#### The Global Limited Preemptive Earliest Deadline First Feasibility of Sporadic Real-time Tasks

#### Abhilash Thekkilakattil, Sanjoy Baruah, Radu Dobrin and Sasikumar Punnekkat





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## Motivation

- Multi (-core) processors in real-time systems complicate the problems associated with fully preemptive schedulers
  - Complex hardware, e.g., different levels of caches
    - Difficult to perform timing analysis
  - Potentially large number of task migrations: implementation issues
    - Difficult to demonstrate predictability
    - Difficult to reason about safety
- Non-preemptive scheduling can be infeasible at arbitrarily small utilization
  - Long task problem: at least one task has execution time greater than the shortest deadline



**Solution:** Limit preemptions



# Advantages of limiting preemptions

#### **Combines best of preemptive and non-preemptive scheduling**

- Control preemption related overheads
  - Context switch costs, cache related preemption delays, pipeline delays and bus contention costs
- Improve processor utilization
  - Reduce preemption related costs while eliminating infeasibility due to blocking



Anecdotal evidence: "*limiting preemptions improves safety and makes it* easier to certify software for safety-critical applications"





# Limited preemptive scheduling landscape

| Uniprocessor   | Limited preemptive<br>FPS<br>(Yao et al., RTSJ'11)            | Limited preemptive<br>EDF<br>(Baruah, ECRTS'05) |
|----------------|---------------------------------------------------------------|-------------------------------------------------|
| Multiprocessor | Global limited<br>preemptive FPS<br>(Marinho et al., RTSS'13) | ?                                               |





## **G-LP-EDF** scheduling model



#### Main contributions

- Schedulability analysis for Global Limited Preemptive Earliest Deadline First (G-LP-EDF) scheduling of sporadic real-time tasks
- 2. Analysis of the effects of increasing the processor speed on G-LP-EDF feasibility





#### Methodology overview

A net condition:

Upper-bound on the work generated under G-LP-EDF

≤

Lower-bound on the work executed under any work conserving algorithm





#### Methodology overview

A sufficient schedulability condition:

Upper-bound on the work generated under G-LP-EDF

 $\leq$ 

Lower-bound on the work executed under any work conserving algorithm





#### Lower bound on the work done



#### Lower bound on the work done



#### Methodology overview

A sufficient schedulability condition:







#### Upper bound on the work generated

..... under G-LP-EDF

In  $[t_k, t_0)$ , we consider the duration for which:

- a. Low priority tasks block high priority tasks
- b. Higher priority tasks execute





# Maximum duration of blocking









#### Lotperfe neoncrect rom this wer lp gerier aasds



#### Methodology overview

A sufficient schedulability condition:







#### Agenda

- 1. Schedulability analysis for Global Limited Preemptiv Earliest Deadline First (G-LP-EDF) scheduling of sporadic real-time tasks
- 2. Analysis of the effects of increasing the processor speed on G-LP-EDF feasibility





#### Agenda

- 1. Schedulability analysis for Global Limited Preemptiv Earliest Deadline First (G-LP-EDF) scheduling of sporadic real-time tasks
- 2. Analysis of the effects of increasing the processor speed on G-LP-EDF feasibility





#### Feasibility bucket







#### Processor speed vs. LP-EDF feasibility



## Long task problem

Non-preemptive infeasibility arising from at least one task having WCET greater than shortest deadline



A solution: code-refactoring at task level

Our speed-up factor quantifies the extent to which code-refactoring must be done to enable non-preemptive feasibility





#### Agenda

- Schedulability analysis for Global Limited Preemptiv Earliest Deadline First (G-LP-EDF) scheduling of sporadic real-time tasks
- 2. Analyze the effects of increasing the processor speed on G-LP-EDF feasibility





#### Conclusions

- Global limited preemptive EDF feasibility analysis
  - To control preemption related overheads
  - Enables better reasoning about predictability of multi (-core) processor real-time systems
- Processor speed vs. preemptive behavior
  - Quantifies the extent to which code-refactoring must be performed to address the long task problem
  - Sub-optimality of G-NP-EDF





#### Future work

- Compare G-LP-EDF and G-P-EDF in presence of overheads
- Perform trade-offs: number of extra processors vs. speed-up
- Partition tasks comprising of non-preemptive chunks
- Accounting for suspensions





# Thank you !



#### **Questions**?



