
Work-in-Progress

Proceedings

July 6th, 2016
Toulouse, France

Edited by Sebastian Altmeyer

c© Copyright 2016 held by the authors

Message from the Session Chair

It is my pleasure to welcome you to the Work-in-Progress (WiP) session of the

28th Euromicro Conference on Real-Time Systems (ECRTS 2016). The ECRTS’16

WiP session is devoted to new and on-going research on real-time systems and appli-

cations. Its primary purpose is to provide researchers with an opportunity to discuss

their evolving ideas and gather feedback from the real-time community at large.

The WiP session 2016 features eight excellent WiP papers covering a wide spectrum

of real-time topics. I am confident that many of the research contributions we feature

here will appear as full-fledged conference and journal papers in the near future. The

proceedings are published online on the ECRTS 2016 WiP website:

http://ecrts.eit.uni-kl.de/wip16.

The presentations in this session are only intended to provide a brief overview of

the ideas and approaches. The authors of each paper have also prepared a poster

and are happy to discuss their work during the reception immediately following the

presentations.

I would like to take the opportunity to express my gratitude to the members of

the technical program committee for thoroughly reviewing all papers within a very

short time frame. Furthermore, I would like to thank the organizers of ECRTS 2016,

Christian Fraboul, Nathan Fisher, Jérôme Ermont, Jean-Luc Scharbarg, Rob Davis

and Gerhard Fohler for their support in organizing the WiP session.

On behalf of the program committee, I wish you a pleasant Work-in-Progress ses-

sion, hope you will enjoy the presentations and invite you to discuss the presented

ideas with the authors during the reception.

Sebastian Altmeyer

University of Amsterdam

Session Chair

http://ecrts.eit.uni-kl.de/wip16

Technical Program Committee

Leandro Soares Indrusiak, University of York, UK

Martina Maggio, Lund University, Sweden

Linh Thi Xuan Phan, University of Pennsylvania, USA

Jan Reineke, Saarland University, Germany

Wolfgang Puffitsch, Technical University of Denmark, Denmark

Session Chair

Sebastian Altmeyer, University of Amsterdam, The Netherlands

Table of Contents

Message from the Session Chair . iii

Technical Program Committee . iv

Enabling predictable parallelism in single-GPU systems with persistent CUDA

threads . 1

Paolo Burgio

MrsP on Semi-Partitioned Systems . 4

Jorge Garrido, Juan A. de la Puente and Juan Zamorano

Towards Real-time Wireless Cyber-physical Systems. 7

Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel

and Lothar Thiele

Preemption Point Selection in Limited Preemptive Scheduling using

Probabilistic Preemption Costs . 10

Filip Marković, Jan Carlson and Radu Dobrin

Cyber-OF: An Adaptive Cyber-Physical Objective Function for Smart Cities

Applications . 13

Med Ghazi Amor, Anis Koubaa, Eduardo Tovar and Mohamed Khalgui

Inter-Arrival Curves for Multi-Mode and Online Anomaly Detection 16

Mahmoud Salem, Mark Crowley and Sebastian Fischmeister

Tightening worst-case timing analysis of Tilera-like NoC architectures 19

Hamdi Ayed, Jérôme Ermont, Jean-Luc Scharbarg and Christian Fraboul

Mixed-criticality scheduling with memory regulation. 22

Muhammad Ali Awan, Konstantinos Bletsas, Pedro Souto, Benny Akesson,

Eduardo Tovar and Jibran Ali

Enabling predictable parallelism in single-GPU
systems with persistent CUDA threads

Paolo Burgio
University of Modena and Reggio Emilia, Modena, Italy

paolo.burgio@unimore.it

Abstract—Graphics Processing Unit, or GPUs, have been
successfully adopted both for graphic computation in 3D appli-
cations, and for general purpose application (GP-GPUs), thank
to their tremendous performance-per-watt. Recently, there is
a big interest in adopting them also within automotive and
avionic industrial settings, imposing for the first time real-time
constraints on the design of such devices. Unfortunately, it is
extremely hard to extract timing guarantees from modern GPU
designs, and current approaches rely on a model where the
GPU is treated as a unique monolithic execution device. Unlike
state-of-the-art of research, we try to “open the box” of modern
GPU architectures, providing a clean way to exploit intra-GPU
predictable execution.

I. INTRODUCTION

In the last decade, increasing demand for low-energy com-
putational power from the embedded world met the tremen-
dous performance-per-watt potential of modern the Graphic-
Processing Units (GPUs), opening the doors to the adoption
these devices in the new generation of embedded systems.
The NVIDIA Tegra family [1] is an example of a GPU-based
System-on-Chip (SoC) explicitly designed for smartphones
and tablets. Recently, there is an increasing interest to adopt
GPUs also in automotive and avionics settings, imposing
for the first time hard real-time constraints in their design.
Unfortunately, GPUs are not tailored to real-time systems, due
to the complex hardware structure. Their aggressively parallel
designs extract the maximum performance from the hardware,
but at the same time they also hassle the analyzability of the
overall platform. As an addition, the non-openness of most
GPU low-level drivers and firmware makes it cumbersome to
treat them other than as a “monolithic” piece of hardware,
which cannot be managed and exploited in a more flexible
manner. A significant example is the warp scheduler of
NVIDIA GPUs, whose mixed hardware/software structure,
firmware and OS drivers represent the key added value of the
provider hence they are not disclosed nor well documented.
Although perfectly comprehensible from a business/market
point of view, this decision prevents most of the academics
world to do research on GPUs, especially in the field of real-
time systems. Indeed, in the real-time domain, a deep compre-
hension of the device hardware architecture is paramount to
achieve predictability/real-time guarantees also at the software
level.

Some research has been carried on for supporting timing-
accurate and predictable computing on GPUs: for instance,
GPUSync [2] provides i) pinning mechanism ii) budgeting and
iii) integration support for multi-GPU systems. However, all
of the current approaches target multiple-GPU systems, where
the device itself is treated as a unique “atomic” execution
device. This paper described our ongoing effort to “open the
box” of GPU devices (here specifically of NVIDIA devices,

Fig. 1. Clustered GPU architecture

as a testbed), to explore whether it is possible to extract
predictability guarantees within a single GPU. To the best
of our knowledge, we are the first doing so, and we will treat
the problem exclusively from a software point of view, that
is, we will not propose any modifications to existing hardware.

We believe that the generic clustered structure of a GPU
device (shown in Figure 1) lends itself pretty well to being
“opened” and treated at a finer-grained architectural level.
We adopt a recent programming paradigm for GPUs which
addresses a lightweight and flexible execution model employ-
ing persistent GPU threads [3], [4]. Persistent Threads run at
user-level on the GPU, and contrarily to “traditional” GPU
threads, they are not tailored for a specific computation, but
continuously spin-wait for work to execute. As soon as the
host subsystem (e.g., in consumer GPU systems, a multi-core
CPU) wants to offload some work to the GPU, it sends to the
persistent thread both a descriptor of the work and a reference
to the in/out data items, which indicates the actual work to
perform. This scheme can be repeated indefinitely. With such
an approach, it is therefore possible to allocate work on a
specific subset of GPU cores in such a way to minimize inter-
cores interference (e.g., thrashing of global cache lines) and
increasing overall platform predictability. We are currently de-
veloping an implementation named LightKernel (LK), which
we will release as open source software1 to support research
in this direction.

II. APPROACH AND IMPLEMENTATION OF LIGHTKERNEL

A. Approach and design choices

Before introducing the design of our LK architecture, it
is important to point out a few choices that guided our
implementation.

• We target real-time systems, where predictability is a
primary concern. In such systems, it is perfectly normal to

1Feel free to download this preliminary implementation from:
http://hipert.mat.unimore.it/LightKer

1

trade average performance for worst case performance,
and to follow clean, modular software designs, which
ensure spatial and timing isolation among application
components.

• A typical optimization for GPU devices is to share the
program counter (PC) register among groups of hardware
cores. This causes the so-called lockstep execution, which
means that cores belonging to the same group are tied to
execute the very same assembly instruction, hence their
execution cannot diverge. This mechanism is extremely
useful when implementing data-parallel execution pat-
tern.

• In modern GPUs, computing cores are physically parti-
tioned into clusters (see Figure 1), with local (L1) caches
and software-managed memory banks to maximize data
locality to computation. More “lockstep groups” can be-
long to the same cluster. In such a system, exploiting local
memories to maximize the locality of data to computing
elements is a must to achieve performance. For this
reason, we decide to expose clusters at the application
level, providing low-level software subroutines to map
both data and work on a specific cluster.

B. NVIDIA terminology and CUDA

Our implementation is based on CUDA [5], which is
NVIDIA’s proprietary API for programming GPUs. We chose
these devices as a testbed because NVIDIA is undoubtedly
the GPU market leader, and CUDA is one of the most widely
adopted programming model for GPUs. Our approach can be
seamlessly ported, e.g., to OpenCL [6] with minimal effort.
In the NVIDIA terminology, the GPU device is composed
of CUDA cores, clustered onto Streaming Multiprocessors
– SMs. CUDA programmers partition the application onto
a two-dimensional work space composed of CUDA threads,
grouped onto thread blocks. The portion(s of application that
are offloaded to the GPU device are called CUDA kernels.
Within a kernel, typically, threads are mapped onto CUDA
cores, while thread blocks are mapped onto GPU SMs. Lock-
step islands are called warps, composed by multiple threads
executing in “Single Program Multiple Data” – SPMD fashion.
Intuitively, one thread block is composed of multiple warps,
whose dimension is fixed for a given GPU architecture, and
which are directly managed by the CUDA runtime. From
the real-time point of view, warps are the data-parallel, non-
preemptable, atomic unit of work which is schedulable on the
GPU device, and programmers have no visibility nor control
over them. We believe this is the biggest limitation of GPU
architectures, from a real-time point of view.

C. LK persistent kernel

In a first step we follow the simplest design possible, and
decide to statically pin persistent threads on GPU clusters
at boot time, and to dynamically allocate work to a specific
thread, that is, to a specific cluster of cores. This potentially
enables fine-grained execution models, exploiting intra-GPU
parallelism in a flexible way. This is possible because, as
explained, “hardware lockstep islands” are confined within
the single clusters. Roughly speaking, we spawn a single
(persistent) CUDA kernel, made of B blocks of T CUDA
threads, where B is the number of SMs in the target device,
and T is the number of CUDA cores within a single SM, which

Persistent thrd status Value Persistent thrd status Value
from GPU to GPU

THREAD INIT 0 THREAD NOP 4
THREAD FINISHED 1 THREAD EXIT 8
THREAD WORKING 2 THREAD WORK 16+

THREAD NOP 4
TABLE I

PERSISTENT THREAD STATUSES AND MAILBOX VALUES

is fixed for a given GPU architecture. What typically happens
in GPU runtimes is that, when a CUDA kernel is spawned, its
blocks are assigned to SMs in a round-robin fashion, so each
LK block is mapped onto a dedicated SMs. We implemented
a low-level checking mechanism for this (each thread within
a block reads the SM number and compares it with the block
ID which is assigned by CUDA runtime), which however was
never triggered during our development and experiments.

Even if in modern GPUs it is possible to create more CUDA
blocks (resp. threads) than available SMs (resp. cores), we
want our design to be simple, and we don’t spawn more
threads than cores, and map exactly one CUDA block onto
one SM 2. We will explore more complex execution models,
based on multiple persistent threads, in a future step.

Fig. 2. Dual mailbox structure

D. Host-to-device communication

A key aspect of GPU computing is is the synchronization
between the host and the device. We want to deliver work at
the granularity of the single SM, and to do so, we implemented
a dual lock-free mailbox system (see for instance [7]). In such
a mechanism, each SM/persistent thread has two dedicated
mailbox items (called from_GPU and to_GPU), as shown in
Figure 2. We promote one CUDA thread within each block to
act as master thread and to read-write the corresponding two
mailboxes. Mailboxes are implemented as C integers, whose
values represent the statuses of LK-to-host communication
protocol, as in Table I. In the considered architecture (see
Section III) there are 16 SMs/clusters, hence our mailbox is
composed by two arrays of 4x16 = 64 bits. Typically, GPUs
are connected to CPU hosts via PCI EXPRESS connectors,
delivering more than 15 GByte/sec. However, this is peak per-
formance, i.e., it is delivered only with big data chunks, while
the size of our mailbox is too narrow to efficiently exploit
the mechanism, and we experience performance degradation
in some cases. Unfortunately, data transfer from and to the
device is mastered by OS driver for the specific device, which

2Architectural features such as, e.g., number of CUDA cores and SMs in
a given GPUs can be easily obtained using platform-specific hooks.

2

is proprietary and undisclosed, so there is not much chance to
improve this mechanism without accessing its internals.

III. PRELIMINARY EVALUATION CAMPAIGN

We performed a set of experiments to compare our LK to
“standard” CUDA kernels. We expect the mailbox mecha-
nism to be much lighter of traditional kernel spawn, with a
significant performance gain. The only point of concern, as
introduced in Section II, is the efficiency of transmitting few
data chunks (i.e., the mailbox) across the PCI connector. We
performed the experiments on a machine with the state-of-the-
art of consumer GPUs by NVIDIA, the GTX980 mode, with
the host running Ubuntu 14 Linux on an Intel i7 quad-core
with 8GB RAM clocked at 3.6 GHz.

To structure the experiments, we split LK execution in a Init
phase, to boot the system, and a Dispose phase, to release the
GPU resource. In the middle, following the persistent thread
model, we perform multiple subsequent stages to offload work
to the device. Each of this stages is composed of four phases,
namely Copyin of data in the device memory, Trigger of one
or multiple SMs, Wait for one or multiple SM, and Copyout of
data to the host memory. Similarly, traditional CUDA kernels,
are made of an Alloc phase, to initialize the device driver
and data buffers, Copyin, Launch, Wait, Copyout, and Dispose
phase. We currently will not focus on data transfer effect, i.e.,
we do not consider the Copyin and Copyout phases, which
are strongly data/application dependent. We implemented a
simple benchmark which performs a loop of 20k iterations
before exiting, representative of a “medium” size GPU kernel,
and is completely computation bound (no memory transfer or
accesses).

We performed 100 experiments for each configuration, both
for LK and traditional CUDA. We performed two sets of
experiments: one where only one GPU core is used, and
one where the full GPU is used. Table II shows the time
(clock cycles spent on the host) to perform the aforementioned
phases.

Single SM
LK Init LK Trigger LK Wait LK Dispose
509M 239 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose
496M 3.9k 175k 274k

Full GPU
LK Init LK Trigger LK Wait LK Dispose
503M 210 190k 30M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose
497M 3.8k 176k 247k

TABLE II
AVERAGE VALUES FOR LK AND TRADITIONAL CUDA (SINGLE SM)

Unfortunately, while performing the former experiment, that
is, with a single-SM, in some cases the GPU device got
stuck. This is due to the fact that triggering a single SM
means transfering only a few bytes of data across the PCI
connector (the associated mailbox items), and in some cases
the optimization mechanism at the driver-level indefinitely
postpones this (excessively small) transfer. We therefore were
forced to transfer the full mailbox also in this cases, and this
explains how the numbers in the two tables are comparable.
Nicely, we see that LK outperforms “standard” CUDA by a
factor of 10× for the Trigger phase. This means that we are

more “reactive”, and potentially capable of handling finer-
grained kernels (on the order of few thousands of clock
cycles), because the overhead to offload work on the GPU is
smaller. This is a promising result also for non-real-time GPU
computing tout court. Unfortunately, on the other hand, the
Wait phases behaves similarly (around 170k vs. 190k cycles)
for LK and CUDA, as explained, because of low-level data
transfer policies by the driver and OS. Further optimizations
are needed at this point, and we plan to do them as a next step
of the project. Init (resp. Alloc) and Dispose phase are less
interesting from a point of view of LK, because they are only
performed at system boot and shutdown. We anyhow notice
how the latter phase is one order of magnitude slower in LK.

LK Init LK Trigger LK Wait LK Dispose
521M 1.1k 203k 33M

CUDA Alloc CUDA Spawn CUDA Wait CUDA Dispose
501M 7.7k 176k 893k

TABLE III
WORST VALUES FOR LK AND TRADITIONAL CUDA (SINGLE SM))

Table III shows the worst case times for the considered
phases, only for the case of single SM (numbers involving the
full GPU are similar). We see that both for LK and traditional
CUDA, the variance is significant for the Trigger phase, while
LK also suffers some variance against average performance
for the Wait phase. This variance in platform performance is
crucial in the real-time domain, where worst case performance
(and its difference with average-case performance) must be
minimized. For this reason, we will explore on low-level
software optimization as a next step of the project.

IV. CONCLUSION AND ACKNOWLEDGEMENT

GPUs are extremely powerful machines, but they are not yet
ready for adoption within industrial real-time settings. This is
mainly due to their complex architecture, and non-openness of
software runtime and drivers. As opposed to state-of-the-art of
real-time GPU computing, we exploit intra-GPU parallelism,
and provide a framework to explore real-time capabilities of
most advanced architectures within the single GPU devices.
The framework is not yet completed, but current results are
promising, and we already identified research and development
paths for our LightKernel tool.

This work was supported by the HERCULES Project,
funded by European Union’s Horizon 2020 research and
innovation program under grant agreement No. 688860

REFERENCES

[1] NVIDIA, “The Tegra X1 Platform,” 2015. [Online]. Available:
http://www.nvidia.com/object/tegra-x1-processor.html

[2] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A Framework
for Real-Time GPU Management,” in Real-Time Systems Symposium
(RTSS), 2013 IEEE 34th, Dec 2013, pp. 33–44.

[3] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in Innovative Parallel
Computing (InPar), 2012. IEEE, 2012, pp. 1–14.

[4] N. Capodieci and P. Burgio, “Efficient implementation of genetic algo-
rithms on GP-GPU with scheduled persistent CUDA threads,” in PAAP
2015, Nanjing, China, 2015, 2015, pp. 6–12.

[5] “CUDA Toolkit Documentation v7.0,” http://docs.nvidia.com/cuda/index.
html, accessed: July, 30th 2015.

[6] Kronos Group, “The OpenCL 1.1 Specifications,” 2010. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[7] A. Marongiu, P. Burgio, and L. Benini, “Supporting OpenMP on a
multi-cluster embedded MPSoC,” Microprocessors and Microsystems
- Embedded Hardware Design, vol. 35, no. 8, pp. 668–682, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2011.08.010

3

MrsP on Semi-Partitioned Systems

Jorge Garrido, Juan A. de la Puente, Juan Zamorano
Sistemas de Tiempo Real e Ingenierı́a de Servicios Telemáticos (STRAST)

Universidad Politécnica de Madrid (UPM)

Email: str@dit.upm.es

Abstract—Scheduling analysis schemes for multiprocessor plat-
forms is a very active research area. Among other proposals,
the MrsP protocol has acquired academic relevance due to its
specific benefits. In general words, MrsP proposes a spin-based
serialization algorithm for shared resources accesses control,
emulating the priority ceiling protocol and acquiring its main
properties. In this paper we preliminarily explore how the MrsP
protocol could be used to build Semi-Partitioned systems.

I. INTRODUCTION

Several different approaches have been developed for sup-

porting multiprocessors real-time systems. However, none of

them has acquired enough relevance, development and over-

came the common drawbacks of these approaches. Among

others, the main drawbacks of proposed multiprocessor ap-

proaches include excessive restrictions on the task model,

complexity or run-time overheads.

Another point is that none of the most extensively developed

approaches has aimed to be general purpose. On the contrary,

all approaches have focused only on partitioned or global

scheduling approaches and only a few of them on semi-

partitioned systems. The same way, main approaches have

been constrained to specific tasks models.

The MrsP protocol [1] was conceived to be a protocol solv-

ing the main multiprocessor approaches drawbacks without

necessarily restricting the scheduling systems to be partitioned,

semi-partitioned or globally scheduled, neither restricting the

task model. However, only fully partitioned systems with the

sporadic task model using fixed priorities are addressed in [1].

In this paper we explore a possible approach to semi-

partitioned systems [2], where tasks can be statically allocated

to processors or be shared among all or a set of them, using

the MrsP protocol for shared resources control.

The rest of the paper is structured as follows. Section II

gives a summary of the main characteristics of MrsP refer-

enced on this paper. Then section III presents the main lines of

the proposals under development, while section IV presents the

preliminary scheduling proposals. Finally some conclusions

and future work lines are given.

II. MRSP PROTOCOL

The MrsP protocol [1] is addressed to provide an architec-

turally neutral shared resources control protocol for multipro-

cessor systems. The protocol main contribution is the local

This work has been partially funded by the Spanish National R&D&I plan
(project M2C2, TIN2014-56158-C4-3-P).

serialization of shared resources accesses by means of a spin-

busy waiting at the local priority of the resource.

For fully partitioned systems with tasks scheduled using

fixed priorities, considering the general task model, a response

time analysis is given in [1]. This response time analysis

is as follows: let cj be the maximum execution time for a

resource, and |map(G(rj))| a function returning the number

of processors from which the resource rj is accessed, then the

cost of accessing a resource (noted as ej) is bounded to:

ej = |map(G(rj))|cj (1)

The worst case executing time of a task τi is the sum of

its worst case execution time added the cost of each access

(ni) to a shared resource accessed by the task (returned by

function F(τi):

Ci = WCETi +
∑

rj∈F(τi)

nie
j (2)

The final response time of a task τi under MrsP for fully

partitioned systems using the sporadic task model is:

Ri = Ci +max{ê, b̂}+
∑

τj∈hpl(i)

⌈

Ri

Tj

⌉

Cj (3)

where ê stands for the maximum execution time of a

resource used by a local task with a priority lower than τi and

a task of equal or higher priority and b̂ stands for the maximum

non-preemptive execution time induced by the RTOS. Finally,

hpl(i) returns the set of local tasks with higher priority than

τi.

To accomplish this response time analysis, it is required that,

at any given time, if a task accessing or spinning to access the

resource is active, progress is done on the shared resource.

This means that, if the task inside the resource is locally

preempted, and another tasks is spinning at another processor,

then the execution should continue on this second processor.

This is proposed in [1] to be implemented by thread migration

or parallel execution. None of the proposals of section III is

affected by choosing any of them.

III. PROPOSED APPROACHES

In this section the different approaches are motivated and

presented. The general aim of these approaches are to add

shared tasks to the system scheduling without fundamentally

4

affecting the response-time analysis of statically allocated

tasks. To accomplish this, all proposals included on this section

share one fundamental condition: all shared tasks are given

lower priority than any statically allocated task.

Different proposed approaches are divided in two groups,

those not affecting the response-time analysis of statically

allocated tasks, and those having a low, bounded effect on

this response time analysis.

A. Non-intrusive approach

As shown before, one of the main advantages of MrsP is

the upper bounding of the number of concurrent accesses to a

shared resource. This upper bound is the number of processors

from where the resource can be accessed.

As a result, this safe upper bound is not affected if tasks not

sharing any resource are added to the system. Furthermore,

if these tasks are given lower priorities than tasks sharing

resources, the response time analysis of the later ones is

not affected, even if those tasks are allocated to their same

processor.

Lemma 1: Response time analysis of tasks under MrsP is not

affected by tasks with lower priorities not sharing resources.

Proposal 1: Tasks not sharing resources can be dynamically

allocated to processors as shared tasks within Semi-Partitioned

systems scheduled with MrsP without affecting the schedula-

bility of statically allocated tasks as long as the later ones are

assigned a higher priority.

With our proposal, the remaining execution capacity of each

processor under MrsP may be used by shared tasks. How these

tasks are scheduled is an open issue preliminarily approached

in section IV.

Lemma 2: Response time analysis of tasks under MrsP is not

affected if tasks not sharing resources are allowed to execute

while MrsP tasks spin to access a shared resource.

This lemma assumes that the cost of releasing again the

spinning task preempting the shared task is comparable to just

granting access to the task while spinning. This assumption

is however highly dependant on the computer architecture

and the protocol implementation, requiring a more in deep

investigation.

Proposal 2: Tasks not sharing resources can safely use the

MrsP tasks spinning time to increase the overall remaining

execution capacity.

It can be argued that Proposal 2 fundamentally changes the

underlying MrsP protocol from spinning to blocking. However,

the spinning nature of the MrsP protocol is motivated by the

need of avoiding priority inversions. Here we propose that

only the shared tasks use the spinning time and only while

the spinning task would be otherwise actively spinning (i.e.

not preempted by a higher priority task). This does not change

any MrsP property or fundamental underlying philosophy. This

can be easily implemented by only allowing the shared tasks

scheduler (whichever it is) to schedule tasks while there is no

runnable task of higher priority than the local ceiling priority

of the accessed resource and the status of the accessing task

is spinning (i.e. it has not being granted access to the resource

and the processor has not been required to undertake the work

of the task inside the resource if it is locally preempted).

While this proposal addresses one of the main drawbacks of

MrsP (the spinning impact on effective processor utilization),

a safe bound to the executing capacity acquired by using this

spin-waiting time is under further investigation. While no such

safe bound seems to be reachable, tasks with firm and soft real-

time requirements are still candidates to take advantage of this

spinning time.

B. Sharing resources approach

While in section III-A we restricted the eligible tasks

for being shared among processors to be those not using

shared resources, in this section we relax this restriction. Even

not affecting the higher priority (statically allocated) tasks

response times is a desirable property, a much higher flexibility

can be acquired with a low overhead on these tasks.

In our next proposal we keep the aim of not changing

the upper bound of parallel accesses to shared resources, the

|map(G(rj))| factor in the MrsP response time analysis.

Lemma 3: The |map(G(rj))| factor for each resource is not

affected by the addition of tasks to a system as long as the

added tasks do not use different shared resources than the

already allocated tasks to processors where added tasks can

execute.

Lemma 4: The addition of tasks not incrementing the

|map(G(rj))| for any resource only affects the response time

analysis of tasks executing on the same processor as added

tasks.

Lemma 5: The addition of lowest priority tasks to a proces-

sor only affect the response time analysis of the lowest priority

tasks already allocated using the same shared resources as the

added task, assuming homogeneous resources access times as

in [1].

Proposal 3: Shared tasks can be dynamically allocated to

processors where all the resources used by the shared tasks are

already used by statically allocated tasks. Shared tasks must

be assigned lower priorities than any statically allocated task.

Lowest priority tasks statically allocated using the resources

also used by shared tasks must add the blocking time due to

the shared tasks accesses to those resources.

With this proposal, only the lowest priority tasks among

the statically allocated tasks are affected by the shared tasks.

However, a greater flexibility is obtained, being possible to

share tasks using shared resources. Again, a complete schedu-

lability analysis is under research, with a preliminary approach

proposed in section IV.

IV. SHARED TASKS SCHEDULING

In sections III-A and III-B three proposals are offered on

how shared tasks can be safely included in Semi-Partitioned

systems based on the MrsP protocol, without compromising

the schedulability analysis of the statically allocated tasks.

However, the scheduling of the shared tasks is an open issue,

preliminarily addressed in this section.

5

A. Desired characteristics

A set of desired characteristics for the scheduling of shared

tasks have been identified:

• Maximize the processor utilization: the main objective of

Semi-Partitioned systems is to maximize the utilization

of available processor time not used by statically allo-

cated tasks. As such, the scheduling algorithm should be

aligned to this objective.

• Have an effective schedulability test.

• As far as possible, exploit the well-known and proven

scheduling algorithms and properties developed for

single-processor real-time systems. One of the main con-

tributions of MrsP is its effective translation of well un-

derstood properties of single-processor resource control

policies to multiprocessor systems.

• Produce as few migrations as possible. Although the

main benefit of Semi-Partitioned systems arises from

the possibility of executing specific tasks on more than

one processor, migrations inherently pose an overhead.

Thus, a scheduling algorithm in which shared tasks are

more likely to complete each activation duty on a single

processor is preferred.

B. Non-sharing resources tasks scheduling

An initial approach for Proposal 1 under research is to use

a Global EDF scheduler [3] to schedule the shared tasks. This

approach includes some of the desired characteristics:

• Has an effective schedulability test for the task set re-

strictions previously explained. The maximum processor

utilization available for shared tasks can be obtained by

subtracting the processor utilization of allocated tasks

by the response time analysis proposed in [1] to the

total processor utilization available. Another possible way

under investigation to calculate the execution capacity

of shared tasks under the proposed systems is proposed

in [4]. Finally, in general terms, the resulting system with

regard to shared tasks has similarities with levels C and

D of the system model presented in [5]. As such, the

analysis given in [6] by using the service functions for

each processor proposed in [7] is also being considered.

• Properties of single processor EDF are well known, as

well as Global EDF has been widely studied and different

variations have been proposed over time.

C. Sharing resources tasks scheduling

A scheduling scheme for Proposal 3 is, however, far from

trivial. An initial approach is again to use Global EDF for

systems in which, as in the original MrsP response time

analysis formulation [1], the shared resources access times are

homogeneous for all processors.

Unfortunately, to the best of our understanding, there is

no mature scheduling scheme that can take advantage of

heterogeneous shared resources access times without adding

restrictions to the task set. Heterogeneous shared resources

access times could be considered for scheduling schemes

ensuring executions on specific processors for specific sections

of code.

V. CONCLUSIONS

MrsP protocol is a spin-based shared resource algorithm for

partitioned systems in which the shared resource access is seri-

alized by spinning at the local ceiling priority of the resource.

This algorithm leads to a response time analysis similar to the

PCP response time analysis for single-processors.

Here we have preliminarily analysed how MrsP could be

used for Semi-Partitioned systems as long as shared tasks are

given the lowest priorities. Two main approaches have been

proposed, one non-invasive for allocated tasks and a second

one only adding blocking time to the allocated lowest priorities

tasks using each resource on each processor.

For the first approach, shared tasks are restricted to not

use any shared resources and preliminarily a Global EDF

scheduling is proposed. For the second approach, shared

resources usage by shared tasks is allowed as long as the

shared resources used are also used by statically allocated tasks

on same processors. This approach slightly affects the response

time analysis results for statically allocated tasks. For shared

tasks scheduling, also Global EDF is preliminarily proposed.

On-going research includes formalising the presented pro-

posals as well as further investigating the scheduling possibil-

ities for shared tasks.

REFERENCES

[1] A. Burns and A. J. Wellings, “A schedulability compatible multiprocessor
resource sharing protocol–mrsp,” in Real-Time Systems (ECRTS), 2013

25th Euromicro Conference on. IEEE, 2013, pp. 282–291.
[2] J. H. Anderson, V. Bud, and U. C. Devi, “An edf-based scheduling algo-

rithm for multiprocessor soft real-time systems,” in Real-Time Systems,

2005.(ECRTS 2005). Proceedings. 17th Euromicro Conference on. IEEE,
2005, pp. 199–208.

[3] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations research, vol. 26, no. 1, pp. 127–140, 1978.

[4] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling on
multiprocessors,” in Real-Time and Embedded Technology and Applica-

tions Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp. 23–32.
[5] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos,

“Mixed-criticality real-time scheduling for multicore systems,” in Com-

puter and Information Technology (CIT), 2010 IEEE 10th International

Conference on, July 2010, pp. 1864 –1871.
[6] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for global

multiprocessor scheduling,” Real-Time Systems, vol. 44, no. 1-3, pp. 26–
71, 2010.

[7] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system designs.”
in DATE, vol. 3. Citeseer, 2003, p. 10190.

6

Towards Real-time Wireless Cyber-physical Systems

Romain Jacob∗ Marco Zimmerling† Pengcheng Huang∗ Jan Beutel∗ Lothar Thiele∗
∗Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

†Networked Embedded Systems Group, TU Dresden, Germany

firstname.lastname@tik.ee.ethz.ch marco.zimmerling@tu-dresden.de

Abstract—One big challenge to be overcome before the success-
ful deployment of wireless cyber-physical systems is to provide
hard real-time guarantees, not only within the wireless network,
but in fact between end-to-end application processes. To achieve
this, we design a distributed real-time protocol (DRP) that
considers the complete transmission chain, including application
tasks, peripheral busses, memory accesses, networking interfaces,
and wireless real-time protocol. DRP guarantees that end-to-end
message deadlines are met, while being adaptive to unpredictable
system changes, by establishing at run-time a set of contracts
among the different elements of the transmission chain.

I. INTRODUCTION

Over the past decade, a tremendous amount of work has

been carried out around low-power wireless communication

technologies. Especially, wireless sensor networks (WSNs)

have received much attention. One major challenge yet to be

overcome is to enable reliable and efficient use of low-power

wireless networking Cyber-Physical Systems (CPS), some-

times referred to as wireless sensor and actuator networks.

As many CPS applications are mission-critical and physical

processes evolve as a function of time, the communication

among the sensing, actuating, and computing elements in CPS

is often subject to real-time requirements (e.g., to guarantee

the stability of feedback loops). Such real-time requirements

are key to enable safe CPS, which is arguably one of the most

important features for a successful deployment of CPS [1].

Challenges. These real-time requirements are often specified

from an end-to-end application perspective. For example, a

control engineer may require that sensor readings taken at

time ts are available for computing the control law at ts+D.

Here, the relative end-to-end deadline D is derived from the

activation times of application-level tasks, namely the sensing

and control tasks, which are typically executed on physically

distributed devices. Meeting such hard end-to-end deadlines

is non-trivial, because data transfer between application-level

tasks involves multiple other tasks (e.g., operating system,

networking protocols) and shared resources (e.g., memories,

system busses, wireless medium). Therefore, the entire trans-

mission chain, involving application tasks, peripheral busses,

memory accesses, and wireless networking protocol, must be

taken into account to tackle this challenge. We argue that doing

so requires combining three building blocks:

1) on the node level, a decoupling of application (e.g.,

sensing, actuation, control) and wireless communication

tasks using a dual-processor architecture;

2) on the network level, an efficient wireless real-time proto-

col, which guarantees that messages between source and

destination nodes are delivered reliably in real-time;

3) overall, a distributed real-time protocol that manages

the flows of messages across the network, decouples

responsibilities between components, and ensures that

end-to-end deadlines between application tasks are met.

In this paper, we first briefly present the design of our solution

(Sec. II), then we highlight remaining problems and how we

intend to address them in our ongoing work (Sec. III).

II. OVERVIEW OF THE SOLUTION

We consider that all communications between a source

and destination node are subject to real-time constraints.

We call one such communication a flow. Let F be the set

of all real-time message flows in the system. Each flow

Fi = (si , di , Ti ,Di) is defined by a source node si , that

releases messages with a minimum inter-message interval Ti ,

also called period. Every message released by si should be

delivered to the destination node di within the same relative

end-to-end deadline Di . No message can be sent outside of

a flow, and each flow must be registered (i.e., accepted by

the protocol) before it can start releasing messages. Several

flows, eventually with different period and deadline, may be

registered between the same source and destination nodes.
The wireless network consists of a set of nodes N that

exchange messages via wireless multi-hop communication, as

illustrated in Fig. 1(a). A logically global network manager

arbitrates access to the shared networking resource. Physically,

the network manager may run on one of the nodes. The overall

design is based on three building blocks, as described next.

Dual-processor architecture. When using the traditional sys-

tem architecture shown in Fig. 1(a), application and com-

munication tasks execute concurrently on each node. When

both tasks attempt to simultaneously access shared resources

(e.g., memory, processor, system bus), one of them will be

delayed for an arbitrary time. Such interference hampers

timing predictability, making real-time guarantees difficult to

provide.
To tackle this issue, we propose to replace each node with

a dual-processor platform. One processor (AP) runs only the

application, while the other processor (CP) executes only the

wireless multi-hop communication protocol. Using the Bolt

interconnect [2], AP and CP are decoupled in time, power, and

clock domains, and can asynchronously exchange messages

with bounded delay, with ultra-low-power overhead.

7

Wireless	Multi-Hop

Communication

Node

Network	Manager

…
Node Node

(a) A set of nodes, each with a sin-
gle processor, execute the application
and exchange messages via wireless
multi-hop communication.

BLINK Real-Time

Wireless	 Protocol

Network	Manager

…
CP

BOLT

AP

CP

BOLT

AP

CP

BOLT

AP

Distributed	 Real-Time	 Protocol

(b) Application (AP) and commu-
nication (CP) processors exchange
messages via Bolt, while the CPs run
the Blink real-time wireless protocol.

Figure 1. Traditional (a) and our proposed (b) system architecture. A logically

global network manager arbitrates access to the shared wireless medium.

Wireless real-time protocol. Providing real-time guarantees

across wireless networks is challenging. In particular, to sup-

port real-world CPS applications, one needs a protocol that

delivers packets reliably (i.e., with high reception rate) within

real-time deadlines, while being adaptive to dynamic changes

in the wireless network and traffic demands.

Out of the many solutions that have been proposed over the

years, Blink [3] is the only wireless real-time protocol that

satisfies such requirements. It is built on top of LWB [4] and

leverages fast and highly reliable Glossy floods [5], a proto-

col based on synchronous transmissions, which represents a

paradigm shift away from traditional routing-based protocols.

Distributed real-time protocol. The use of Bolt to decouple

the application (running on the APs) and the Blink wireless

real-time protocol (running on the CPs) brings necessary

benefits, such as flexibility in the operation mode for each

component (e.g., time- versus event-triggered) and interference

mitigation. But at the same time, it also triggers a significant

challenge: while the APs and CPs should execute indepen-

dently to prevent interference, it is their joint operation that

determines whether messages exchanged between the APs

meet their end-to-end deadlines.

To address this challenge, we introduce a distributed real-

time protocol (DRP), which represents the third building block

of our solution. DRP strikes a balance between the decoupling

of AP and CP/Blink on the one hand and the end-to-end

timing predictability of message exchanges between the source

and destination APs of one flow on the other hand. This

trade-off is embodied by mutual contracts. A contract settles

the least required agreement between APs, CPs and Blink

such that all can operate as much as possible independently,

while ensuring that end-to-end message deadlines are met.

DRP establishes contracts at runtime, as flows are dynamically

requested and removed, and scales efficiently to large sets of

real-time message flows.

Using these three building blocks, the overall system archi-

tecture evolves from Fig. 1(a) to Fig. 1(b). In the remainder of

this section, we detail the design of DRP and how contracts

are established when a new flow is requested at runtime.

DRP: Distributed Real-time Protocol

DRP uses contracts that are dynamically established at run-

time to provide end-to-end real-time communication between

the source and destination node’s AP of every flow. This

includes guaranteeing that message buffers along the whole

transmission chain never overflow.

In a nutshell, the overall end-to-end latency of a message

depends on how often APs and CPs read out messages from

Bolt, and the maximal delay for a message to be served by

Blink. This can be formalized by three parameters for each

flow Fi: the flushing periods of the source and destination

nodes, and the network deadline of Fi, denoted by T s
f , T d

f ,

and Di respectively. The network deadline Di is computed on-

line by the source node’s AP when a new flow is requested.

It represents the deadline which is requested to Blink (i.e., if

Blink accepts this new flow, it guarantees that any message is

delivered at the destination node’s CP within Di).

DRP decides on the distribution of responsibilities among

the source node, Blink, and the destination node of a flow

Fi with regard to meeting its end-to-end deadline Di using

a configuration parameter of DRP, the deadline ratio r,

chosen at design time. The source node and Blink are jointly

responsible for meeting a fraction r of the end-to-end deadline

Di ,

f(T s
f , Di) = r ∗Di (1)

The remaining part of the overall end-to-end deadline deter-

mines the responsibility of the destination node,

g(T d
f) = (1− r) ∗Di (2)

One can derive concrete expressions for f(·, ·) and g(·) after

a detailed worst-case timing and buffer analysis of the system.

Overall, DRP dynamically establishes two contracts for each

newly admitted flow Fi ∈ F in the system:

Source ↔ Blink Fi’s source node si agrees to write no

more messages than specified by the flow period Ti ,

and prevents overflows of Bolt and CPs ’s local message

buffer. In turn, Blink agrees to serve Fi such that any

received message meets the network deadline Di .

Blink ↔ Destination Blink agrees to deliver no more mes-

sages than specified by Ti . In turn, Fi’s destination node

di agrees to read out all delivered messages such that

overflows of Bolt and CPd ’s local buffer are prevented

and all messages meet the flow’s end-to-end deadline Di .

For any flow, if both contracts are fulfilled, all messages that

are successfully delivered by Blink will meet their end-to-end

deadlines. In practice, the fulfillment of contracts is guaranteed

by a set of admission tests, which are performed in sequence

upon registration of a new flow. The overall mechanism of

contracts (i.e., sharing of responsibility, flow registration, and

admission tests) is illustrated on Fig. 2.

In our ongoing work, we have derived the theoretical

optimal performances that can be provided by DRP, in terms

of responsiveness (i.e., smallest end-to-end deadline) and

bandwidth that can be supported. We also evaluated the

run-time behavior of DRP in simulation, based on values

and parameters from physical implementations of both Bolt

and Blink. Our results show that the end-to-end latency of

messages can be up to 96% of the our analytic worst-case

8

Figure 2. Steps and components involved when registering a new flow in DRP. Given a request for a new flow Fi = (si , di , Ti ,Di), the source node’s AP

computes the flow’s network deadline Di . Then, all components successively verify using specific admission tests whether they can admit the new flow. DRP

registers a flow only if all admission tests succeed, which triggers changes in the runtime operation (i.e., schedule) of some components.

bounds. Thus, since our model of DRP’s performance is safe

and tight, it can be leveraged for system design.

III. OPEN QUESTIONS AND FUTURE WORK

As we mention in the introduction, DRP is an initial step,

and requires further investigations before we can claim it

efficiently solves the real-time challenge in wireless CPS. In

particular, we detail thereafter three key open questions that

we intend to investigate in future work.

Physical implementation of DRP. Even though our prelimi-

nary simulation results are encouraging, they are not sufficient

to validate the suitability of the protocol in a real-life setting.

As illustrated in Fig. 1(b), DRP requires specific hardware (i.e.,

a Bolt-enabled wireless network). Our group recently designed

and produced custom-built dual-processor boards where Bolt

interconnects a powerful application processor (TI MSP432)

with a state-of-the-art communication processor (TI CC430).

These have been implemented on the Flocklab testbed [6] and

this new network will be publicly available for testing soon.
Leveraging this experimental setting, we plan to implement

DRP and extensively test it to validate the registration and de-

registration of flows at run-time, experiment with the failure

and recovery of nodes, and verify that end-to-end real-time

guarantees hold in such dynamic scenarios. The accurate time

synchronization of FlockLab will allow us to validate the

analytic worst-case delay analysis in a real system.

Dependability. Blink is built on the state-of-art wireless

protocol LWB which achieves more than 99.9% data yield [4].

However, packet loss may still happen, and the sensitivity of

DRP to these losses must be investigated. While a moderate

loss of data packets can often be tolerated by the application,

loss of schedule packets, that drive the operation of Blink, may

be more critical.
We need now to develop a retransmission and/or depend-

ability scheme for DRP to mitigate such effects and provide (at

least) probabilistic guarantees for a safe behavior of the over-

all protocol, using e.g., probabilistic model-checking. Some

inspiration may be found in [7].

Reaching meaningful performances. Finally, the goal of this

work is to enable practical implementations of wireless CPS.

To this end, DRP must meet relevant latency requirements

(e.g., as mentioned in [1]). This means flow periods and end-

to-end deadlines ranging from tens of milliseconds to half a

second.

The question to investigate is how a given implementation

of DRP can be optimized to meet such requirements. Is this

even possible? If not, where do the main limitations come

from? How can we optimize our design to overcome such

limitations? In our opinion, the main trade-off comes from

the decoupling between the various components. It brings

flexibility and mitigates interference, but at the cost of a larger

minimum end-to-end deadline that can be supported.

IV. CONCLUSIONS

Concealing hard real-time guarantees and wireless com-

munication is very challenging. However, the emergence of

Glossy-based protocols help significantly, as they eliminate

the need for complex routing and enable unparalleled flexi-

bility and adaptability in low-power wireless communications.

Hence, we are striving to bridge this gap and eventually enable

the successful deployment of safe and reliable wireless CPS.

Acknowledgments. This work was supported by Nano-

Tera.ch, with Swiss Confederation financing, and by the Ger-

man Research Foundation (DFG) within the Cluster of Excel-

lence “Center for Advancing Electronics Dresden” (CFAED).

REFERENCES

[1] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research challenges
in wireless sensor and actuator networks targeting industrial automation,”
in Proc. of IEEE INDIN, 2011.

[2] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Gi-
annopoulou, F. Ferrari, J. Beutel, and L. Thiele, “Bolt: A stateful
processor interconnect,” in Proc. of ACM SenSys, 2015.

[3] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive real-time communication for wireless cyber-physical systems,” ETH
Zurich, Tech. Rep., 2016.

[4] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proc. of ACM SenSys, 2012.

[5] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proc. of ACM/IEEE

IPSN, 2011.
[6] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,

“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Proc. of ACM/IEEE IPSN, 2013.

[7] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele, “On modeling low-
power wireless protocols based on synchronous packet transmissions,” in
Proc. of IEEE MASCOTS, 2013.

9

Preemption Point Selection in Limited Preemptive
Scheduling using Probabilistic Preemption Costs

Filip Marković, Jan Carlson, Radu Dobrin

Mälardalen Real-Time Research Center, Mälardalen University, Sweden

{filip.markovic, jan.carlson, radu.dobrin}@mdh.se

Abstract—Limited Preemptive Scheduling is an attractive
paradigm that enables controlling preemption related overheads,
by appropriate preemption point selection. The selection of
preemption points is essential to ensure schedulability and the
associated analysis accounts for upper bounded preemption
overheads, thus introducing a potentially high level of pessimism
in the results. In this paper we propose a probabilistic distribution
model of preemption related overhead and an accompanying
method for preemption point selection based on quantiles, which
provides controllable probabilistic relaxations. An experimental
evaluation demonstrates the improvement of the extent to which
this new approach facilitates finding solutions to the preemption
point selection problem.

I. INTRODUCTION

Limited Preemptive Scheduling (LPS) is an attractive al-

ternative to non-preemptive scheduling or fully preemptive

scheduling with respect to, e.g., addressing real-time systems

schedulability, or efficiently controlling the number of preemp-

tions and associated overheads. LPS can efficiently reduce the

blocking by lower priority tasks, compared to non-preemptive

scheduling, as well as generate a significantly lower number

of preemptions compared to the fully preemptive scheduling.

The significance of the preemption related overheads in

LPS, and real time systems in general, has received an

increased attention during the past decade [1], [2]. The pre-

emption related overheads are traditionally derived from the

code level analysis taking into account, e.g., the Cache Related

Preemption Delays (CRPD), pipeline and instruction cache

effects, or context switch costs [3], and further used to analyse

their impact on the LPS schedulability [4]. Consequently, the

current state of the art relies on overly pessimistic assump-

tions about CRPDs. Hence there is a need for new, unified

approaches that benefit from a better use of information from

the code analysis in the schedulability analysis and vice versa.

Unified code level and schedulability level analysis is

mainly aiming at bounding the preemption costs and reducing

the level of pessimism in the computation of preemption-

related overheads [5], [6]. In the context of LPS, the existing

approaches typically assume that the upper bounds of preemp-

tion related delays are provided from the code-level analysis

(e.g., CRPD analysis), and that the possible preemption points

are predetermined by the programer, out of which a set of them

is selected to guarantee schedulability [4], [7]. However, the

schedulability analysis is overly pessimistic as it is based on

upper bounded preemption overheads, which at runtime are

typically generated with a very low probability. Hence, the

analysis can benefit from a probabilistic approach that takes

into account the probabilistic distribution of the preemption

related overheads at runtime, and thus enlarges the number of

sets of feasible preemption point selections.

Empirical methods can be used to estimate probabilistic

distributions of the preemption overheads. Bastoni et al. [2]

proposed two approaches for measuring CRPD – a schedule-

sensitive method, that measures scheduler-dependent effects of

cache, and a synthetic method, that can quickly record a large

number of measured samples. Thus, both approaches provide

information about the statistical distributions and average

CRPDs, as well as cache-related preemption and migration

delays (CMPDs). The derived probability distributions of the

preemption costs enrich the analysis with additional informa-

tion that provides for efficient preemption point selection and

associated probabilistic schedulability guarantees.

We envision a framework based on a probabilistic preemp-

tion overhead model that enables preemption point selections

with associated probabilistic schedulability analysis under the

LPS paradigm. As a first step, in this paper we propose a

probabilistic distribution model of preemption related over-

heads and, building upon the work of Bertogna et al. [8] (LiP-

opt), we propose a new preemption point selection approach

based on quantiles. Our approach provides preemption point

selections that guarantee taskset schedulability in all cases

where the LiP-opt method does, but it also finds selections for

some task sets, deemed as unfeasible by LiP-opt, by gradually

relaxing the upper bounds on preemption overheads according

to the probabilistic distributions.

II. SYSTEM MODEL

In this Section we describe the task model that builds on the

work presented by Bertogna et al. [8], and our probabilistic

preemption overhead model.

A. Task Model

We consider a set of sporadic tasks Γ, composed of n real-

time tasks under uni-processor Fixed Priority (FP) paradigm.

Every task τi (1 ≤ i ≤ n) has a worst case execution time Ci

and generates an infinite number of task instances, with the

first instance arriving at any time and the successive instances

are separated by minimum interarrival times Ti. The relative

deadline Di of each task is less than or equal to the task period

(Di ≤ Ti). Furthermore, each task consists of a sequence of

m non-preemptive blocks Bi,k, (1 ≤ k ≤ m), with worst

10

case execution times Ci,k, Ci =
∑m

k=1 Ci,k. Consequently, the

blocks of a task τi are separated by m−1 possible preemption

points denoted by PP i,k. The preemption overhead upper

bound associated with PP i,k is denoted by PO i,k.

B. Probabilistic Overhead Model

In this paper we use a model of preemption related over-

heads based on probability density functions. This model

enhances the information level of the preemption overhead

compared to the existing single valued upper bound models.

We assume that the overhead distribution of each possible

preemption point PP i,k is represented by a probability density

function PDF i,k with distinct upper bound PO i,k such that

∀x | x < 0 ∨ x > PO i,k ⇒ PDF i,k(x) = 0 (see Figure 1).

The overhead distributions can be derived using various

methods e.g., empirical measurements, CRPD analysis, or

using probabilistic convolution of multiple methods. For ex-

ample, in order to combine empirically derived results (marked

red) with a pessimistic upper bound from static code analysis

(marked black) they are primarily joined in a union sample.

By sorting the sample for PP i,k on the preemption related

overhead axis we can use the density estimation methods (e.g.,

Kernel density estimation) to estimate the PDF i,k.

From PDF i,k we derive a quantile preemption overhead

value using the quantile function. The quantile function

Q(p,PDF i,k) for a given probability p in the probability

distribution PDF i,k calculates the preemption overhead value

such that the probability of the overhead being less or equal to

the calculated value is equal to the given probability p. Since

we assume that the upper bound is always included in the

overhead distribution, consequently Q(1,PDF i,k) = PO i,k.

preemption overhead (Kcycles)

probability

Q 0.9,PDF()i,k

PDFi,k
sample of preemption
overhead

upper bound

POi,k

Fig. 1. Probabilistic overhead model derived from the empirical samples

III. SELECTION APPROACH

The preemption point selection approach in this paper is

based on the LiP-opt method proposed by Bertogna et al.

[8] and exploits the benefits of using a probabilistic overhead

model. The goal is to select a subset of selected preemption

points (SPP) from the set of possible preemption points and

enable them for runtime preemption. After the selection, the

interval between consecutive SPPs is called a non-preemptive

region (NPR). The LiP-opt method computes an optimal

preemption point selection with respect to the minimisation of

the preemption overhead per task while guaranteeing schedu-

lability. If a feasible selection is found, by computing the

maximum NPR for each task based on execution times (Ci)

of its higher priority tasks, then the schedulability of the task

set is guaranteed. Ci is recalculated after each selection by in-

cluding the preemption overheads of the selected points in the

updated execution time (C ′
i = Ci+

∑

PO i,k | PPi,k ∈ SPP).

Therefore, the selection algorithm is computed in decreasing

priority order from τ1 to τn. For example, for task τi the

computation of NPRi includes C ′
j (j < i) of all higher

priority tasks. The algorithm will not find a feasible selection

if ∃ i, k such that NPRi < PO i,k + Ci,k.

By using our probabilistic preemption overhead model

(instead of only upper bounds) we increase the number of

possibilities for the preemption point selection. Importantly,

the quantile approach can overcome the NPR infeasibility

condition by providing relaxation not only in the preemption

overhead, but also in the run-time utilisation (by selecting

points which are less likely to produce high overheads).

In order to achieve the above mentioned benefits, we

propose a quantile selection approach. Selection based on

quantiles allows us to consider the overhead associated with a

preemption point at a given confidence level p. With p = 1, the

quantile function returns the upper bound values, while setting

p such that p < 1 provides different quantile values for the

different preemption distributions, thus implying a different

point selection.

p← 1
while (p ≥ threshold) do

for i← 2 to n do

PO
p

i,k
← Q(p,PDF i,k) for each PP i,k of τi

compute NPRi using C′
j for j < i

SPP
p
i ← PP selection w.r.t. PO

p

i,k
and NPRi

C′
i ← Ci +

∑
PO

p

i,k
| PP i,k ∈ SPP

p
i

end

if (∀i SPPp
i 6= infeasible) then

return
⋃

2≤i≤n SPP
p
i

else
p← p− ǫ

end
end

return infeasible

Algorithm 1: The quantile selection approach

In first iteration, p is set to 1 (see Algorithm 1), and

the preemption point selection will be exactly the same as

with LiP-opt – considering the upper bounds and satisfying

hard schedulability guarantees. However, if a feasible selection

cannot be computed, p is decreased by the predefined amount

ǫ and a new attempt is made to find a selection, this time

based on the p − ǫ quantile overhead values, thus relaxing

the NPRi value and C ′
i

of tasks. The algorithm stops with

the first quantile solution that satisfies relaxed schedulability

guarantees or when the predefined threshold is reached.

IV. EXPERIMENTAL RESULTS

In order to investigate the applicability of the proposed

approach, we have conducted a number of experiments to

calculate the ratio of schedulable task sets for which a feasible

preemption point selection is found based on preemption over-

head upper bounds, against our quantile selection approach

where the considered overheads are based on a gradually

11

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Utilisation

0

20

40

60

80

100

T
as

k
 s

et
s

fo
r

w
h

ic
h

 a
 s

el
ec

ti
o

n
 i

s
fo

u
n

d
 (

%
)

Upper bounds

Quantile selection

Fig. 2. Upper bound- and quantile-based preemption point selections

decreasing probability factor. The purpose of the experiments

was to investigate to what extent relaxing the considered

overheads facilitates finding solutions to the preemption point

selection problem.

In the experiment setup we generate 500 synthetic task sets,

consisting of 7 tasks per task set. Each task consists of a

random number of BBs, in the range [20, 200], with the WCET

of each BBs generated according to a Gaussian distribution

(µ = 4000, δ = 3000). The upper bounds of the preemption

overhead are generated according to the distribution described

by Bertogna et al. [8], for each possible preemption point.

Based on these upper bounds (denoted u for brevity below),

the probabilistic distributions for the preemption overheads

are randomly generated from three possible Gaussian distri-

butions, selected with equal probability: (µ= 3
20u , δ= 1

15u),

(µ= 1
2u , δ= 1

15u), and (µ= 3
20u , δ= 14

15u). Next, we generate

variants of these 500 task sets for a number of utilisation

values ranging from 0.5 to 0.99 by deriving task periods with

the U-unifast algorithm [9] to achieve the desired utilisation.

However, the relevant results are found in the [0.8,0.98] range.

For each task set we run the selection method [8] based on

preemption overhead upper bounds. We also run the proposed

quantile selection approach, with a threshold parameter of 0.8,

meaning that p values from 1 to 0.8 are considered.

Figure 2 presents the experimental results, focusing on the

percentage of task sets for which a selection is found. For

utilisations lower than 0.8, both approaches find selections that

guarantee schedulability based on the upper bounds (in the first

iteration of the quantile selection approach). For utilization

greater than or equal to 0.8, there are task sets for which no

feasible selection exists using the upper bounds, but for which

the proposed quantile selection approach can find selections

when considering gradually relaxed overhead bounds between

the 1 and 0.8 quantiles. For example, when the utilisation is

0.92, the quantile selection approach finds a valid selection for

18% of the task sets in addition to the 50% feasible selections

found based on upper bounds.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel approach for preemption

point selection in LPS, based on preemption related overheads

modelled as probabilistic distributions. We use a quantile

based preemption point selection that provides a wider set

of feasible solution in terms of feasible preemption points,

compared to traditional upper bound based approaches, thus

enabling its use in different scenarios.

For systems that are already schedulable using traditional

upper bound based approaches, our method will also find

an optimal set of preemption points. In addition, for many

systems deemed as unschedulable due to high preemption

overheads, the method can still provide a set of selected

preemption points by gradually relaxing the upper bounds on

preemption overheads based on the probabilistic distributions.

As the next step, we plan to investigate how the proposed

quantile based selection impacts on the probability of missing

a deadline. We envision an algorithm that will heuristically

derive a set of points that minimises the probability of a

deadline miss. Consequently, we will investigate quantile

based selection and the associated probabilistic schedulability

analysis, as well as improving existing schedules with respect

to, e.g., reducing the overheads and thus providing for more

slack, improved preemption point selection with respect to

critical sections and the need of synchronisation mechanisms,

etc. Another line of future work considers the improvements

for specified attributes of schedulable systems, e.g., to reduce

the average response time or number of preemptions. Finally,

the introduced probabilistic model will be enriched with more

information provided by code level analysis.

ACKNOWLEDGMENT

We want to express our gratitude to the EUROWEB+

project that partly founded the research and also to Abhilash

Thekkilakattil for valuable discussions.

REFERENCES

[1] W. Lunniss, S. Altmeyer, R. I. Davis et al., “A comparison between fixed
priority and EDF scheduling accounting for cache related pre-emption
delays,” Leibniz Transactions on Embedded Systems, vol. 1, no. 1, 2014.

[2] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility,” Proceedings of OSPERT, pp. 33–44, 2010.

[3] C.-G. Lee, J. Han, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” IEEE Transactions on Computers,
vol. 47, no. 6, pp. 700–713, 1998.

[4] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling
for real-time systems. A survey,” industrial Informatics, IEEE Transac-

tions on, vol. 9, no. 1, pp. 3–15, 2013.
[5] H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible pre-

emptions,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 10, no. 2, p. 27, 2010.

[6] S. Altmeyer and C. Burguiere, “A new notion of useful cache block to
improve the bounds of cache-related preemption delay,” in Real-Time

Systems, 2009. ECRTS’09. 21st Euromicro Conference on. IEEE, 2009,
pp. 109–118.

[7] B. Peng, N. Fisher, and M. Bertogna, “Explicit preemption placement for
real-time conditional code,” in Real-Time Systems (ECRTS), 2014 26th

Euromicro Conference on. IEEE, 2014, pp. 177–188.
[8] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Op-

timal selection of preemption points to minimize preemption overhead,”
in Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on.
IEEE, 2011, pp. 217–227.

[9] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

12

Cyber-OF: An Adaptive Cyber-Physical Objective Function for

Smart Cities Applications

Med Ghazi Amor§‖ Anis Koubaa§∗, Eduardo Tovar§, Mohamed Khalgui ‖
§CISTER/INESC TEC and ISEP-IPP, Porto, Portugal

∗ Prince Sultan University, Saudi Arabia.
‖ INSAT, University of Carthage, Tunisia.

Email: (mhgha, aska, emt)@isep.ipp.pt, akoubaa@psu.edu.sa, khalgui.mohamed@gmail.com

Abstract—RPL is the standard routing protocol for the Internet
of Things. It is designed for low-power and lossy networks.
Several works designed different objective functions for RPL
to optimize routing decisions for a particular category of ap-
plications. However, these objective functions do not take into
account the cyber-physical properties of the environment. In
addition, they are tailored to satisfy a particular application
requirement (e.g. energy efficiency or delay), so are not adaptive
to possible changes of data criticality. This paper improves on
the state-of-the-art with the design of a cyber-physical objective
function tailored for smart city applications, that addresses the
aforementioned gaps. Initial simulation results demonstrate the
effectiveness of Cyber-OF in coping with dynamic changes of the
criticality of events data and in providing a good performance
trade-off between conflicting performance metrics, namely energy

I. INTRODUCTION

The Internet-of-Things (IoT) is increasingly gaining popu-

larity in both academia and industry enabling a large number

of applications that integrate both the cyber-world and the

digital world, namely the Internet. Gartner predicts that the

value add of the IoT by 2020 would reach $1.9 Trillion

whereas CISCO estimates to reach 50 billions devices by 2020

[1]. Smart cities is one of the most promising applications of

the IoT and according to IoT Analytics, it is considered as

the second most popular application in 2015 [2]. One of the

most influencing driving factor of the IoT is the development

of standard protocols stack that copes with IoT applications

requirements in terms of scalability, energy-efficiency, Quality

of Service (QoS) and security, including the IEEE 802.15.4

protocol and its variants for lower communication layers, and

then its integration to the Internet through the 6LoWPAN

initially, and later with RPL routing protocol [3] at the

network layer. CoAP and MQTT were proposed as alternatives

to HTTP for Internet application layer and transport layer

protocols in the IoT.

RPL is a source-based distance-vector routing protocol that

was designed for low-power and lossy networks, such as

wireless sensor networks. RPL attracted a lot of attention in the

literature considering the open design of its objective function

that is responsible for shaping the routing decision. Several

works (e.g. [4] [5] [6] [7] [8]) have been proposed around the

specification of objective functions that improve over those

specified in the standard namely OF0 and MRHOF based on

ETX metric. However, most of these objective functions adopt

a static behavior that intends to optimize either a single-metric

or multi-metric objective function without being adaptive to

the events data carried out. In addition, the proposed objective

functions in the literature do not consider the cyber-physical

properties of the environment such as climate conditions, that

in the context of a smart city applications, may infer about

the criticality of an event (e.g. high temperature would mean

a fire event).

To illustrate the problem, consider an RPL-based sensor net-

work for weather and climate conditions monitoring. Typical

objective functions would be designed to optimize a certain

metric of interest such as energy consumption, or delay, or

throughput, or hop count, etc. Some others like in [6] proposed

a fuzzy logic objective function that combines several metrics

of interest like energy consumption, or delay using fuzzy rules.

However, these objective functions would behave exactly the

same as if they carry a normal data packet or a critical-

event data packet, which might not be appropriate. In fact,

in case of normal conditions, it is wiser to focus more on

optimizing the energy consumption, however, when a critical

event occurs, (e.g. a fire) it would be more appropriate to

optimize the end-to-end delay. Thus, an adaptive behavior

would fit better this dynamic nature of events in the context

of IoT applications in general and smart cities applications

in particular. This represents the main motivation of this

paper, where we contribute with the design and development

of a new objective function that (1) takes into account the

cyber-physical properties of the environment, (2) provides an

adaptive behavior based on the criticality of the event. We

also provide initial simulation results that demonstrate the

effectiveness of our approach.

The remainder of the paper is organized as follows. Section

II presents an overview of previous works on design of

objective functions of RPL and contrast it against the pro-

posed cyber-physical objective function. Section III presents

the cyber-physical objective function. Simulation study and

performance evaluation are presented in Section IV. Section

V concludes the paper and outlines future works.

II. RELATED WORK

Routing metrics and objective functions are the responsible

features for the Directed Acyclic Graph (DAG) construction

in RPL. However, the standard defined by the IETF in [4]

did not impose any routing metric to use. Thus, the parent

13

selection is implementation-specific which makes it an open

research issue worth of being investigated. In this section, we

briefly review the Objective Functions (OF) proposed in the

literature.

In [5], MRHOF was proposed. It is an objective function

based on the ETX metric which is the number of transmissions

a node expects to make to a destination in order to successfully

deliver a packet. It uses a metric container to specify the

routing objects which are located in a DIO packet. Besides the

ETX, MRHOF may be used with any routing metric defined

in RFC 6551.

In [10], the authors defined a new extention for RPL called

Co-RPL. It is designed for mobile low power and lossy WSN.

Its main purpose is to maintain the connectivity between the

nodes while providing QoS guarantees in a mobile network.

Their solution is to modify the trickle timer which will depends

on the speed and mobility of the node.

In [11], the authors tackled the problem of using one metric

to construct the DAG and to optimize paths to the root. They

considered four routing metrics for their solution to select the

best neighbor. It consists on combining the Hop Count, End-to-

End delay, Energy and the ETX (expected transmission count)

using an artificial intelligence technique which is the fuzzy

logic. This algorithm will convert these links and node metrics

into one output value which will decide whether the neighbor

parent deserves to be a preferred parent or no.

In summary, when studying the mentioned OFs, we notice

that they do not take in consideration the cyber-physical

properties of the environment. Therefore, relying on one metric

or more in a critical condition (storm, fire, disaster ...) may be

inefficient and does not satisfy the requirements of the smart

cities application profiles. For example, the use of the hop-

count metric in an emergency situation may not choose the

fastest way to advertise the network. In addition, the use of

one static objective function would not fit the requirements of

the same applications having different types of event criticality.

III. CYBER-PHYSICAL OBJECTIVE FUNCTION

We designed the Cyber-Physical objective function (Cyber-

OF) to adapt the network tree structure in real-time to the

cyber-physical properties of the environment based on the

event criticality. In fact, for normal data packets, the objective

is to maximize the network lifetime, thus, the objective func-

tion optimizes the energy consumption. In case of a critical

event, the network should adapt its topology to minimize the

end-to-end delays. Therefore, we adopt an adaptive behavior

by considering two routing objective functions, each uses a

particular metric of interest, namely:

• Energy Metric: this metric represents the energy con-

sumption in an RPL node. With this metric, it is possible

to extend the network lifetime. It is essential to consider

this metric for applications with energy-efficiency con-

cerns.

• End-To-End delay: The end-to-end delay is the average

time taken by a packet to be sent from node to sink. This

metric should be minimized for applications that require

real-time guarantees.

The flowchart in the Figure 1 summarizes the operations of

the cyber-physical objective function.

Fig. 1. Flowchart of the Cyber-Physical objective function

First, the objective function (OF) based on the energy metric

is activated. Second, RPL switches to the latency OF only if

a critical event is detected which will allow RPL to find the

stable minimum-latency paths. The metric used by the Cyber-

OF is determined by the metrics located in the DIO metric

container.

For example, in normal conditions, the objective function

maximizes the network lifetime. In case of an emergency

situation where a critical event is detected, nodes involved

in forwarding this event to the border router must use a new

objective function that reduces the end-to-end delays.

IV. SIMULATIONS AND PERFORMANCE EVALUATIONS

A. Environmental Setup

Alarm

Sink
Sink

Fig. 2. Simulation scenario : (i) Send the alarm to the sink node (ii) Send
a multicast packet to the whole network

We implemented the Cyber-OF in ContikiOS and we used

Cooja simulator to evaluate its performance. We evaluated

the performance of three implemented objective functions,

namely: (1) latency-based objective function (OF), which

only optimizes the latency, (2) energy-based OF, which only

optimizes the energy, and (3) the Cyber-OF, which implements

the adaptive behavior defined in Figure 1.

14

The simulations scenarios were performed using a 2D-grid

surface of a network topology with 10, 20 and 30 sensors.

The DAG architecture is composed of one Border Router,

which represents the data sink, and the rest are UDP servers

generating the data. The depth of the formed DAG is equal

to 6. In this simulation, we assumed that a fire alarm will be

triggered in node 10, which will send a unicast DIO packet

that contains the alarm to the sink. After that, the sink will

send the received alarm to all nodes of the DAG to adapt the

topology accordingly.

B. Results

In this section, we will present the results of the evaluation

of the Cyber-OF, and we will examine the impact of the

following parameters:

• End-to-end delay: It is the duration between starting

packet transmission and its reception by the DAG root.

• Network lifetime The network lifetime of a WSN is

defined as the time collapsed until the first sensor runs

out of energy.

1) Average delay: Fig 3 compares the average end-to-end

delay of the three objective functions Energy-OF , Latency-OF

and the Cyber-OF. It is obivious that they have similar delay

values when the network is composed of less than 20 nodes.

However , there is a slight difference for the energy OF which

allows a higher average delay. This result is expected as the

energy OF only maximizes the network lifetime and the choice

of the best parent is based only on the energy remaining in the

node. We notice also that when the network is composed of

more than 20 nodes , the Cyber-OF experiences lower average

delay values than the energy OF. This confirms the tendency

of the Cyber-OF to minimize the delay when critical events

(a fire alarm in our simulation) are detected.

10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

800

DAG Size

A
v
e
ra

g
e
 E

n
d

−
to

−
e
n

d
 d

e
la

y

Energy OF

Cyber−Physical OF

Latency OF

Fig. 3. Average End-to-End delay

2) Network lifetime: Figure 6 represents the energy con-

sumed by latency OF and Cyber-OF and demonstrates how it

can save energy and maximize the network lifetime more than

the Latency-OF during 5 minutes of the simulation.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the initial results and implemen-

tations of the cyber-physical objective function to adapt RPL

Latency OF Cyber OF
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

T
im

e
 (

m
s
)

Fig. 4. Comparison between the network lifetime of the Latency-OF and
the Cyber-Physical OF

to the properties of the environment. As a future work, the

energy metric will be combined with other metrics in order

to guarantee an acceptable QoS in the presence of a disaster

or in normal conditions. We also aim at storing two parent

candidates in the sensor to speed up the advertisement of the

alarm. One is used when a critical event is detected and the

other is used in normal conditions.

VI. ACKNOWLEDGMENT

This work was partially supported by National Funds

through FCT/MEC (Portuguese Foundation for Science and

Technology) and co-financed by ERDF (European Regional

Development Fund) under the PT2020 Partnership, within the

CISTER Research Unit (CEC/04234). And the author(s) would

like to thank Prince Sultan University for funding this work

through grant GP-CCIS-2013-11-10.

REFERENCES

[1] K. L. Lueth, “IoT Market forecasts at a glance,” 2014.
[2] Jonas, “Top 10 IoT applications: apple drives wearables to 1,” 2015.
[3] O. Gaddour and A. Koubaa, “RPL in a nutshell: A survey,” Computer

Networks, vol. 56, no. 14, pp. 3163–3178, 2012.
[4] T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy net-

works,” 2012.
[5] O. Gnawali, “The minimum rank with hysteresis objective function,”

2012.
[6] O. Gaddour, A. Koubâa, and M. Abid, “Quality-of-service aware routing

for static and mobile ipv6-based low-power and lossy sensor networks
using RPL,” Ad Hoc Networks, vol. 33, pp. 233–256, 2015.

[7] N. Gozuacik and S. Oktug, “Parent-aware routing for iot networks,” in
Internet of Things, Smart Spaces, and Next Generation Networks and

Systems, pp. 23–33, Springer, 2015.
[8] H.-S. Kim, J. Paek, and S. Bahk, “Qu-rpl: Queue utilization based rpl

for load balancing in large scale industrial applications,” in Sensing,

Communication, and Networking (SECON), 2015 12th Annual IEEE

International Conference on, pp. 265–273, IEEE, 2015.
[9] P. Thubert, “Objective function zero for the routing protocol for low-

power and lossy networks (rpl),” 2012.
[10] O. Gaddour, A. Kouba, R. Rangarajan, O. Cheikhrouhou, E. Tovar, and

M. Abid, “Co-rpl: Rpl routing for mobile low power wireless sensor
networks using corona mechanism,” in Proceedings of the 9th IEEE

International Symposium on Industrial Embedded Systems (SIES 2014),
pp. 200–209, June 2014.

[11] O. Gaddour, A. Kouba, N. Baccour, and M. Abid, “Of-fl: Qos-aware
fuzzy logic objective function for the rpl routing protocol,” in Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),

2014 12th International Symposium on, pp. 365–372, May 2014.

15

Inter-Arrival Curves for Multi-Mode and Online
Anomaly Detection

Mahmoud Salem, Mark Crowley, and Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo, Canada

{m4salem, mcrowley, sfischme}@uwaterloo.ca

Abstract—Network Calculus uses arrival curves for require-
ment specification, which are extended in practice by Real-time
Calculus for performance analysis and analytical modelling for
arbitrary event streams. Recent work introduced inter-arrival
curves as a specific form of arrival curves and demonstrated their
feasibility as features to reason about the behavior of real-time
systems for anomaly detection purposes. In this ongoing work,
we present an application of inter-arrival curves in an online
anomaly detection environment. We further employ inter-arrival
curves in a multi-classifier framework for improved anomaly
detection performance.

I. INTRODUCTION & RELATED WORK

Real-time systems often generate logs in a streaming fashion

at a high-rate which makes traditional offline anomaly detec-

tion techniques ill-suited for online applications. One main

reason is that the storage available by these systems is usually

insufficient to accommodate a log of an entire session of

operation. Our work aims to apply a technique that allows for

online processing of trace streams. Figure 1 shows a proposed

procedure for online mining of event traces. The online

techniques require bounded computation time to analyze trace

streams [1] due to the limited time available before new

trace data arrives for processing. However, abnormal streams

could be stored for further analysis offline, not requiring much

storage compared to storing entire sessions of trace logging.

Fig. 1: Online Anomaly Detection Environment

The main target of anomaly detection techniques is to

classify the behavior of the system under scrutiny either to

be normal or anomalous. In this domain false negatives might

lead to errors or failures in the system. False positives are also

undesirable but merely lead to wasting resources investigating

events which are not really anomalous. Thus, the aim of the

classifiers is to maximize true positives while minimizing

false positives [2]. In our recent work on offline anomaly

detection [3], we employed a single classifier that analyzed

event traces for a system having a single recurrent mode of

operation. This technique, however, is not suited for systems

having multiple modes of operations. Such systems may

have intrinsic features that can vary considerably, yet still be

operating normally. In this case, having a single classifier that

learns the behavior of such systems can lead to higher false

positives or negatives depending on the mode of operation. We

aim to employ a multi-mode classification framework whose

classifiers learn from the various normal modes of operations.

Hence, the anomaly detection procedure can detect anomalous

behavior within a given mode of operation more accurately.

The contributions of this work in progress are as follows:

• Propose an online anomaly detection technique for event

traces using inter-arrival curves.

• Propose a multi-mode classification framework using

inter-arrival curves for improved anomaly detection.

• Empirically demonstrate the feasibility and viability of

the proposed approaches using event traces from an

embedded real-time system.

II. ONLINE ANOMALY DETECTION

The presence of overwhelming data generated by real-

time systems, combined with the need for real-time anomaly

detection techniques, makes the problem of having an efficient

online anomaly detection technique on the list of the current

research problems [4].

Inter-arrival curves provide good features suited for anomaly

detection [3]. Having features that provide information about

system behavior with less data is a typical requirement for

on-the-fly analysis specifically for real-time systems having

recurrent behavior, that is why we conjecture that using inter-

arrival curves restricts the online analysis to data generated

within an instance of such recurrent behavior.

Informal problem statement: Given a set of event traces

generated by a well-specified system in a given execution

scenario, check on-the-fly whether a stream of events from

the same system originates from the same execution scenario.

The first problem is to target online classification for trace

streams. In prior inter-arrival work [3], we demonstrated an

offline approach that classifies complete traces post-mortem.

The online classification problem is less studied and faces

several challenges [4]. One main challenge is the efficient

classification of the trace stream constrained by both the

computational approach and the trace length. Therefore, we

split our problem into two sub-problems. The first sub-problem

16

is to implement the inter-arrival curves approach efficiently.

The second sub-problem is to find a set of parameter settings

within the inter-arrival curves framework [3] that would al-

low reasoning about the system behavior using a single-pass

procedure on a minimal trace stream.

A. Efficient Curves Implementations

The computational approach of the online anomaly detec-

tion technique affects the analysis efficiency. For example,

consider an online anomaly detector using a non-overlapping

sliding window, the processing of an input stream should be

at least as fast as the generation of data having a length equal

to the defined window length. In other words, data within the

sliding window should be processed before another window

of data replaces it.

Formally, assume a data generation rate Dr = |Tev|
timeD

where

the |Tev| is the maximum number of events generated in a

trace stream within timeD. In this case, the classifier should

be able to reason about the stream in a time less than timeD,

assuming the processed streams are not overlapping. The

inter-arrival curves computation relies on a sliding window

technique which has well studied, computationally efficient

algorithms [5].

B. Parameters Suited for Online Analysis

Based on our prior offline anomaly detector [3], the primary

parameter we need to choose for an online anomaly detection

is ∆max. Minimizing ∆max in a way that achieves an ac-

ceptable ROC curve [2] would allow for lower computation

time. Having a shorter window length relates to the desired

|Tev| which, as we just demonstrated, is crucial for efficient

computation.

Inter-arrival curves can be used to empirically compute

a minimal ∆max that achieves the acceptable ROC curve.

During the offline training phase, the computation uses an

upper bound of the ∆max value where the validation phase

can show classification results for the range of ∆ values less

than ∆max. The online testing phase uses the minimal ∆ that

achieved the desired classification results during validation.

III. MULTI-MODE ANOMALY DETECTION

The second problem is to target improving classifier accu-

racy. The results obtained from the single-class classifier in [3]

show that we could avoid false positives but we still could not

detect all anomalies. We conjecture that some anomalies go

undetected, because of the aggregation procedure implied by

the single-classifier approach. In other words, a deviation of a

curve can go undetected if it still complies with minimum and

maximum counts obtained from different, yet normal curve.

We propose to experiment with classifiers tailored to the

different modes of operation. We conjecture that such an

approach would lower the number of false negatives. For

example, consider a system having three modes of operation

that represent the normal behavior of the system, yet having

significantly different features. An anomaly in a mode of

operation can be considered normal using an aggregate model

of these significantly different features. However, the anomaly

can be detected more accurately if we obtain a model using

features that only describe a specific mode of operation during

normal system behavior and vice versa.

Informal problem statement: Given a set of event traces

generated by a well-specified system that exhibits several

modes of operations, check whether a new trace from the same

system reflects any of these modes of operation.

The problem statement studies a multi-class classification

problem through modelling the normal behavior as multiple

classes of behaviors where a class corresponds to one or more

normal modes of operation. The classical challenge to this

approach is labeling the classes. Ideally, such labels can exist

within the trace as markers that indicate the different modes

of operation. But in reality, a preprocessing phase can aim to

detect the modes of operation and label the classes blindly

without prior knowledge.

IV. EXPERIMENTAL EVALUATION

A. Dataset

The device under test mimics data collection systems which

periodically sense, process, and send data to a remote center.

For the proposed preliminary work, we use markers that sepa-

rate each mode of operation to validate our results. However,

a more practical deployment would require inferring these

markers automatically. The labels used in our experiments are

as follows: 401-“Data Acquisition”, 402-“Data Compression”,

403-“Checksum”, 404-“Communication”, and 405-“Sleep”.

Anomalous behavior of the data collection system might

include collecting larger chunks of data, changed storage

medium, communication failures, etc. We use a BeagleBone

board running QNX RTOS to collect the dataset. The traces

contains QNX kernel events generated by the tracelogger

utility according to the RTOS state machine [6]. For our

experiments, an event is a combination of the class, event

attributes. A trace for offline analysis contains ≃ 25000 events

while a trace for online analysis contains ≃ 5000 events.

Table II and Table I show the number of traces used in each

experiment.

B. Preliminary Results

The preliminary evaluation of our approaches shows promis-

ing results following the conjectures discussed earlier.

Online Anomaly Detection The experiments use a synthet-

ically streamed set of traces satisfying the criteria |T | ≃ ∆max

to evaluate the capability of the online approach. The approach

uses a single classifier as in [3] that trains using traces of a

given mode of operation, then during the testing phase the

classifier aims to classify whether an online stream of traces

originates from that mode of operation.

The classification results for online anomaly detection ap-

proach using inter-arrival curves are promising. During the

testing phase, we choose smaller ∆max and |T |testing for

faster computation per stream, but enough to achieve accept-

able classification results. During the offline training phase, we

choose |T |training ≫ |T |testing to obtain a model descriptive

17

(a) Single-Mode Classifier
Model

(b) Multi-Mode Classifier
Model

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

 Anomaly Detection with c.f 0.9 AreaThresh 0.05

 Anomalous

Max Curve Anomalous with Area 0.05 Min Curve Anomalous With Area 0.07
Window Size (in events)

E
v
e

n
t

C
o

u
n

t

●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●
●

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−

−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−

−−
−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−
−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−

−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−

−−
−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−

0 1000 2000 3000 4000 5000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

●

Cmax,Cmax+,Cmax−
Cmin,Cmin+,Cmin−
Cmax::trace
Cmin::trace

(c) Single-Mode Classifier fails to
detect Mode “402”

(d) Multi-Mode Classifier detects Mode
“402”

Fig. 2: Comparing Model and Classification for THREAD-THRUNNING

for the system behavior. In our preliminary experiments, the

training model uses |T | = 25000 where the online testing

phase uses |T | ≃ 5000 and ∆max ≃ 1500. We use an efficient

Cartesian product implementation for the sliding window

technique, e.g., an online processing of a trace having |T | =
5000 events takes ∼ 0.5 seconds. We are currently considering

faster implementations for on-the-fly computation.

Mode “401” Mode “401” Mode “402” True Positive False Positive
Training Testing Testing Rate Rate

50 Files 129 Files 185 Files 84% 0%

TABLE I: Online Classification Results using ∆max = 1500

Multi-Mode Anomaly Detection The second set of ex-

periments evaluates the capability of the offline multi-mode

approach to detect anomalies within a mode of operation,

i.e., detect the effect of an anomaly in a mode of operation

against the normal behavior of this mode. The experiments

inspect whether the online approach can classify traces better

than our single-classifier technique [3]. The single classifier

technique uses a training set having normal traces for all

modes of operation, the testing aims to detect whether one

mode of operation is experiencing an anomalous behavior.

The multi-mode classifier learns a classifier for each mode

of operation in the normal training set; During testing, each

classifier contributes to the analysis of the anomalous trace.

Figure 2a and Figure 2b show the obtained models obtained

for event THREAD-THRUNNING. The accuracy of the model

degraded as shown in Figure 2a, because the scenarios ag-

gregated are diverse and cover a wide range of event counts.

However, a dedicated model for the “402-Data Compression”

mode of operation can accurately represent the target mode of

operation as shown in Figure 2d.

The anomalous behavior in our case is accessing a different

number of data blocks through a different storage device.

Such an anomaly should affect the events generated using

the marker “402-Data Compression” due to having more

blocks of data processed. All the other modes of operation

remain the same. The aggregate model for the single classifier

shows a model that uses the mean of counts originating from

different behaviors; that is why the model fails to detect

the anomaly with high accuracy. The same anomaly can be

better detected using the obtained model for the classifier

learned for this specific mode of operation, in this case the

classification results from the classifiers learned for the other

modes of operation can be discarded. Table II summarizes

the classification results using both techniques. The tailored

classifier in the multi-class environment shows a higher TPR

and lower FPR compared to the single classifier environment,

i.e., some files were incorrectly classified.

Mode “402” Mode “402” True Positive False Positive
Normal Training Normal Testing Anomalous Testing Rate Rate

All Modes - 142 files 84 files 46 files 100% 42%

Mode “402” - 50 files 21 files 46 files 100% 0%

TABLE II: Single vs Multi-Mode Classifier Results

V. CONCLUSION

Following our recent work of using inter-arrival curves

for anomaly detection using event traces [3], we study an

improved classification approach that categorizes the different

modes of operation for a given system. Also, we target the

problem of the online classification where using inter-arrival

curves shows a promising approach by having the capability

of detecting anomalies using a window of events instead of

an entire trace which makes it suited for on-the-fly analysis.

REFERENCES

[1] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in Data Mining,

2009. ICDM’09. Ninth IEEE International Conference on. IEEE, 2009,
pp. 588–597.

[2] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861–874, 2006.
[3] M. Salem, M. Crowley, and S. Fischmeister, “Anomaly detection using

inter-arrival curves for real-time systems,” to appear in ECRTS, 2016.
[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection for

Discrete Sequences: A Survey,” IEEE Transactions on Knowledge and

Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.
[5] P. Esling and C. Agon, “Time-series data mining,” ACM Computing

Surveys (CSUR), vol. 45, no. 1, p. 12, 2012.
[6] “Qnx state machine.” [Online]. Available: http:

//www.qnx.com/developers/docs/am11/index.jsp?topic=%2Fcom.qnx.
doc.neutrino.getting started%2Ftopic%2Fs1 procs.html

18

Tightening worst-case timing analysis of Tilera-like
NoC architectures

Hamdi Ayed, Jérôme Ermont, Jean-Luc Scharbarg and Christian Fraboul

Toulouse University - IRIT - ENSEEIHT

Email: {hamdi.ayed2, jerome.ermont, jean-luc.scharbarg, christian.fraboul}@enseeiht.fr

Abstract—Several approaches have been used for worst-case
traversal time (WCTT) analysis of Tilera TILE64-like Network-
on-Chip (NoC). Among them the recursive calculus (RC) simply
captures the specific features of a NoC. Initial RC method is
pessimistic since it does not take into account the implemented
buffer capacity within routers and it does not integrate packet
inter-arrival constraints. Approaches to overcome these limita-
tions have been proposed. However, no existing work addresses
both limitations at the same time. The goal of this paper is to
bridge this gap by combining existing approaches.

I. INTRODUCTION

Many-core architectures are promising candidates for hard

real-time systems. They are based on simple cores intercon-

nected by a Network-on-Chip (NoC). Timing constraints, such

as bounded delays, have to be guaranteed for hard real-time

systems. However, the initial motivation when designing NoCs

was to increase the average case throughput. NoCs can thus be

used in hard real-time systems either by analyzing the Worst-

Case Traversal Time (WCTT) of flows on existing many-cores

or by modifying the hardware so that no contentions can occur

by design, leading to straightforward WCTT for flows.
NoCs based on the second approach [7], [8], [9] are not

available in commercially existing many-core architectures,

such as the STMicroelectronics P2012/STHORM fabric [11],

the Tilera Tile CPUs [12] or the KalRay MPPA [4].
In this work, we focus on Tilera Tile64 [12]. It is composed

of a set of routers organized in 2D-mesh structure as depicted

in Figure 1. Links are full-duplex. Flows with static paths

are transmitted on this architecture. We denote by path(f)
the ordered list of links for flow f from its source to its

destination. Flow control is implemented in each router: a

packet cannot be forwarded if the next output port on its

path is busy. It corresponds to a classical wormhole switching

mechanism [10]. A packet is divided in flow control digits

(flits) of fixed size. The first flit contains routing information.

In each cycle one flit is forwarded from each router to the

following one, provided that its destination output port is not

busy. Each router includes five full duplex input-output ports.

A three flits buffer is associated to each input port. Input ports

are polled, based on Round-Robin Arbitration (RRA). The

first packet in the buffer of the polled input port is forwarded

flit by flit to the next router on its path if the buffer of the

corresponding input port is not full. Otherwise the next input

port (based on RRA) is polled.
This strategy requires very small buffers in routers. However

it generates indirect blocking, as illustrated in Figure 1. In this

Fig. 1. Case study

example, flow f1 can be blocked by flow f3 in router R2. Since

f3 can be blocked by f4 later on its path, f1 can be indirectly

blocked by f4.

Several approaches have been proposed for Worst-Case-

Traversal-Time (WCTT) computation of Tilera-like NoC [5].

Among them, the Recursive Calculus (RC) method offers a

simple way to capture the wormhole effect with direct and

indirect blocking. Sources of pessimism have been identified

in the initial RC method.

First, the analysis ignores buffer size. Thus it considers that

a flow fi is blocked by another flow fj until fj fully reaches

its destination. It has been shown that considering this buffer

effect leads to tighter WCTT [2].

Second, the analysis does not take into account flow pe-

riodicity. Thus, it considers that more than one frame of a

flow fj can delay a flow fi, ”even though this is impossible

considering fj’s period. The RC approach has been extended

to integrate this periodicity constraint [3].

The contribution of this paper is to propose an enhanced

RC method integrating both buffer effect and flow periodicity.

II. EXTENDED WCTT APPROACH

The best case traversal time for a packet of a flow f occurs

when the packet experiences no contention in routers. In this

specific case, the traversal time is:

dmin(f) = nh(f)∗dc+(nh(f)−1)∗dsw+(S(f)−1)∗dc (1)

19

nh(f) represents the number of links in path(f), dc is the

time needed to transmit a flit on a link, while dsw is the switch

latency. Thus, nh ∗ dc + (nh − 1) ∗ dsw is the time needed to

transmit the first flit from source to destination. The packet

includes S(f) flits. Thus, it takes (S(f)− 1) ∗ dc to transmit

the remaining flits (pipeline transmission at flit level). In this

paper, we assume that dc = dsw = 1 cycle, which means that

a flit requires exactly one cycle to be forwarded from one node

to the following, and one cycle to be processed in a router.

A flow might be delayed by other flows. The worst-case

traversal time (WCTT) of a flow f corresponds to the largest

possible impact of other flows on f delay.

In [6], the authors have formalized the recursive calculus

method which simply integrates all possible blocking times

induced by direct and indirect flows. For each flow fi, a list

of blocking packets is constructed by following the path of fi
and identifying the packets blocking it directly, and the packets

directly blocking these direct blocking packets, and so on. For

f1 in the example in Figure 1:

• f1 can be delayed by the transmission of a packet from

f2 at its source node N1: Seq(f1) = {f2, f1};

• f2 can be delayed by a packet from f3 at router R2:

Seq(f1) = {f3, f2, f1};

• f3 can be delayed by the transmission of a packet from

f4 at router R6: Seq(f1) = {f4, f3, f2, f1};

• f1 can be delayed by another occurrence of f3 at R2:

Seq(f1) = {f4, f3, f2, f3, f1};

• f3 can be delayed by another occurrence of f4 at R6:

Seq(f1) = {f4, f3, f2, f4, f3, f1};

Thus, we get: Seq(f1) = {2 ∗ f4, 2 ∗ f3, f2, f1}.

This sequence represents the blocking time contributions

of all the flows that may directly or indirectly block f1.

f1 is the last element of the list and it is delayed by all

the preceding packets in Seq(f1). Then, the resulting WCTT

bound is computed:

WCTT (f1) = 2∗d(f4, f1)+2∗d(f3, f1)+d(f2, f1)+dmin(f1)

where, d(fj , fi) is the transmission time of fj starting from

the first common node with fi to its destination. For example:

• d(f2, f1) = 4 ∗ dc + 3 ∗ dsw + (S(f2)− 1) ∗ dc
With three flit packets, WCTT (f1) = 50 cycles.

This computation assumes that f2, f3 and f4 packets block

f1 till they reach their destination. This assumption simplifies

the computation. However it might introduce some pessimism.

As an illustration, let’s consider three flit packet size and a

three flit buffer in each input port. A packet from f3 can be

fully stored in R6 input buffer. Consequently, the impact of

an f3 packet on both f1 and f2 stops as soon as it leaves R3.

Since it can leave R3 even if there is a pending packet from f4,

f4 doesn’t add any extra delay for f1 and f2. Thus the worst-

case sequence of packets blocking f1 becomes Seq(f1) =
{2 ∗ f3, f2, f1}. This drops down WCTT (f1) to 40 cycles.

This first source of pessimism is addressed in [2]. The

authors consider one flit buffers. They show that, in the

situation where a flow f is directly blocked by a flow fd,

which is directly blocked by a flow fid later on its path, fid
cannot influence f if the number of routers between the point

where fd leaves f and the point where fd meets fid is at least

fd packet size. On the example in Figure 1, it comes to say

that, if f3 packet size is one, f4 has no impact on f1 or f2
(one flit input buffers are assumed in [2]).

This property can be generalized for B flit input buffers.

The number of routers needed to store an fd packet is

NB
fd

=

⌈

S(fd)

B

⌉

If fd is blocked by fid after passing NB
fd

routers from the

point where it leaves f , then fid has no influence on f .

Considering the example in Figure we have N3
f3

=
⌈

3
3

⌉

= 1.

Since f3 is blocked by f4 after passing one router from the

point where it leaves f1, f4 has no influence on f1.

A second source of pessimism in the initial RC computation

is due to the fact that flows are sporadic. It means that there is

a minimum duration Tj between the generation times of two

consecutive packets from a flow fj . Thus there is a minimum

duration Tj − JRl

j between arrival times of two consecutive

packets from fj in router Rl, where

JRl

j = WCTT (fj , Rl)− dmin(fj , Rl)

i.e. the difference between the worst-case delay for fj from

its source to Rl and its best-case delay. Then the maximum

number of packets from fj which can arrive in router Rl, in

a time window of t cycles, is bounded by:

Nb(fj , Rl, t) =

⌈

t

Tj − JRl

j

⌉

(2)

This constraint on the maximum number of packets from

a flow in an interval is not considered in the initial RC

computation. Thus the computed sequence might contain too

many packets from a given flow.

Coming back to the example in Figure 1, the computation

considers that f1 can be delayed by two packets from f3 (as

well as two packets from f4). Such a scenario is possible only

for small enough inter-arrival time constraints between packets

from f3 (as well as packets from f4). As an example, let’s

consider an inter-arrival time of at least 100 cycles between

two consecutive packets from f3 (and f4). Since packets from

f3 cannot be blocked before router R2, they experience no

jitter (JR2

3 = 0). We have shown that the worst-case traversal

time of f1 cannot be more than 50 cycles (based on the RC

appoarch in [5]). It gives an overestimation of the interval of

time in which packets from f3 have to arrive in R2 in order

to delay f1. Then an upper bound on the number of packets

from f3 which can delay f1 is given by:

Nb(f3, R2, 50) =

⌈

50

100− 0

⌉

= 1 (3)

Similarly, only one frame from f4 can delay f1. Therefore,

Seq(f1) can be Seq(f1) = {f4, f3, f2, f1}. This leads to

WCTT (f1) = 36 cycles.

This second source of pessimism is addressed in [3]. The

basic idea consists in enumerating all possible sequences of

20

blocking for a given flow, respecting the minimum inter-

release time constraint. For flow f1 of the example in Figure

1, it leads to the following list of sequences:

{{f1},{f2, f1}, {f3, f2, f1}, {f2, f3, f1}, {f4, f3, f2, f1},

{f2, f4, f3, f1}}

We propose to consider an overestimation of all enumerated

sequences in order to mitigate this explosion problem: the

initial sequence (obtained by RC approach without inter-arrival

constraints) leads to a WCTT for the flow under study, for

each interfering flow, we compute the maximum number of

packets within this WCTT. This number might be unreachable

since it assumes that each flow can have one packet at the

beginning as well as at the end of the sequence, which might

be impossible. However, it is a safe overestimation of the

number of interfering packets.

The proposed approach in this paper can be summarized as

follows:

• Sequence computation based on the initial RC approach;

• Elimination of non influencing indirect blocking flows,

thanks to buffer effect;

• Elimination of packet occurrences, based on inter-arrival

constraints.

Based on this approach, we get Seq(f1) = {f3, f2, f1},

leading to WCTT (f1) = 31 cycles.

III. EXPERIMENTS

We consider the real-time application described in Figure

2, where 10 flows need to be exchanged on a 6*6 2D-mesh

NoC. Flows are periodic and have static paths. We assume a

packet size of 10 flits and a period of 500 cycles for all flows.

Fig. 2. Case study

In Table I, we reported the WCTT bounds obtained using

respectively: (i) the initial RC method [5]; (ii) extended RC

algorithm based on work in [1]; (iii) extended RC algorithm in

[3]; (iv) our extended algorithm, as described in the previous

section. Results are shown in Table I. Our approach gives

tighter WCTT bounds for all the flows.

TABLE I
BOUNDS ON WCTT

Flow
Initial RC [5]

(cycles)
[1] bounds

(cycles)
[3] bounds

(cycles)
Extended RC

(cycles)

f1 304 251 121 111

f2 304 264 121 98

f3 143 112 86 78

f4 143 127 86 79

f5 44 40 27 25

f6 24 24 23 22

f7 27 25 25 23

f8 24 24 23 22

f9 167 145 89 82

f10 50 44 30 27

IV. CONCLUSION

We propose in this paper an enhanced RC method for worst-

case traversal time analysis of Tilera TILE64-like Network-on-

Chip (NoC). The proposed enhanced method integrates both

buffer effect and flow periodicity. It significantly improves

WCTT analysis on our case study. This approach still has

to be formalized and applied on larger industrial case study.

It should also be extended to other kinds of NoCs.

REFERENCES

[1] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. Optimizing worst
case delay analysis on wormhole networks by modeling the pipeline
behaviour. In Proc. of the 13th Intl. Workshop on Real-Time Networks

(RTN’2014), Madrid, Spain, July 2014.
[2] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. Wormhole networks

properties and their use for optimizing worst case delay analysis of
many-cores. In Industrial Embedded Systems (SIES), 2015 10th IEEE

International Symposium on, pages 1–10, June 2015.
[3] D. Dasari, B. Nikolić, V. Nélis, and S. M. Petters. NoC Contention

Analysis Using a Branch-and-prune Algorithm. ACM Trans. Embed.

Comput. Syst., 13(3s):113:1–113:26, Mar. 2014.
[4] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-

critical computing on a single-chip massively parallel processor. In
Design, Automation & Test in Europe Conference & Exhibition, DATE

2014, Dresden, March 24-28, 2014, pages 1–6, 2014.
[5] T. Ferrandiz, F. Frances, and C. Fraboul. A method of computation

for worst-case delay analysis on SpaceWire networks. In Proc. of the

4th Intl. Symp. on Industrial Embedded Systems (SIES), pages 19–27,
Lausanne, Switzerland, July 2009.

[6] T. Ferrandiz, F. Frances, and C. Fraboul. A Network Calculus Model for
SpaceWire Networks. Proceedings of the EEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2011), 2011.

[7] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:
Concepts, architectures, and implementations. IEEE Design & Test of

Computers, 22(5):414–421, 2005.
[8] A. Hansson, M. Subburaman, and K. Goossens. Aelite: A flit-

synchronous network on chip with composable and predictable services.
In Proc. of the Conf. on Design, Automation and Test in Europe

(DATE’09), pages 250–255, Nice, France, 2009.
[9] S. M. G. S. Kasapaki, Schoeberl. Argo: A real-time network-on-chip

architecture with an efficient gals implementation. In IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, pages 479–492, 2016.
[10] L. Ni and P. McKinley. A survey of wormhole routing techniques in

direct networks. IEEE Transactions on Computers, 26(2):62–76, Feb
1993.

[11] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. De Micheli, and
H. Sarbazi-Azad. Computing accurate performance bounds for best
effort networks-on-chip. IEEE Transactions on Computers, 62(3):452–
467, March 2013.

[12] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. 2007.

21

Mixed-criticality scheduling with memory regulation

Muhammed Ali Awan∗, Konstantinos Bletsas∗, Pedro Souto†∗, Benny Akesson∗, Eduardo Tovar∗, Jibran Ali∗

∗CISTER/INESC-TEC, ISEP/IPP, Portugal †Faculty of Engineering, University of Porto, Portugal

Abstract—The state-of-the-art models and schedulability anal-
ysis for mixed-criticality multicore systems overlook low-level
aspects of the system. To improve their credibility, we therefore
incorprate, in this work, the effects of delays from memory
contention on a shared bus. Specifically, to that end, we adopt the
predictable memory reservation mechanism proposed by the Sin-
gle Core Equivalence framework. Additionally, we explore how
the reclamation, for higher-criticality tasks, of cache resources
allocated to lower-criticality tasks, whenever there is a criticality
(mode) change in the system, can improve schedulability.

I. INTRODUCTION

On mixed-criticality scheduling: The integration of func-

tionalities of different criticalities on a multicore necessitates

some scheduling isolation between criticality levels. The most

notable analytical model for those problems, by Vestal [1],

in its basic form, assumes two criticality levels, high and low.

High-criticality tasks (H-tasks) have two different estimates of

their worst-case execution time (WCET): The L-WCET which

is de facto deemed safe, and the H-WCET, which is provably

safe and possibly much greater. For low-criticality tasks, only

the L-WCET is defined. There are two modes of operation.

The system boots and remains in low-criticality mode (L-

mode) as long as no job (instance of a task) executes for longer

than its L-WCET. However, if any job exceeds its L-WCET

then the system immediately switches into high-criticality

mode (H-mode) and drops all L-tasks. It is pessimistically

assumed that in H-mode all jobs by H-tasks (including any

existing jobs at the time of the mode switch) may execute

for up to their H-WCET. Under these assumptions, it must be

provable offline that (i) no task misses a deadline in L-mode

and (ii) no H-task misses a deadline in H-mode.

Various scheduling approaches for this model exist. Below,

we only discuss works employing deadline-scaling. This tech-

nique originated with the EDF-VD (Earliest Deadline First -

with Virtual Deadlines) scheduling algorithm [2] for implicit-

deadline mixed-criticality sporadic task sets. EDF-VD uses

standard EDF scheduling rules but instead of reporting the real

task deadlines to the scheduler, for the purpose of scheduling

decisions, it reports shorter deadlines (if needed) for H-tasks

during L-mode operation. In doing so, it prioritises H-tasks

more than conventional EDF would, over parts of the schedule.

This allows H-tasks to be sufficiently ahead of schedule such

that they can catch up with their true deadlines if any task

overruns its L-WCET. After the switch to H-mode, the true H-

task deadlines are used for scheduling and L-tasks are dropped.

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and

Technology) and co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within the

CISTER Research Unit (CEC/04234); also by by FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013

- JU grant nr. 621429 (EMC2).

EDF-VD proportionately scales all H-task deadlines by a

common factor. Ekberg and Yi improve on this by using

distinct scaling factors for different H-tasks and a more precise

demand bound function (dbf) based schedulability test [3].

Access isolation for caches, memory buses and DRAMs: A

prominent approach for making multicores more predictable

regarding sources of contention is Single-Core Equivalence

(SCE) [4]. Under SCE, fixed-priority scheduling is used and

MemGuard [5], a periodic software mechanism, regulates

memory accesses from different cores. Over a fixed interval

called the regulation period, all cores get an equal “slice” of

the overall memory bandwidth. This assumes that all memory

accesses go through the same memory controller. MemGuard

stalls any core that exceeds its share, until the start of the next

regulation period. The analysis must consider such regulation

stalls in addition to conventional contention stalls, caused by

contention between different cores at the DRAM controller.

SCE’s stall-aware schedulability analysis [6], characterises

each task by its WCET in isolation and its worst-case number

of residual memory accesses. These correspond to the WCET

when no other task is present in the system and an upper

bound on the number of memory accesses by the task that go

all the way to DRAM. It is also assumed that each task has its

most frequently accessed pages locked in place in the shared

last-level cache by the Colored Lockdown [7] mechanism.

This arrangement promotes determinism by eliminating inter-

task interference in the cache and Mancuso et al. use this

information to more tightly characterise the WCET in isolation

and the number of residual memory accesses. Both quantities

decrease as the number of locked pages increases [6]. Using

these derived attributes for each task, Mancuso et al. then

calculate contention stall and regulation stall terms for the

tasks that add to their response time, assuming round-robin

memory arbitration. Their analysis also assumes DRAM Bank

Partitioning via the OS-level memory allocator PALLOC [8].

Contribution #1: We combine Ekberg and Yi’s work and

SCE. The rationale is that the former overlooks the effects of

contention for platform resources. Conversely, SCE provides a

form of scheduling isolation over those resources that is handy

for safety-critical applications, but is criticality-oblivious.

Contribution #2: We identify and leverage an opportunity

for improved schedulability and resource efficiency, afforded

by such a unified approach. Consider a system conforming

to the SCE principles (including the cache partitioning) and

scheduled by a variant of Ekberg and Yi’s algorithm. When a

mode change occurs, L-tasks are dropped, which means that

their cache partitions are no longer of any use. We therefore

assign them to the remaining H-tasks, after the mode change,

22

to accommodate additional pages by the latter. This re-uses

resources that would otherwise be idle and lowers the H-

WCETs of jobs released after the mode change, leading to bet-

ter scheduling performance. The challenge then is to develop

schedulability analysis that safely quantifies the improvement.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume m identical physical cores (π1 .. πm) accessing

DRAM via a shared memory controller. A core can have many

outstanding memory requests. Prefetchers/speculative units are

disabled. Our assumptions are inline with SCE [4]:

• The last-level cache is shared among the cores. The Colored

Lockdown mechanism [7] is used to mitigate the intra-

/inter-core interference. It allows a task to lock its most

frequently used pages in the last-level cache, providing a

deterministic approach to compute the residual number of

memory accesses and WCET as a function of the number

of locked pages.

• DRAM-bank partitioning (e.g., using PALLOC [8]) is not

strictly required. However, lower and upper bounds on the

memory access time of a single transaction (Lmin and

Lmax, respectively) are needed as inputs. These can be

computed as in [6]. The DRAM controller is round-robin.

• The memory bandwidth is managed via the MemGuard [5]

OS-level regulation mechanism. It uses the the worst-case

memory access time Lmax to determine the maximum

number of memory accesses, K, during a regulation period

P , as K
def
= P

Lmax
. The memory bandwidth of K mem-

ory accesses is distributed equally among different cores,

i.e. Ki
def
= K

m
requests per regulation period for core πi.

This budget is allocated at the start of the regulation period.

The execution of a core is stalled until the end of current

regulation period as soon as it exhausts its per-regulation-

period budget of Ki memory requests.

Each task τi has a minimum inter-arrival time Ti, a relative

deadline Di (with Di ≤ Ti) and a criticality level κi ∈ {L,H}
(low or high, respectively). The subsets of low-criticality and

high-criticality tasks are defined as τ(L)
def
= {τi ∈ τ |κi ∈ L}

and τ(H)
def
= {τi ∈ τ |κi ∈ H}. However, since (i) the (actual)

WCET of a task depends on its number of pages (selected in

order of access frequency) locked in place in the last-level

cache and (ii) different estimates of that WCET (derived via

different techniques), are to be used for the L-mode and H-

mode, we extend Vestal’s model by assuming that for each

task, a different L-WCET/H-WCET pair can be available as

input, for each possible value of the number of locked “hot”

pages. For example CL
i (6) denotes the L-WCET of τi when

this task is configured with its 6 “hottest” pages locked in the

cache. In detail:

The Colored Lockdown approach determines the most fre-

quently accessed (hot) pages for each task through the profiling

framework in [7]. The WCET of a task in isolation is computed

as a function of the number of hot pages locked in the last-

level cache and represented as a progressive lockdown curve

(WCET vs locked pages in last-level cache). The increase in

number of locked pages in the last-level cache decreases the

last-level cache misses and, consequently, also the WCET of

the task. The approach proposed by Mancuso et al. [7] is a

measurement-based technique, so its outputs are not provably

safe, but they can serve as L-WCETs. However, some static

analysis tools comprehensively cover all possible control flows

(or even some infeasible paths) in a task, and these can be used

for estimating the H-WCETs.

By safely modelling accesses to the hot pages locked-in by

Colored Lockdown as ”always hit”, the static analysis tool

can derive tighter WCET estimates than it would without this

knowledge – and the improvement will be greater the more

pages are locked in the cache. Hence, a progressive lockdown

curve similarly exists for the H-WCET CH
i (·).

Similarly to the WCETs, we extend the use of techniques of

different conservativeness for estimating the residual number

of memory accesses (last-level cache misses) of each task in

L-mode and H-mode. Similar to WCET estimates, these values

are functions of locked pages in the last-level cache (µL
i (·),

µH
i (·)) that decrease with the number of locked pages in the

last-level cache. The utilisation of a task in L-mode (H-mode)

of operation is defined as UL
i (σ)

def
=

CL
i (σ)
Ti

(resp., UH
i (σ)

def
=

CH
i (σ)
Ti

), for σ locked pages in the last-level cache. We assume

fully partitioned scheduling. i.e, no task ever migrates.

III. CACHE SCALING FOR MIXED CRITICALITY SYSTEM

A. Memory regulation stall

The MemGuard regulation mechanism bounds the number

of DRAM accesses by each core. A core can be stalled for two

main reasons. MemGuard allocates a memory access budget to

each core per regulation period P . A core exceeding its budget

is stalled until the start of the next regulation period; this is

a regulation stall. As all cores share the DRAM controller,

any delay in serving the memory accesses of a core due to

accesses by other cores is a contention stall.

Mancuso et al [6] assume an even allocation of memory

access budgets among cores and round-robin memory bus

sharing. With these assumptions, the worst-case regulation-

induced stall is computed for a given task τi performing µi(·)
residual memory accesses. It is shown that the regulation stall

always dominates the contention stall in a given regulation

period P . The duration of such a stall is (P −KiLmin). The

contention stall for any number of memory accesses Kq ≤ Ki

within a given regulation period P is equal to (m−1)KqLmax

under round robin arbitration. It has been shown [6, Th. 1])

that the stall due to µi(·) memory requests issued by a task

τi can be computed as:

stall(τi, c, σ) =

⌈

µc
i (σ)

Ki

⌉

(P −KiLmin)

+ (m− 1)(µc
i (σ))− (

⌈

µc
i (σ)

Ki

⌉

− 1)Ki)Lmax

(1)

where, c ∈ {L,H} and σ is the number of locked pages.

23

The L-WCET and H-WCET of a task τi with interference

from other cores on the shared bus with σ locked pages in the

last-level cache are defined as follows.

C̄L
i (σ)

def
= CL

i (σ) + stall(τi, L, σ) (2)

C̄H
i (σ)

def
= CH

i (σ) + stall(τi, H, σ) (3)

These values are computed using Equations (1)–(3), ∀σ ∈
{0, . . . , σT } on the progressive lockdown curves derived for

the L-mode and H-mode of operation.

B. Last-level cache allocation

Let σL
i and σH

i be the number of pages by τi in the last-

level cache in the two modes and σT be the total number of

pages that fit in that cache. A good heuristic could be to set the

σL
i values such that the total task set utilisation in L-mode is

minimised. Intuitively, lower utilisation correlates with better

schedulability. An optimal way to solve this heuristic would

be the following Integer Linear Programming model (ILP):

Mimimise
∑

∀τi∈τ

C̄L
i (σ

L
i)

Ti

, subject to
∑

∀τi∈τ

σL
i ≤ σT (4)

Next, without backtracking, we determine the σH
i values.

Mimimise
∑

∀τi∈τ(H)

C̄H
i (σL

i)

Ti

(5)

s.t. σH
i ≥ σL

i , ∀τi ∈ τ(H) and
∑

∀τi∈τ(H)

σH
i ≤ σT (6)

The constraint in Equation (4) ensures that the total number

of allocated pages does not exceed the available capacity of

the cache. Pages abandoned by the L-tasks in the H-mode are

“recycled” for H-tasks by the constraints in Equation (6). One

counter-intuitive property of our proposed heuristics is that

there may be a scenario in which the C̄H
i (σH

i) ≤ C̄L
i (σ

L
i).

This could happen if the effects of the reduction of residual

memory accesses for H-tasks in H-mode, from the additional

pages, offset the pessimism from using a more conserva-

tive estimation technique for H-WCETs than for L-WCETs.

Therefore, unlike the “classic” Vestal’s model, we may have

C̄H
i (σH

i) ≤ C̄L
i (σ

L
i) and better schedulability in the H-mode

when compared to Ekberg and Yi’s analysis.

C. Schedulability analysis

In the last step, we analyse the intra-core interference that

a task may have due to memory accesses by other tasks

running on the same core and integrate it to the schedualability

analysis. In this paper, we have adapted Ekberg and Yi’s

schedulability analysis [3] to our system model. Ekberg and

Yi proposed a demand-bound-function (dbf) based analysis

that assumes tasks are scheduled with Earliest Deadline First

(EDF). The deadlines of H-tasks are shortened in L-mode, so

that they can stay “ahead of schedule” and perform a smooth

transition from L- to H-mode of operation. In our approach, we

currently perform no deadline-scaling but get a similar effect

by allocating extra pages to the H-tasks in the last-level cache

in H-mode1. Since Ekberg and Yi’s technique is still usable

as a schedulability test when the scaling factors are given as

input, we use a scaling factor of 1 (no scaling) for all tasks. As

in that work, we check for schedulability in the L-mode with

a dbf-based [9] test. These derivations do not consider the

fact that a task may be preempted by other tasks allocated to

the same core. With the memory regulation employed, each

preempting job in the worst-case may exhaust the allocated

memory access budget within a given period P and hence,

may be causing the core to stall upon the resumption of the

preempted job. A job cannot preempt another job more than

once. Therefore, one approach is to include the preemption

overheads into the budget of preempting task.

Similar considerations apply to the adaptation of the test

for cheching the schedulability in H-mode. Note though that

any H-jobs caught up in the mode change may execute for

up to C̄H
i (σL

i) time units, since only subsequent H-jobs will

execute with more hot pages (σH
i) in the cache.

IV. CONCLUSIONS

Using low-level information about the hardware platform

and access regulation mechanisms, has potential to improve

schedulability and confidence in the analysis of mixed-

criticality systems. This work-in-progress paper is one step in

that direction. Currently, we are developing a mixed criticality

schedulability test that incorporates intra-core interference

while ensuring the schedulability in L-mode, H-mode and the

transition phase. Next, we will develop a testbed that incor-

porates these details and provides a platform to compare its

performance with state-of-the-art mixed criticality scheduling

algorithms. We hope this practical approach will outperform

the existing state-of-the-art solutions.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in 28th RTSS, 2007.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in 24th
ECRTS, July 2012, pp. 145–154.

[3] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in 24th ECRTS, July 2012, pp. 135–144.

[4] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni,
H. Yun, R. Kegley, D. Perlman, G. Arundale et al., “Single core equivalent
virtual machines for hard realtime computing on multicore processors,”
Univ. of Illinois at Urbana Champaign, Tech. Rep., 2014.

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” Trans. Computers, vol. 65, no. 2, pp. 562–576, Feb 2016.

[6] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “WCET(m)
estimation in multi-core systems using single core equivalence,” in 27th
ECRTS, July 2015, pp. 174–183.

[7] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pelliz-
zoni, “Real-time cache management framework for multi-core architec-
tures,” in 19th RTAS, 2013, pp. 45–54.

[8] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 20th RTAS, April 2014, pp. 155–166.

[9] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” J. Real–Time Syst., 1990.

1In time, we intend to also incorporate (and speed up) the deadline-scaling.

24

	Message from the Session Chair
	Technical Program Committee
	Table of Contents
	Paper
	Enabling predictable parallelism in single-GPU systems with persistent CUDA threads
	MrsP on Semi-Partitioned Systems
	Towards Real-time Wireless Cyber-physical Systems
	Preemption Point Selection in Limited Preemptive Scheduling using Probabilistic Preemption Costs
	Cyber-OF: An Adaptive Cyber-Physical Objective Function for Smart Cities Applications
	Inter-Arrival Curves for Multi-Mode and Online Anomaly Detection
	Tightening worst-case timing analysis of Tilera-like NoC architectures
	Mixed-criticality scheduling with memory regulation

