
P A O L O B U R G I O

U N I V E R S I T Y O F M O D E N A , I T A L Y

P A O L O . B U R G I O @ U N I M O R E . I T

Enabling predictable parallelism
in single-GPU systems

with persistent CUDA threads

Toulouse, 6 july 2016

2

GP-GPUs / General Purpose GPUs

 Born for graphics, subsequently General Purposes computation

 Massively parallel architectures

 Baseline for next-generation of power efficient embedded devices

 Tremendous Performance/Watt

 Growing interest also for automotive and avionics

 Still, not adoptable within (real-time) industrial settings

Toulouse, 6 july 2016

3

Why not real-time GPUs?

Toulouse, 6 july 2016

 Complex architecture harnesses analyzability

 Poor predictability

 Non-openness of drivers, firmware..

 Hard to do research

 Typically, GPU treated a "black box"

 Atomic shared resource

Hard to extract timing guarantees

4

LightKer

Toulouse, 6 july 2016

 Expose GPU architecture at the application level

 Host-accelerator architecture

 Clusters of cores

 Non-Uniform Memory Access (NUMA) system

 Same as modern accelerators

 Pure software approach

 No additional hardware!

HostGPU

MEM MEM

MEMMEM

MEM

Cluster

GPU core

MEM

Host core

L1 local

mem/cache

L2 (global)

Mem/cache

5

Persistent GPU threads

Toulouse, 6 july 2016

 Run at user-level

 Pinned to cores

 Continuously spin-wait for work to execute

1 CUDA thread 1 GPU core

1 CUDA block 1 GPU cluster

6

Host-to-device communication

Toulouse, 6 july 2016

 Lock-free mailbox

 1 mailbox item for each cluster

 Clusters exposed at the application level

 Master thread for each cluster

GPU MEM Host MEM

COREMEM

R W WR

Master core

(per-cluster)

from_GPU

to_GPU

Triggered

by Host

7

LK vs traditional execution model

Toulouse, 6 july 2016

 LK execution split in

 Init, { Copyin, Trigger, Wait, Copyout}, Dispose

 "Traditional" GPU kernel

 { Alloc, Copyin, Launch, Wait, Copyout, Dispose }

 Testbench

 NVIDIA GTX 980

 2048 CUDA cores, 16 clusters

8

Validation

Toulouse, 6 july 2016

 Synthetic benchmark

 Copyin/out not yet considered

 Trigger phase 1000x faster

 Synch/Wait is comparable

Single SM

LK Init LK Trigger LK Wait LK Dispose

509M 239 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose

496M 3.9k 175k 274k

Full GPU

LK Init LK Trigger LK Wait LK Dispose

503M 210 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose

497M 3.8k 176k 247k

9

Try it!

Toulouse, 6 july 2016

 LightKernel v0.2

 Open source

 http://hipert.mat.unimore.it/LightKer/

 ...and visit our poster

This Project has received funding from the European Union’s

Horizon 2020 research and innovation programme under

grant agreement: 688860.

http://hipert.mat.unimore.it/LightKer/

