
Response-time Bounds for
Concurrent GPU Scheduling

Ming Yang and James H. Anderson

Ming Yang

GPU on Self-driving Vehicle
• Power efficient embedded system

• Massively parallel capability

• sensor fusion, computer vision/DNN, HD mapping…

Ming Yang

Toward Real-time GPU
• Proprietary hardware, driver and library make it difficult

• Typically treated as a single black-box resource
• One program accessing GPU at a time
• Possible capacity loss when each individual program is

incapable of occupying all GPU resources

GPUCPU GPU
Sync

Ming Yang

Toward Real-time GPU
• On-going project: allow multiple programs to access

the GPU concurrently
• inferring the concurrent GPU scheduling rules

• N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith,
“Inferring the Scheduling Policies of an Embedded CUDA GPU”,
OSPERT ’17.

• T. Amert, N. Otterness, M. Yang, J. Anderson, and F.D. Smith , “GPU
Scheduling on the NVIDIA TX2: Hidden Details Revealed”, in
submission, 2017.

GPUCPU

Ming Yang

Work-in-Progress
• Having a task model defined for the GPU system, based on

the summarized GPU scheduling rules.

• a hybrid of Gang task model and Malleable task model, at
different scheduling levels

• Analyzing the response-time bound

Gang

…

Malleable

…Processors

Time

Ming Yang

Further details in the poster
session

• Multilayered FIFO scheduling
rules

• A counter example showing the
necessary total utilization
restriction to ensure response-
time bound

• And other details…

0

1024

2048

3072

4096(m)

Time

Th
re

ad
 re

so
ur

ce
s a

llo
ca

tio
n }

b
max}

b m

b
max

cb
max

⌧1,1 ⌧1,2

⌧2,2⌧2,1

⌧3,1 ⌧3,2

✏ 21 1 + ✏ 1 + 2✏

b m

b
max

cb
max

� b
max

+ 1

}m� b m

b
max

cb
max

}

2 + 2✏

Introduction
Graphics	processing	units	(GPUs)	have	been	receiving	
increasing	attention	in	industry as	a	potential	solution	
for	hosting	workloads	like	those	found	in	autonomous-
driving	use	cases	that	require	significant	computational	
capacity.	Allowing	multiple	programs	to	access	a	GPU	
concurrently	can	enable	the	GPU	to	be	more	
efficiently	utilized,	if	each	individual	program	is	
incapable	of	occupying	all	GPU	resources.	In	this	work,	
we	summarize	the	basic	scheduling	rules	for	
concurrent	GPU	scheduling	in	NVIDIA	GPUs.	We	define	
a	task	model	for	GPU	scheduling	based	on	these	
scheduling	rules.	In	ongoing	work,	we	are	attempting	
to	obtain	response-time	bounds	for	tasks	under	this	
model.

Each	kernel	(GPU	program)	is	issued	as	a	group	of	
threads	that	execute	on	a	GPU.	Threads	of	one	kernel	
are	arranged	into	multiple	same-size	blocks.	Each	
kernel	is	a	grid	of	such	blocks.	The	number	of	threads	
per	block	(block	size) and	the	number	of	blocks	per	
grid	(grid	size)	of	a	kernel	are	defined	via	parameters	
passed	to	the	CUDA	call	that	launches	that	kernel.	The	
basic	GPU	scheduling	rules	are	as	follows:	
R1.	A	block	of	a	kernel	in	the	primary	queue	is	
assigned	to	the	GPU	for	execution	if:

Response-time	Bounds	for	Concurrent	GPU	
Scheduling

Ming	Yang	and	James	H.	Anderson

Scheduling Rules

GPU

K1

K5

Stream 1

⌧1

K2

Stream 2

⌧2

K3

Stream 3

⌧3

K4

Stream 4

⌧4

K3

K4

K1 K2

Primary Queue

0

1024

2048

3072

4096 (m)

Time

Th
re

ad
 re

so
ur

ce
s a

llo
ca

tio
n

K1

K2

K2

K3

K4

K5

2 4 6 8 10 14 1612

• a)	that	kernel	is	at	the	
head	of	the	primary	
queue,	and

• b)	the	number	of	
unoccupied	threads	on	
the	GPU	is	at	least	the	
kernel’s	block	size.

• R2.	A	kernel	is	enqueued on	
the	primary	queue	when	it	
becomes	the	head	of	its	
stream	queue.

System Model

# of	blocks	per	task	(grid	size)

#	of	threads	per	block	(block size)

N.	Otterness,	M.	Yang,	T.	Amert,	J.	Anderson,	and	F.D.	Smith.	Inferring	the scheduling	policies	of	an	
embedded	CUDA	GPU.	In	OSPERT	’17.
T.	Amert,	N.	Otterness,	M.	Yang,	J.	Anderson,	and	F.D.	Smith	,	GPU	Scheduling	on	the	NVIDIA	TX2:	
Hidden	Details	Revealed,	in	submission,	2017.

System Utilization Restriction

Conclusions

We	constructed	a	task	system																													 to	show	that	
if	the	total	utilization																																								,	where											is	
the	maximum	#	of	threads	per	block,	then	response	times	
may	be	unbounded.	Here	are	the	details	of	this	task	system:	
Let																													for	convenience,	we	have

Although	the	 ,	job								’s	
response	time	is					 ,	where										.

In	this	paper,	we	defined	a	task	model	for	GPU	
scheduling	and	showed	that	response	times	can	be	
unbounded	in	this	model	if	total	utilization	exceeds	a	
certain	limit.	In	ongoing	work,	we	are	attempting	to	
prove	that	response	times	are	indeed	bounded	in	this	
model	if	total	utilization	is	at	most	this	limit.

When												,	it’s	the	Gang	task	model. When													,	
it’s	the	Malleable	task	model.

