

An update on Real-Time scheduling on Linux

Peter Zijlstra
Intel

Why deadline scheduling?

General Purpose OS
● Resource arbitration
● Resource isolation

FIFO/RR must be privileged because they
violate all that.

● Misbehaving task affects other tasks
● Prio assignment is difficult and cannot easily be

composed

Sporadic task model

(G)EDF scheduling provides arbitration
– Easy composition of task sets

CBS provides isolation
– Self suspending tasks

– Constrained tasks must preserve density

SCHED_DEADLINE → (G)EDF + CBS

Accounting vs Enforcement

● Budget (q) is accounted in [ns]
– Subject to platform clock resolution

● Budget depletion is tested on 'tick'
● Budget replenishment is 0-sum

'Global' EDF

● Per logical CPU runqueue
● Push on activation
● Pull on demote/idle

Hierarchy

● pick_next_task()
– class_stop

– class_deadline (DEADLINE)

– class_rt (FIFO/RR)

– class_fair (NORMAL)

– class_idle

Inversion

Fixed Priority
– Priority inheritance

Dynamic Priority
– Deadline inheritance

– Bandwidth Inheritance
● SMP?

P3

P9

P10

P1

owner

Mx

P31

P19

P40

owner

My

Proxy Execution

Scheduling decision
function invariant.

SMP tricky...
– Easy to end up

executing the same
task on multiple CPUs

P3

P9

P10

P1

owner

Mx

P31

P19

P40

owner

My

Admission Control

(G)EDF: U ≤ m
– Recoverable, avoids domino effect

● Bounded tardiness

– Affinities are tricky

Proposed: U i=∑
t∩i

(
ut

w t

)≤1

Single CPU Affinity

● Often requested
● Expectation of UP-like behaviour

– Mixed criticality

– 'obvious' hierarchical EDF fails:

Mixed Criticality

EDF + LLF:
– At least 2 degrees of freedom in the model

– Laxity := { d – e; for single CPU affine tasks, otherwise inf.

– If the EDF pick can run without the LLF pick turning 0, do so,
otherwise run the LLF pick.

– Has similarities to EDZL

t+eEDF>d LLF−eLLF

Reclaim

● Soft-CBS
● Power Aware / Idle-reclaim
● GRUB (Greedy Reclaim of Unused Bandwidth)

– Introduces active bw
● Uact > 1 !!

– dq = -Uact dt

– Privileged; can consume lots of time
● Per task / cgroup reclaim limits

Probabilistic

● Consider the per-task reclaim limit as an
extension to the task model and interpret it as a
measure of variance on the runtime.

● 0-sum overrun → avg, fairness
● Measurement based pWCET

Cgroups

● Cpuset → partitioning
– AC vs partitioning broken

● Deadline
– AC limits

– Hierarchical CBS

Hierarchical scheduling

● CFS slack time scheduling
● FIFO servers

– Minimal concurrency

– Nested load-balancing

– Arbitrary affinities are still a problem

Unprivileged

● Assume users are hostile
● Plug the BW (inheritance) hole
● DoS

– Limits on the task model

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

