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Motivation 

 Multi (-core) processors in real-time systems complicate the 

problems associated with fully preemptive schedulers 
 

• Complex hardware, e.g., different levels of caches 

- Difficult to perform timing analysis 
 

• Potentially large number of task migrations: implementation 

issues 

- Difficult to demonstrate predictability 

- Difficult to reason about safety 
 

 Non-preemptive scheduling can be infeasible at arbitrarily small 

utilization 
 

• Long task problem: at least one task has execution time greater 

than the shortest deadline 
 

     Solution: Limit preemptions 



Combines best of preemptive and non-preemptive scheduling 

 

• Control preemption related overheads 

- Context switch costs, cache related preemption delays, pipeline 

delays and bus contention costs 
 

• Improve processor utilization 

- Reduce preemption related costs while eliminating infeasibility due 

to blocking 

 

 

 
 

 

 

 

Anecdotal evidence: “limiting preemptions improves safety and makes it 

easier to certify software for safety-critical applications” 

 

Advantages of limiting preemptions 
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G-LP-EDF scheduling model 
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1. Schedulability analysis for Global Limited Preemptive 

Earliest Deadline First (G-LP-EDF) scheduling of 

sporadic real-time tasks 

 

2. Analysis of the effects of increasing the processor 

speed on G-LP-EDF feasibility 

Main contributions 



Methodology overview 

Lower-bound on the work executed 

under any work conserving algorithm 

Upper-bound on the work 

generated  under G-LP-EDF 
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Lower bound on the work done 
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Upper bound on the work generated 

In [tk,t0), we consider the duration for which:  

 

a. Low priority tasks block high priority tasks 

b. Higher priority tasks execute 

….. under G-LP-EDF  



Maximum duration of blocking 

Low priority job executions (blocking) High priority job executions 
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Interference from higher priority tasks 
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Processor speed vs. LP-EDF feasibility 

Bounds on Multiprocessors Bounds on Uniprocessors 
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Non-preemptive infeasibility arising from at least one task 

having WCET greater than shortest deadline 

Long task problem 

Task B 

(lower priority) 

Task A 

(higher priority) 

A solution: code-refactoring at task level 

(Short, 2010, “The case for non-preemptive, deadline-driven scheduling in real-time embedded systems”) 

Our speed-up factor quantifies the extent to which code-refactoring 

must be done to enable non-preemptive feasibility 



 

1. Schedulability analysis for Global Limited Preemptive 

Earliest Deadline First (G-LP-EDF) scheduling of 

sporadic real-time tasks 

 

2. Analyze the effects of increasing the processor speed 

on G-LP-EDF feasibility 

Agenda 



Conclusions 

• Global limited preemptive EDF feasibility analysis 

– To control preemption related overheads 

– Enables better reasoning about predictability of multi (-core) 

processor real-time systems 

 

• Processor speed vs. preemptive behavior 

– Quantifies the extent to which code-refactoring must be 

performed to address the long task problem   

– Sub-optimality of G-NP-EDF 



Future work 

 

• Compare G-LP-EDF and G-P-EDF in presence of overheads 
 

• Perform trade-offs: number of extra processors vs. speed-up 
 

• Partition tasks comprising of non-preemptive chunks 
 

• Accounting for suspensions 

 



Questions ? 

Thank you ! 


