called mFrames. The sublayer may preempt a
preemptable mFrame currently being transmitted and may also
prevent it from starting its transmission citeStandard802.3br-
2016. Before each mFrame transmission, the sublayer verifies
if the next switch/node supports preemption by performing a
verification operation (see citeStandard802.3br-2016, page 42
for details). Preemption capability is enabled only after the
verification operation confirms that it is supported. When this
is the case, additional information are added to the mFrame
headers, describing its preemption characteristics. In addition,
it is important to preserve the ethernet frame format when
mFrames are preempted. IEEE 802.3br ensures this by defin-
ing mFrame formats in a preemption enabled environment.
Fig. 4 shows that express frames (see Fig. 4b) differ from
normal MAC frames (see Fig. 4a) by only 1 octet, referred
to as “Start Frame Delimiter” (SFD) by replacing the MAC
frame SFD with “Start Mframe Delimiter-Express” (SMD-E)
in the frame format. In practice, the SFD and SMD-E have
the same value. Similarly, a preemptable frame that is not
preempted (see Fig. 4c) differs from a normal MAC frame
only in that the SFD is replaced with “Start MFrame Delimiter
Start Fragment” (SMD-Sx). When a frame is preempted, the

17

first fragment of the frame differs from a non preempted
preemptable frame only in that the error checking code (FCS)
of the fragment is replaced with a newly generated mFrame
error checking code (mCRC) by the MAC merge sublayer
(see Fig. 4d). All other fragment headers only contain a
preamble, “Start Mframe Delimiter for Continuation fragment”
(SMD-Cx) and frag count (see Fig. 4e) to track subsequent
fragments. The last fragment ends with the FCS of the original
preempted frame (see Fig. 4f).

At the receiving node, a Medium Independed Interface
(xMII) inspects the SMD for each frame upon arrival. The
value of the SMD indicates whether the received frame is ex-
press or preemptable [1]. Express frames (containing SMD-E)
are processed by an Express Filter and preemptable frames by
a “Receive processing” construct. Receive processing ensures
that fragments of a preempted frame are received completely
and in correct order using the mCRC and the frag count. The
mCRC is computed such that all fragments of a preempted
frame end with the same mCRC, except the last one which
ends with the original frame FCS. Frag count is used to
monitor the correct order of frame arrivals and to detect
missing frames. A mismatch in the mCRC after a sequence of
arrival of fragments indicates the end of the reception of the
preempted frame, i.e., the last fragment has been received and
the frame transmission is complete.

IV. FEASIBILITY OF MULTI-LEVEL PREEMPTION AND
RECOMMENDATIONS

If an mFrame containing SMD-Sx (signalling the start of
the transmission of a new preemptable frame) arrives at a
node and Receive processing has not completed the reception
of a previous preempted frame, Receive processing ensures
that the MAC detects a “FrameCheckError” in the partially
received frame (see [1], page 44). This mechanism implies
that the node can detect the start of another preemptable
frame, which is important to support multi-level preemption.
Although the start of another preemptable frame would be
flagged as an error, the IEEE 802.3br standard states that
other techniques may be employed to respond to an incomplete
frame transmission as long as the MAC behaves as though a
FrameCheckError occurred. This submission opens the door
to multi-level preemption specification, while still conforming
to the standard. To this end, we recommend the specification
of a mechanism to ensure the transmission of a frame in a
higher preemption class without jeopardizing the integrity of
the preempted frame. This operation should be performed such
that the receiver node/switch correctly resumes the reception
of the preempted frame later on.

The standards do not describe any mechanism to reassemble
more than one frame in a buffer. We recommend the specifica-
tion of such a mechanism to enable multi-level preemption as
the buffer must be able to correctly reassemble and transmit
a second frame, while already containing fragments of a first
frame. In addition, the xMII that separates express frames from
preemptable frames can be configured to distinguish between
different priority levels for preemptable frames. As such, no

additional frame filtering mechanism would be required for
multi-level preemption.

We believe that the current preemptable frames format in
the standards [6] is sufficient to handle multi-level preemption.
To this end, we recommend that new values be defined for the
one octet SMD contained in the header (See Fig. 4) to support
more preemption levels. The standard currently defines eleven
values for this octet. Additional values can be defined to check
the level of preemption supported by the next node and to
indicate the frame preemption levels.

We believe that a switch node supporting multi-level pre-
emption can interoperate with those supporting only one-level
or no preemption at all. With the new recommended SMD
values, the MAC merge sublayer will be able to verify if the
next node supports preemption and if this is the case, how
many levels are supported. If just one level of preemption
is supported, then all preemptable frames are transmitted on a
single pMAC interface and multi-level preemption is disabled.
In this case, all non-express frames are treated as preemptable
frames and will not preempt each other. In the case preemption
is not supported at all, frames are transmitted as already
specified in the IEEE 802.1Q standards.

V. EXPECTED RESULTS AND CONCLUSION

At this stage of this Work-in-Progress, we examined the
feasibility of multi-level preemption in ethernet networks and
provided a set of recommendations. Now, we seek to develop
a formal worst case transmission delay analysis of frames
assuming multi-level preemption and conduct experiments
to demonstrate its effectiveness in time sensitive ethernet
networks. An improvement is expected for medium priority
frames with affordable preemption overhead in terms of buffer
size and SMD definitions.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and co-financed by ERDF (European Regional De-
velopment Fund) under the Portugal2020 Program, within the
CISTER Research Unit (CEC/04234).

REFERENCES

[1] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks,” IEEE Std 802.1Q-2014 (Revision of IEEE Std 802.1Q-
2011), pp. 1–1832, Dec 2014.

[2] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Ultra-low latency (ULL) networks: A
comprehensive survey covering the IEEE TSN standard and related ULL
research,” CoRR, vol. abs/1803.07673, 2018.

[3] D. Thiele and R. Ernst, “Formal worst-case performance analysis of time-
sensitive ethernet with frame preemption,” in 2016 IEEE 21st ETFA, Sept
2016, pp. 1–9.

[4] “IEEE approved draft standard for local and metropolitan area networks-
media access control (MAC) bridges and virtual bridged local area
networks amendment: Frame preemption.” P802.1Qbu/D3.1, September
2015, pp. 1–50, Jan 2015.

[5] W. K. Jia, G. H. Liu, and Y. C. Chen, “Performance evaluation of ieee
802.1qbu: Experimental and simulation results,” in 38th Annual IEEE
Conference on Local Computer Networks, Oct 2013, pp. 659–662.

[6] “IEEE standard for ethernet amendment 5: Specification and management
parameters for interspersing express traffic,” IEEE Std 802.3br-2016
(Amendment to IEEE Std 802.3-2015), pp. 1–58, Oct 2016.

18

Task Mapping in a Regularity-based Resource
Partitioning Hierarchical Real-Time System

Guangli Dai∗ Pavan Kumar Paluri∗ Albert M. K. Cheng
Department of Computer Science, University of Houston, Houston, TX 77004, USA

email: {gdai, pvpaluri, amcheng}@uh.edu

Abstract—Virtualization via a Hierarchical Real-Time System
(HiRTS) is gaining popularity in recent years. This paper
introduces a Centralized Task-Partition Architecture to connect
the two levels of an HiRTS whose resource level adopts the
Regularity-based Resource Partition (RRP) Model. Based on this
architecture, we propose two models. The Regular-Partition Peri-
odic Task Mapping (RPM) Model aims at mapping periodic tasks
to regular partitions online. The Regular-Partition Compositional
Task Mapping (RCM), on the contrary, considers the mapping
of both periodic and sporadic tasks to regular partitions. As the
first attempt to map tasks to partitions based on RRP model,
this paper presents how RPM and RCM are modeled with ideas
from online Multiple Knapsack Problem (MKP). Thus, this paper
completes the full picture of a RRP-based HiRTS.

I. INTRODUCTION

Virtualization is being increasingly applied in embedded
systems as it can enhance the reliability [1], improve flexibility
[2] and handle thermal exposures of MultiProcessor System-
on-Chip (MPSoC) at the architecture level [3]. In a two-
level Hierarchical Real Time System (HiRTS) [4], there are
two levels: the resource level and the task level. This paper
proposes an architecture and two models for connecting the
resource and task levels while maintaining the transparency
between them to enhance the flexibility of the model. This pa-
per adopts Regularity-based Resource Partition (RRP) Model
in the resource level. Since RRP model has been decently
studied these years[5, 6, 7], the specifically designed bridge
between the task and resource levels introduced in this paper,
shall complete the whole picture of the RRP-based HiRTS.

A few models have been proposed for the resource level: the
Periodic Model [8], the Bounded-Delay Model [9], the Explicit
Deadline Periodic (EDP) Model [10] and the Regularity-based
Resource Partition (RRP) Model [5]. Amongst all the afore-
mentioned models, RRP can utilize the resources with less
deviation between the ideal and the actual resource allocation
[7]. Hence, this paper adopts RRP for the resource level.

The RRP Model divides physical resources into different
partitions. As shown in the example in Fig. 1, a Virtual
Machine (VM) may contain multiple partitions, e.g., VM1
contains partitions 1 and 2 [2]. Besides, a task on a certain VM
is mapped only to a partition contained by this VM, e.g., Task
1 and 2 are mapped to Partition 1. Several studies have been

∗The first author and the second author have made equal contributions.†Supported in part by the US National Science Foundation under Award
No. 1219082.

Physical Resources

Partition 2Partition 1 Partition m

VM 1 VM k

.

Task 3Task 2Task 1 Task N. . .

Resource Level:
Resource Partitioning

Task Level:
Task Accommodation

Fig. 1. A two-level resource partitioning framework.

done on the RRP Model, e.g., [5] and [6], which theoretically
introduce how partitions in RRP are defined by the parameters
Availability Factor and Supply Regularity. Better scheduling
algorithms based on RRP are also proposed for single core
[6] and multi-core scenarios [11], which greatly increase the
utilization of the physical resources. Li and Cheng [7] also
prove that uniprocessor scheduling algorithms can be directly
reused for task scheduling on a single partition.

However, as stated before, a virtual machine may contain
several partitions, each with different computational power.
How to schedule tasks on different partitions has received
little attention. This paper proposes a centralized task-partition
architecture connecting the resource level and the task level
based on the RRP Model. Usage of Shared Memory segment
(SM) to map tasks to partitions, also enables transparency be-
tween the two levels by maintaining code level independence.

Based on this architecture, we correlate the model of map-
ping periodic tasks to regular partitions to the model of online
Multiple Knapsack Problem (MKP), which further enables
us to develop the Regular-Partition Periodic Task Mapping
(RPM) Model. Considering that RPM only takes periodic tasks
into count, which is not quite realistic, we further propose the
Regular-Partition Compositional Task Mapping (RCM) Model
to map both sporadic and periodic tasks to regular partitions.

Being the first ever attempt to map a task to a partition based
on RRP Model, this paper borrows certain ideas from different
variants of online MKP [12]. Though the work is still under
progress, We have already proved that a simple strategy Best
Fit can reach a constant competitive ratio of 1

2 for RPM under
certain type of inputs. This paper introduces the architecture

19

in Section II and the two models, together with the evaluation
of them in Section III.

II. CENTRALIZED TASK-PARTITION ARCHITECTURE

The bridge between the resource level and the task level
becomes increasingly vital as there is a pressing need for
partitions in resource level to accommodate the incoming task
requests. In this section, we first introduce how the allocation
of tasks to partitions are done. Then we discuss the method
of implementing the architecture.

A. Task Manager (TM)
TM is a platform where tasks are uploaded and mapped as

shown in Fig. 2. All tasks shall upload their information (Worst
Case Execution times, Arrival times, Relative deadlines and
etc.) in upload() to TM. TM then queues up all the requests
in a large queue(s) and performs mapping (map()) on each
available task request in the queue one by one. Discussion
concerning the size of the queue will be presented in the future
work. The function map() maps the incoming task to a suitable
partition. It also updates the partition information when the
previous task is mapped to a partition so that the current task
request is well aware of the changes at the partition level.
Post mapping, the task requests are dispatched (dispatch())
to their assigned partitions through shared memory segment
model. Hence, after mapping, the task request shall have a
new field appended to the request i.e., Partition ID along with
the existing task information.

How the mapping is performed in map() is discussed in
Section III. Next discuss the efficiency of the mechanism.

B. The advantages of TM
Due to the real-time constraints, tasks are supposed to be

mapped to a certain partition when they arrive. Adopting a
TM reduces the number of communication channels needed
for communication. Besides, since partitions are set when the
system boots, the shared memory between TM and partitions
can also be built in advance and initial information of partitions
can be stored in TM at the very beginning. By doing so,
the time taken to map a task to its assigned partition can
be significantly reduced. Next, we discuss the efficiency of
deploying the shared memory segment.

C. Shared Memory Segment (SM)
The dispatching of task request to the assigned partition post

mapping can thus be implemented either using the concept of
pipes or Shared Memory (SM). However, pipe is limited to the
communication between two processes with the same parent
process. Hence, SM suits the scenarios where processes are
independent from one another better. Also, as the message
packet that has to be sent across is quite large in size, usage
of SM can be beneficial and efficient at the same time. The
dispatch() using SM shall be dealt in detail in the future work.

III. REGULAR-PARTITION TASK MAPPING MODELS

In this section, we consider how to map periodic tasks and
sporadic tasks to a set of regular partitions. To begin with, we
briefly review the RRP Model first.

Task 1 Task n. . .

map()

Partition 1 Partition m. . .

. . .

upload()

dispatch()

Task Manager

Fig. 2. Centralized Task-Partition Architecture .

A. A Brief Review in RRP Model

The RRP Model divides physical resources into different
partitions. Each partition Pi is characterized by the availability
factor αi and the supply regularity ki. αi is the ratio of time
units Pi takes during a hyper period in a physical resource.
Suppose a partition occupies a CPU core, then its availability
factor would be 1. The availability factor is always less than
or equal to 1 [6].

Let Si(t) denote the time units Pi takes before time t. Then
we can define the instant regularity [6] to be Iri(t) = S(t)−
tαi. Accordingly, we can define the supply regularity ki.

ki = dmax Iri(t)−min Iri(t)e (1)

With Equation 1, we can see the supply regularity, which is
an integer no smaller than 1, bounds the deviation between
the ideal and the actual resource allocation. Depending on the
value of ki, Pi can be a regular partition (ki = 1) or an
irregular partition (ki > 1).

Here we present the characteristic that only regular parti-
tions possess, with the following theorem.

Theorem 1: A regular partition Pi can guarantee that it owns
at least one time unit every 1

αi
time units.

Theorem 1 indicates regular partitions can be well utilized
and predicted with merely the availability factors and the
supply regularities. Further details supporting theorem 1 shall
be dealt in detail in future work. In next subsection, we will
show how the characteristics shown in theorem 1 can be
utilized to simplify the mapping problem.

B. Regular-Partition Periodic Task Mapping (RPM)

In this subsection, we consider how to map periodic tasks to
regular partitions. To accomplish the goal, we first show how
to perform the schedulability test for a task set on a partition
with merely partition’s availability factor and supply regularity.

To judge whether mapping a periodic task to a regular
partition is schedulable or not, having knowledge of the
partition’s availability factor and supply regularity is sufficient.
We first define a periodic task set T , element j in which
Tj = (cj , dj , pj , Rj) where cj stands for Worst Case Exe-
cution Time (WCET), dj for the relative deadline, pj for the
period and Rj for arrival time of Tj . No information about Tj
shall be known before it arrives.

20

Theorem 2: A task set T is schedulable on a regular partition
Pi iff

|T |∑

j=1

cj
min{dj , pj}

≤ αi (2)

The Proof of Theorem 2 will be given in the future work. With
Theorem 2, we can reduce the problem of mapping periodic
tasks to regular partitions into an online MKP.

First, we review the definition of an online MKP problem.
Each item is defined by its size, value and arrival time while
each bin is defined by its capacity. The sum of the sizes of
the items placed in a certain bin cannot exceed the capacity
of the bin. When an item is successfully placed, we gain its
value as a reward. The goal is to maximize the values gained
[12].

Here, partition is a bin, whose capacity is its availability
factor while a periodic task Tj is an item with a size of

cj
min{dj ,pj} . As for the value of Tj , we have two different
assumptions. If we assume each task to be equally important
to the system, values obtained on putting any task into a bin
remain the same, i.e., 1. With this assumption, the mapping
problem is thus reduced to the unit case of online MKP [12].
On the other hand, if our primary goal is to maximize the
utilization ratio of physical resources, we set the value of a
task to be the same as its size cj

min{dj ,pj} . Such an assumption
corresponds to the proportional case of online MKP [12].
Besides, in this online mapping problem, without knowledge
of the future, the system will not abandon a task actively unless
there is no space for the task. This resembles the setting of
the Fair Bin variant of online MKP [13].

This is the RPM model derived from online MKP. Algo-
rithms for the two variants of the RPM Model and the analysis
of these algorithms will be presented in the future work.

C. Regular-Partition Compositional Task Mapping

In last subsection, the absence of sporadic tasks in the task
set brings in decent simplification to the model. However,
RPM is not realistic enough as sporadic tasks are important in
real-time systems. In this subsection, we attempt to formulate
a new model Regular-Partition Compositional Task Mapping
(RCM), with both periodic and sporadic tasks considered.

Unlike periodic tasks, sporadic tasks are not that predictable.
Therefore, we regard sporadic tasks as single-instance tasks in
our model since it is not worthy to hold the resources for the
next instance that may not come in the near future. Once an
instance of the sporadic tasks is generated, it will be uploaded
to the task manager and mapped to a partition in run time. This
instance leaves the system when it is done without occupying
any resources further.

Hence, we redefine the compositional task set T so that
both sporadic and periodic tasks can be accommodated into the
model. Task Tj in T is defined by Tj = (cj , dj , pj , Rj , Dj).
Similarly, cj is the WCET and dj is the relative deadline while
pj is the period. Rj is the arrival time and Dj is the leaving
time. To be specific, after Dj , no execution on Tj is needed.
For periodic tasks that do not leave the system, Dj is +∞. For

sporadic tasks, regarded as single-instance tasks, they always
have: dj = pj and Dj = Rj + dj .

Fortunately, the schedulability test shown in Equation 2 is
still valid for the compositional task set. Therefore, model
RCM is exactly the same as model RPM except that task Tj
will leave the system after Dj . RCM problem is more realistic
yet harder to solve as well.

D. Evaluation of RPM and RCM

Closer to the traditional online MKP, RPM is a problem
easier to solve since it does not involve the leaving of tasks.
So far, we already prove that a simple strategy Best Fit can
reach a constant competitive ratio of 1

2 in RPM.
Though RCM is harder to solve, the fact that it shares

most of the features with RPM makes it less challenging.
For instance, the reason why Best Fit performs well is that
it gathers the spare space for the unknown future, which is
also valid and a necessity in solving RCM. Based on these
features, we develop another algorithm considering not only
the capacity but also tasks’ leaving time, while allocating tasks.
More details and contributions will be given in the future work.

REFERENCES
[1] Y. Laarouchi, Y. Deswarte, D. Powell, J. Arlat, and E. De Nadai, “En-

hancing dependability in avionics using virtualization,” in Proceedings of
the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems. ACM, 2009, pp. 13–17.

[2] S. Xi, M. Xu, C. Lu, L. T. Phan, C. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in xen,” in Embedded
Software (EMSOFT), 2014 International Conference on, pp. 1–10.

[3] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty, M. Engel, R. Ernst, H. Härtig, L. Hedrich et al.,
“Design and architectures for dependable embedded systems,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2011
Proceedings of the 9th International Conference on, pp. 69–78.

[4] X. Feng, “Design of real-time virtual resource architecture for large-
scale embedded systems,” Ph.D. dissertation, 2004.

[5] A. K. Mok and X. Alex, “Towards compositionality in real-time re-
source partitioning based on regularity bounds,” in Real-Time Systems
Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE. IEEE, 2001,
pp. 129–138.

[6] Y. Li and A. M. Cheng, “Static approximation algorithms for regularity-
based resource partitioning,” in Real-Time Systems Symposium (RTSS),
2012 IEEE 33rd, pp. 137–148.

[7] Y. Li and A. M. K. Cheng, “Transparent real-time task scheduling on
temporal resource partitions,” IEEE Transactions on Computers, vol. 65,
no. 5, pp. 1646–1655, 2016.

[8] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th
IEEE. IEEE, 2003, pp. 2–13.

[9] A. K. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Real-Time Technology and Applications Symposium, 2001.
Proceedings. Seventh IEEE. IEEE, 2001, pp. 75–84.

[10] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework
using edp resource models,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. IEEE, 2007, pp. 129–138.

[11] Y. Li and A. M. Cheng, “Toward a practical regularity-based model:
The impact of evenly distributed temporal resource partitions,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 4,
p. 111, 2017.

[12] M. Cygan, Ł. Jeż, and J. Sgall, “Online knapsack revisited,” Theory of
Computing Systems, vol. 58, no. 1, pp. 153–190, 2016.

[13] J. Boyar, K. S. Larsen, and M. N. Nielsen, “The accommodating
function: A generalization of the competitive ratio,” SIAM Journal on
Computing, vol. 31, no. 1, pp. 233–258, 2001.

21

Implementing the Regularity-based
Resource Partition Model on RT-Xen

Kevin Bailey∗, Albert Cheng†, Pavan Kumar Paluri‡, Guangli Dai§ and Carlos Rincon¶
Real-Time Systems Laboratory

Department of Computer Science, University of Houston in Houston, TX, USA
{krbailey∗, amcheng†, pvpaluri‡, gdai§, carincon¶}@uh.edu

Abstract—As technologies begin pushing the boundaries be-
yond what was previously thought unreachable, new algorithms
in the space of hierarchical real-time systems (HiRTS) are becom-
ing more necessary than ever. With hardware evolving at such
a rapid pace, the current scheduling models are showing their
age. The periodic model has been implemented most commonly
due to its simplicity towards resource partitioning, but moving
forward the regularity-based model has the potential to take its
place. Using a widely accepted and open-source hypervisor, RT-
Xen, we can ensure accurate performance of real multiprocessor
machines. Here, we will discuss our current implementation of
the MulZ partitioned multi-resource scheduling algorithm for
regular partitions on the RT-Xen platform, as well as what is to
come and the challenges that need to be tackled.

I. INTRODUCTION

Hierarchical Real-Time Systems (HiRTS) have seen a surge
in popularity with the ability to assign multiple virtual CPUs
to a single physical CPU. A commonly used hypervisor to
do this is the open source project Xen [7], and one patch
of it in particular called RT-Xen [4] is what we are most
interested in. RT-Xen has given better results than Xen in
terms of scheduling and accuracy using LITMUSRT, as seen
in [3]. However, with the introduction of this MulZ (Multiple
Z-Sequences) partitioned multi-resource scheduling algorithm
using the regularity-based resource partition (RRP) model,
some issues with RT-Xen arise that we need to address.

RT-Xen 2.0 has been discussed in the past, but the newest
version has not been covered as much. This newest version,
RT-Xen 2.2, is based on Xen 4.6 and is compatible with later
versions, while adding a few other features. Some of these
include the ability to swap between Earliest Deadline First
(EDF) and Rate-Monotonic (RM) schedulers on the fly, while
also improving the efficiency of the implementations. Because
of these changes, RT-Xen 2.2 renamed its global scheduler
to Deferrable Server (rtds) and still maintains its original rt-
partition scheduler. Although these changes are the latest to
be implemented, our issues with these schedulers still remain.

While RT-Xen did improve on the default schedulers of
Xen [3], one of the many issues that will inevitably be
run into for partitioning algorithms is that of task migration
across multiple CPUs. In its current form, RT-Xen only allows
multiple VCPUs to be scheduled within an individual PCPU.
These VCPUs can have masks to pin to different PCPUs,

The work is supported in part by the United States National Science
Foundation (NSF) under Award No. 1219082.

but during execution this can lead to many issues without
something to manage the swapping safely. Now, if these tasks
being scheduled on CPU-1 were in need of migration to
another partition on a different CPU, they would be unable to
do so natively. To remedy this issue, we have begun developing
our own scheduler to use in the latest version of RT-Xen that
will allow these migrations to happen, which will be necessary
as we move closer to the regularity-based model.

Advancing towards an actual implementation of the MulZ
algorithm, a few things should be discussed: the understand-
ing of the Regular Partition and the terms associated with
it are necessary, along with knowledge of Approximation
Algorithms. A culmination of all the prior results from these
topics will help with understanding an implementation of this
MulZ algorithm and RRP model. The relevant terms will
be discussed in the following sections, as well as what our
objectives are to implement this on the RT-Xen hypervisor.

II. APPROACH

To begin, we should describe the notion of a Supply
Function, SP (t). The supply function of a resource partition
represents the number of its available time-units from 0 to t.
This is used in conjunction with the weight of a partition,
WP = q

p , where q is the length of a time-unit sequence
and p is its period, to define the Instant Regularity, IP (t) =
SP (t) − t · WP . So now, as shown in Li and Cheng [1] a
resource partition P is considered regular if and only if

∀t1, t2, |IP (t1)− IP (t2)| < 1

The MulZ algorithm can only be applied to these types of
partitions since they are very close to evenly distributed. The
downside of these regular partitions is that they are much more
complex, leading to difficulties implementing them as opposed
to periodic resource partitions. However, once implemented
this MulZ algorithm looks very promising especially for multi-
core scheduling problems [2].

In addition to these concepts, knowledge of Approximation
Algorithms is also a requirement, specifically for regular
partitions. Li and Cheng [2] have shown that Extended Ap-
proximating Boundary Sequences (E-ABS) achieve a lower
approximation overhead than a normal ABS. The typical
ABS/E-ABSes that we look at and are of interest for the MulZ
algorithm are:

22

2

Gn,m = { 1

nm
,

1

nm2
,

1

nm3
, ...}

Hn,m = {n− 1

n
,
n− 2

n
, ...,

1

n
,

1

nm
,

1

nm2
, ...}

Zn,m = {Hn,m,Gn,m}
Li and Cheng [1] have shown that the schedulability bound

using the MulZ algorithm with a First Fit Decreasing resource
allocation strategy will never exceed 0.5. Li and Cheng [2]
also found using Adjusted Availability Factor (AAF) and n =
{2, 3, 4, 5, 7} that these numbers can be swapped into the same
level, significantly reducing the schedulability bound. When
using this set of numbers for n in the MulZ algorithm, we
get Z4,2 = Z2,2, narrowing the Z-approximations down to
Zn,2 with n = {3, 4, 5, 7}. The idea of using MulZ-FFD is to
approximate with all of these sequences simultaneously and
choose which one to use to assign partitions to the resource-
units. The pseudocode for MulZ [1] is reproduced here:

(0) res units R := {Rj{factor = 0, rest = 1} : j ε [1,m]};
(1) partitions P := {Pj{weight, res unit = 0} : j ε [1, s]};

(2) bool MulZ FFD ()
(3) sort P in non−increasing order;
(4) for j = 1 to s do
(5) Pj .resource :=MulZ FFD Alloc(Pj .weight);
(6) if Pj .resource = 0 return false;
(7) od
(8) return true;

(9) int MulZ FFD Alloc (w)
(10) for i = 0; n ε {3, 4, 5, 7}; i++ do
(11) Ai = RZn,2(w);
(12) do
(13) for k = 1 to 4 do
(14) r := the k−th minimum item in array A;
(15) f := n, where w is approximated at r by Zn,2;
(16) for j = 1 to m do
(17) if Rj .factor = f and Rj .rest ≥ r do
(18) Rj .rest := Rj .rest− r;
(19) return j;
(20) od
(21) else if Rj .factor = 0 do
(22) Rj .factor := f ;
(23) Rj .rest := 1− r;
(24) return k;
(25) od
(26) od
(27) od
(28) return 0;

We now discuss our concerns with RT-Xen and our ideas
on extending support for them. This will be a large and
challenging project on its own, due to the fact that partitions
in RT-Xen as it currently stands are defined as the VCPUs
assigned to PCPUs. For the RRP model, partitions are defined
by time-slices, and when partitioning a PCPU each partition
will have a different computing power. This is beneficial as if
we had one VCPU to a PCPU, we are effectively partitioning
that VCPU into multiple partitions. This allows for multiple

tasks to run simultaneously rather than what would have been
running sequentially, but with less computing power. Our
partitions may not be sliced in a neat way and may even be
co-prime, so we cannot support this just by finding proportions
of VCPUs to assign to the same PCPU.

The next problem to address is the one of VCPU migration
across PCPUs. As briefly mentioned earlier, RT-Xen binds
multiple VCPUs to individual PCPUs and runs tasks on these.
Unfortunately, there is no way to allow the migration of
VCPUs between PCPUs in the current state without masking,
let alone our partitions. Developing a form of support for
this onto RT-Xen will allow for even basic migration between
CPUs. An initial proposition for this VCPU migration is to
ensure no tasks are currently being ran on the VCPU and/or
partition, then effectively changing its pin from one PCPU to
another.

Alas, one easily overlooked concern which may cause prob-
lems in the distant future is the compatibility with computer
architectures. Hardware is getting exponentially more complex
and powerful as time proceeds, making it hard for development
on these platforms to keep up especially if not actively
maintained. Surely it is possible to obtain earlier versions
of Linux and Ubuntu when necessary, but once the current
systems are inevitably replaced we must ensure compatibility
in the case of having to use older software versions. This
is not ideal, but the quick solution is to use older hardware
with the older software in case of neglected updates moving
forward. Once MulZ is implemented, the platform is there
forever so the only thing to concern ourselves with is updates
to the architecture so that our algorithms will push on with the
technology, perhaps yielding even better results. Our potential
solutions to these are outlined in the next section.

III. IMPLEMENTATION STRATEGIES

First, the most important challenge for the MulZ algorithm’s
implementation on RT-Xen is the lack of a partition definition
on the platform. We are planning to implement partitions
to these PCPUs based on time-slices using a table-driven
scheduler. This scheduler will consist of a data structure with
three members, and will make use of interrupts during the
execution of tasks in order to allocate time to these partitions
accurately. This is of high priority as it is not only required to
implement MulZ, but even the single-CPU Magic-7 partition
scheduling algorithm from Li and Cheng [2]. Once this issue is
resolved we will implement Magic-7, which partitions a single
CPU into partitions the exact way we have described: based
on time-slices given weights through these approximation
sequences and MulZ.

To obtain the approximations to these partitions via MulZ,
we should start by looking at a set of partitions sorted
in decreasing order: G = {0.65, 0.60, 0.55, 0.50, 0.35}. Us-
ing Zn,2, we can pass in the first partition 0.65 and use
n = 3, 4, 5, 7 to get the approximated weights as 2

3 ,
3
4 ,

4
5 ,

5
7

respectively. Once these are calculated we take the minimum
value, 2

3 , and use the n of its E-ABS for the first PCPU. Doing

23

3

this ∀w ε G until the last element, we see the remaining PC-
PUs become occupied and have different working E-ABSes.
Repeating this process with 0.35, the approximated weights
are 2

3 ,
1
2 ,

2
5 ,

3
7 , and our working E-ABS is Z5,2, assigning this

partition to PCPU-2. An extended implementation is shown in
Figure 1, where we use the MulZ algorithm to assign these
partitions appropriately. With this strategy, we can get more
partitions from a PCPU than we would have by assigning
VCPUs, allowing more tasks to run simultaneously.

Upon completion of this preparation, we will need to build
and compile a new kernel for the dom0 with RT-Xen to run
the Magic-7 scheduler. Once this step is completed, the goal
is to begin implementing the MulZ algorithm and a similar
kernel will need to be created, except to do this the bigger
issue of task migration across PCPUs must also be resolved.
We must dive into how RT-Xen is managing its scheduling
for these PCPUs and try to translate the allotment of these
VCPUs into VCPUs that are quantum-based. A tracker for the
program counter will likely need to be included and obtaining
the hyperperiod of the taskset may be required, thus something
along the lines of counter%hyper period will prove useful
to guarantee accurate scheduling and interrupting.

Another issue to consider is that of overhead. While the
algorithms discussed do take this into consideration, our
development of an implementation must consider the overhead
of not only the algorithms, but the interrupts and migrations as
well. Perhaps when migrating multiple instances of tasks on
different PCPUs to the same one, or interrupting the schedul-
ing of a task once the quantum reaches our allotted amount,
overhead is there. Because of this, we have investigated using a
hash-table for our table-driven scheduler to ensure an efficient
time complexity.

The final issue we have to consider is not one involving our
implementation, but one of compatibility. With the hardware
evolving at increasing rates, and the last update to RT-Xen
being in 2015 based on Xen 4.6 which is much further along
now, we must consider the operating systems. A common setup
for RT-Xen usually consists of Ubuntu 12 or 14, and 16 has
been known to cause problems during the installation. While
this may not occur until the distant future, being bottle-necked
by compatibility issues with operating system distributions is
far from ideal. Since RT-Xen is open-source, we will try to
help with this issue going forward, but our priority is set on
this implementation with the current setups.

Once these major issues are resolved, we will begin our
testing with LITMUSRT running on the guest domains and our
own previously mentioned kernel on the host. This provides
us a way to generate tasks on the guests and allow our host
to manage how these tasks are scheduled through our own
algorithms, with MulZ being the final goal in this initial step
towards a regularity-based model in the real world.

IV. CONCLUSION

Up to this point we have discussed our MulZ algorithm
with its associated pre-requisite knowledge and issues of
implementation. Even though the optimality of this MulZ

PCPU-1

0.65 0.30

Z3,2 PCPU-2

0.60 0.35

Z5,2

PCPU-3

0.55 0.25

Z7,2 PCPU-4

0.50 0.25 0.25

Z4,2

Fig. 1. Planned RT-Xen Partition Implementation

algorithm has not been proven theoretically, the experiments
conducted have shown to be very positive [1]. Schedulabil-
ity and resource utilization using MulZ-FFD have displayed
drastic improvements over the more commonly used periodic
counterparts.

Our proposed plan of implementation is to first define
partitions by time-slices on RT-Xen rather than entire VCPUs.
We will then follow this with this creation of a table-driven
scheduler to help manage the task migration across CPUs,
while also being able to identify and resolve multiple instances
of a task running on different PCPUs. Upon completion of
these steps, we will minimize the overhead of this migration
and any potential delays from our implemented table-driven
scheduler such as interrupts. Finally, we will work towards
future-proofing our scheduler as well as RT-Xen by resolving
the issues of compatibility with later Linux and Ubuntu
versions.

The prevalence of real-time systems is becoming much
more known as we gear up for future technologies such
as autonomous cars. Thus, the importance of a real-world
application for better use of resources given to guarantee better
schedulability and utilization cannot be understated. HiRTS
allow for the sharing of a resource’s computational power,
and MulZ-FFD is aiming to enhance this capability on RT-
Xen. We look forward to presenting concrete results at a later
date, making significant advances towards a better model in
the real-world.

REFERENCES

[1] Y. Li and A.M.K. Cheng, ”Toward a Practical Regularity-
based Model: The Impact of Evenly Distributed Temporal
Resource Partitions” (ACM TECS ’17)

[2] Y. Li and A.M.K. Cheng, ”Static Approximation Algo-
rithms for Regularity-based Resource Partitioning” (IEEE
RTSS ’12)

[3] S. Xi, M. Xu, C. Lu, L.T.X. Phan, C. Gill, O. Sokolsky,
I. Lee, ”Real-Time Multi-Core Virtual Machine Schedul-
ing in Xen” (ESWEEK ’14)

[4] S. Xi, J. Wilson, C. Lu, C. Gill, ”RT-Xen: Towards Real-
time Hypervisor Scheduling in Xen” (EMSOFT ’11)

[5] A.K. Mok, X. Feng, D. Chen, ”Resource Partition for
Real-time Systems” (RTAS ’01)

[6] LITMUS-RT (http://www.litmus-rt.org)
[7] Xen Project (https://www.xenproject.org)

24

Towards a model-based framework for prototyping
performance analysis tests

Thanh-Dat NGUYEN
LIAS-ENSMA

Futuroscope, France
Email: thanh-dat.nguyen@ensma.fr

Yassine OUHAMMOU
LIAS-ENSMA

Futuroscope, France
Email: yassine.ouhammou@ensma.fr

Emmanuel GROLLEAU
LIAS-ENSMA

Futuroscope, France
Email: grolleau@ensma.fr

Abstract—In this paper we propose a framework dedicated to
integrate analysis tests into a model-based development chain of
critical RTES (Real-Time Embedded Systems) by easing their
prototyping to conclude about the temporal performance. The
framework allows to generate executable programs in a target
specific language (e.g., Scilab) of real-time scheduling tests from
formal representations of their algebraic mathematical formulas
with precise semantics. Such a framework is beneficial because
of the continuous evolution of RTES architectures, programming
methodologies and analysis techniques. Our framework is com-
posed of three components: mathematical formulas representation,
real-time semantics mapping and code generation. The framework
relies on standard and common languages: AADL (Architecture
Analysis Design Language) for real-time semantics, MathML for
formulas representation and Scilab for target executive language.
The development of this framework is based on model-driven
engineering settings.

I. CONTEXT AND PROBLEM STATEMENT

Nowadays, the scheduling analysis of RTES has been set
up in the model-based development life-cycle as an inde-
pendent phase that follows immediately and interacts with
the modelling phase. On the one hand, that allows RTES
designers to conclude about the performance of their designs
as early as possible to avoid errors that can impact sharply
the development costs. On the other hand, that facilitates
the use of the analysis tests, enhances the usability of real-
time scheduling and bridges the gap between the theory and
practical cases. Several scheduling tests have been proposed
based on algebraic mathematical formulas, such as but not
limited to response-time analysis (RTA) [1], [2], demand
bound function (DBF) [3], request bound function (RBF) [4],
etc. There are several tools that implemented some real-time
analysis tests (e.g., Cheddar [5], MAST [6], Rt-Druid [7], etc.).
Thanks to model-driven engineering settings the utilization of
these tools facilitates more and more performing scheduling
tests through the model-based development, but that can be
enhanced due to the problems discussed hereafter.

Fig. 1. Modeling, transformation and analysis via a model-based work-flow

Unfortunately, each analysis tool has its own approach and
presents a specific temporal analysis viewpoint and specific

real-time workload model. Then, to validate a system, we
generally have to transform the system design (expressed in
AADL[8] or MARTE[9]) into the formalism of a chosen
target tool (as it is shown in Figure 1). (i) This is a costly
step because it requires a deep understanding of each tool
approach. Also, when we transform, we may lose in term of
precision since we adapt models to analysis tools (because
of the semantics gap between the modelling languages and
the analysis tools [10]–[12]). Moreover, we generally need a
reverse transformation to enrich the design by the obtained
analysis results. (ii) Moreover, new proposed tests are often
developed as homemade prototypes, which are not immedi-
ately and evidently transferable to the industry or integrated
in the model-based tool chain. (iii) Also, the analysis tools
are not always extensible easily since they are hard-coded,
and even for extensible tools the extension (e.g., adding new
analysis tests based on specific analysis viewpoint) may lead
to get other semantics for the same parameter, hence it can
lead to a redundant or conflictual meaning at long-term.

In this paper, we aim to bring analysis tests to the modeling
area instead of transforming design models to analysis tools
area. To do so, we propose a model-based framework enabling
RTES analysts and researchers to prototype and integrate their
analysis tests in order to be shared and use easily by designers.
This framework can also be used as a teaching-aid tool. In the
following: Section II presents our proposition with a proof of
concept and Section III concludes the paper.

II. OUR CONTRIBUTION
A. Approach

This part presents a simple motivation example to highlight
requirements that the proposed framework should meet.

Motivation and running example: The following mathe-
matical formula represents the response time analysis test as
proposed in [1] and which we will use as a running example
throughout the rest of the paper (particularly in the proof of
concept section).

Ri.m =

{
Ci m = 0

Ci +
∑

j∈hp(i)

⌈
Ri.m−1

Tj

⌉
Cj otherwise

(1)

hp(i) = {k|1 ≤ k ≤ n ∧ Prk > Pri} (2)

25

The worst case response-time of each task i is computed
according to Eq. 1, where C, T, and hp represent respectively
the worst case execution-time, the period and the set of tasks
their priorities are higher than the priority of the task i.

We assume that an analyst or researcher would like to
share the test (of the running example) in order to be used
by designers (non-expert in real-time scheduling analysis)
during the modeling phase. To do so, we need a collaborative
framework (Γ) (dedicated to analysts and designers according)
to the following requirements.

Requirement 1: The framework Γ shall offer a descriptive
mathematical formalism independent from the real-time se-
mantics and machine-interpretable. The formalism must be
sufficiently expressive and concrete to exactly express all
typical real-time mathematics equations.

Requirement 2: The framework Γ shall provide support to
define semantic mapping relationships between mathematical
formulas and different RTES design languages. Since the
mathematical formulas are intended to be independent from
the real-time semantics, to have input data for the computation,
we need to map each element (quantitative parameter) of the
mathematical formula to an element type (class) from the
design language (e.g, MARTE or AADL). Hence, that enables
to specify the real-time semantics of the parameter referring
to the design language used for modelling.

Requirement 3: The framework Γ shall provide an engine
relying on Requirement 1 and Requirement 2 enabling to
generate the executable code in order to perform the analysis
tests for each system design expressed in supported design
languages.
B. Architecture of the proposed framework

Figure 2 depicts the overview of the proposed framework,
which is based on three main components: math formulas
representation, real-time semantics mapper and the code gen-
eration.

Fig. 2. Framework architecture

1) Formula Representation Component: We have opted for
MathML (Mathematical Markup Language [13]) since it is a

standard for describing mathematical notations and capturing
both their structures and contents. This component allows
(action (1) of Figure 2) to researchers/analysts to express their
analysis tests conforming to MathML meta-model as it is
sketched in Figure 3. Thanks to this component, we can obtain
a repository of tests where each test is represented by MathML
file.

Fig. 3. Formula representation component

2) Real-time Semantics Mapping Component: Every pa-
rameter of a given test expressed as MathML file can be
mapped to a real-time concept existing in a given design
language. Therefore, the semantics mapper component is ded-
icated to analysts to define the mapping relationships between
their tests and design languages (action (2) of Figure 2). Figure
4 shows the meta-model permitting to map an analysis test to
different design languages. The idea behind this ”mapper” is
to make the analysis tests available for users who are familiar
with different design languages. Then, each instance conforms
to the mapper meta-model relies on a specific test and a
specific design language.

Fig. 4. Excerpt of Meta-model expressed in Ecore[14] of semantics mapping
component

3) Execution code generator: Once the test is expressed
as MathML file, the mapping relation with a specific design
language is defined the generator can be developed by ana-
lysts based on a template and according to a specific target
language. This template will be used by the designer once the
system (under-analysis) is modelled with the same specific
design language, then the code is not hard-coded and can

26

be generated according to the target programming language
(action (3) of Figure 2). The execution of generator component
allows to generate the code during the modeling phase at
run-time conforming to several programming languages (e.g.
Python, Matlab, etc.).

C. Proof of Concept

In this part we show the usability of our framework through
a generic scenario usage. We choose (Architecture Analysis
and Design Language)1 as a design language and Scilab as a
programming language. We assume that an analyst/researcher
aims to share with the community and with RTES designers
the test presented in the motivation example (see sub-section
A of Section 2). First, the test need to expressed in MathML.
Secondly, the analyst should define a mapping relation be-
tween the test concepts and AADL. Figure 5 shown the test
parameters and their associated concepts.

Fig. 5. Mapping process

We have developed a code generator according to Scilab
syntax. We also assume that a designer, using AADL to
conceive a system, chooses the MathML file and launch the
execution. The developed code generator will transform the
test and numeric values of the designed system to a Scilab
program as it is shown in Figure 6.

III. CONCLUSION

This papers introduces a work-in progress. It sketched how
to prototype easily and rapidly new tests to be integrated in
model-based tool chain, whilst avoiding difficulties related to
technological backgrounds and problems of analysis and mod-
eling environments compatibility. The resulting framework
will be shared with the community under LGPL licence, and
it will be enriched to support other programming languages.
This work will be completed by being associated to the work
presented in [15] to help designers by orienting them to
choose the tests that match their needs. We believe that this
kind of work will help the community to capitalize tests for
reuse and also learning purposes. In this perspective, real-time
conferences set up recently an artifact evaluation dedicated to
”accepted-for-publication” papers. This evaluation consists of
reproducing the results of the accepted papers by a confer-
ence committee by using mediums like virtual machines or
codes accompanied by textual guidelines. However, the current
reproducibility process lacks to store the test itself and data

1www.openaadl.org

Fig. 6. Response Time Analysis in Scilab

related to when and how to use the test in order to conclude
about the temporal behavior of critical systems applied to this
test.

REFERENCES

[1] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[2] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbi-
trary deadlines,” in Real-Time Systems Symposium, 1990. Proceedings.,
11th. IEEE, 1990, pp. 201–209.

[3] K. Jeffay and D. Stone, “Accounting for interrupt handling costs in
dynamic priority task systems,” in Real-Time Systems Symposium, 1993.,
Proceedings. IEEE, 1993, pp. 212–221.

[4] N. Fisher and S. Baruah, “A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines,” in Real-Time Systems, 2005.(ECRTS 2005). Proceed-
ings. 17th Euromicro Conference on. IEEE, 2005, pp. 117–126.

[5] “The cheddar project : a gpl real-time scheduling analyzer,”
http://beru.univ-brest.fr/ singhoff/cheddar/, 2015, [Online; accessed
15/05/2018].

[6] MAST, “Modeling and analysis suite for real-time applications,”
http://mast.unican.es/, [Online; accessed 15/05/2018].

[7] RT-Druid, http://www.evidence.eu.com/products/rt-druid.html.
[8] AADL, “Architecture analysis and design language,”

http://www.aadl.info/aadl/currentsite/.
[9] MARTE, “Modeling and analysis of real-time and embedded systems,”

http://www.omg.org/omgmarte/, [Online; accessed 15/05/2018].
[10] C. Mraidha, S. Tucci Piergiovanni, and S. Gerard, “Optimum: a marte-

based methodology for schedulability analysis at early design stages,”
ACM SIGSOFT Software Engineering Notes, vol. 36, no. 1, pp. 1–8,
2011.

[11] Y. Ouhammou, E. Grolleau, P. Richard, and M. Richard, “Reducing the
gap between design and scheduling,” in RTNS, 2012, pp. 21–30.

[12] R. Henia, L. Rioux, and N. Sordon, “Demo abstract: TEMPO: integrat-
ing scheduling analysis in the industrial design practices,” in 2016 IEEE
RTAS, 2016, p. 63.

[13] Wikipedia, “Mathml,” https://en.wikipedia.org/wiki/MathML, [Online;
accessed 15/05/2018].

[14] Ecore, “Eclipsepedia,” https://wiki.eclipse.org/Ecore.
[15] T. D. Nguyen, Y. Ouhammou, and E. Grolleau, “Parad repository: On

the capitalization of the performance analysis process for aadl designs,”
in European Conference on Software Architecture. Springer, 2017, pp.
22–39.

27

Copyright c© 2018 by papers’ authors. All Rights Reserved.

All rights reserved. No part of this publication may be reproduced, distributed, or trans-
mitted in any form or by any means, including photocopying, recording, or other elec-
tronic or mechanical methods, without the prior written permission of the authors.

	 Handling Intra-Task Parallelism for Real-Time DAG TasksScheduled on Multiple Cores Johnathon Soulis, Jaewoo Lee and Chang-Gun Lee
	 Towards Optimal Offline Scheduling for Multi-Core Systems with Partitioned Caches Darshit Shah and Jan Reineke
	 Towards Synchronization in Prosa Antonin Riffard, Felipe Cerqueira and Björn Brandenburg
	 Towards System-Wide Timing Analysis of Real-Time–CapableOperating Systems Simon Schuster, Peter Wägemann, Peter Ulbrich and Wolfgang Schröder-Preikschat
	 FF-DBF-WIN: On the Forced-Forward Demand-Bound Function Analysis for Wireless Industrial Networks Miguel Gutiérrez-Gaitán and Patrick Meumeu Yomsi
	 On Multi-Level Preemption in Ethernet Mubarak Ojewale, Patrick Meumeu Yomsi and Geoffrey Nelissen
	 Task Mapping in a Regularity-based Resource PartitioningHierarchical Real-Time System Guangli Dai, Pavan Kumar Paluri and Albert Cheng
	 Implementing the Regularity-based Resource Partition Model on RT-Xen Kevin Bailey, Albert Cheng, Pavan Kumar Paluri, Guangli Dai and Carlos Rincon
	 Towards a model-based framework for prototyping performanceanalysis tests Thanh Dat Nguyen, Yassine Ouhammou and Emmanuel Grolleau

