
P A O L O  B U R G I O

U N I V E R S I T Y  O F  M O D E N A ,  I T A L Y

P A O L O . B U R G I O @ U N I M O R E . I T

Enabling predictable parallelism
in single-GPU systems

with persistent CUDA threads

Toulouse, 6 july 2016



2

GP-GPUs / General Purpose GPUs

 Born for graphics, subsequently General Purposes computation

 Massively parallel architectures

 Baseline for next-generation of power efficient embedded devices

 Tremendous Performance/Watt

 Growing interest also for automotive and avionics

 Still, not adoptable within (real-time) industrial settings

Toulouse, 6 july 2016



3

Why not real-time GPUs?

Toulouse, 6 july 2016

 Complex architecture harnesses analyzability

 Poor predictability

 Non-openness of drivers, firmware..

 Hard to do research

 Typically, GPU treated a "black box" 

 Atomic shared resource

Hard to extract timing guarantees



4

LightKer

Toulouse, 6 july 2016

 Expose GPU architecture at the application level

 Host-accelerator architecture

 Clusters of cores

 Non-Uniform Memory Access (NUMA) system

 Same as modern accelerators

 Pure software approach

 No additional hardware!

HostGPU

MEM MEM

MEMMEM

MEM

Cluster

GPU core

MEM

Host core

L1 local

mem/cache

L2 (global)

Mem/cache



5

Persistent GPU threads

Toulouse, 6 july 2016

 Run at user-level

 Pinned to cores

 Continuously spin-wait for work to execute

1 CUDA thread 1 GPU core

1 CUDA block 1 GPU cluster



6

Host-to-device communication

Toulouse, 6 july 2016

 Lock-free mailbox

 1 mailbox item for each cluster

 Clusters exposed at the application level

 Master thread for each cluster

GPU MEM Host MEM

COREMEM

R W WR

Master core

(per-cluster)

from_GPU

to_GPU

Triggered

by Host



7

LK vs traditional execution model

Toulouse, 6 july 2016

 LK execution split in

 Init, { Copyin, Trigger, Wait, Copyout}, Dispose

 "Traditional" GPU kernel

 { Alloc, Copyin, Launch, Wait, Copyout,  Dispose }

 Testbench

 NVIDIA GTX 980

 2048 CUDA cores, 16 clusters



8

Validation

Toulouse, 6 july 2016

 Synthetic benchmark

 Copyin/out not yet considered

 Trigger phase 1000x faster 

 Synch/Wait is comparable

Single SM

LK Init LK Trigger LK Wait LK Dispose

509M 239 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose

496M 3.9k 175k 274k

Full GPU

LK Init LK Trigger LK Wait LK Dispose

503M 210 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose

497M 3.8k 176k 247k



9

Try it!

Toulouse, 6 july 2016

 LightKernel v0.2

 Open source

 http://hipert.mat.unimore.it/LightKer/

 ...and visit our poster 

This Project has received funding from the European Union’s

Horizon 2020 research and innovation programme under

grant agreement: 688860.

http://hipert.mat.unimore.it/LightKer/

