
The Global Limited Preemptive Earliest Deadline First

Feasibility of Sporadic Real-time Tasks

Abhilash Thekkilakattil, Sanjoy Baruah, Radu Dobrin and

Sasikumar Punnekkat

Motivation

 Multi (-core) processors in real-time systems complicate the

problems associated with fully preemptive schedulers

• Complex hardware, e.g., different levels of caches

- Difficult to perform timing analysis

• Potentially large number of task migrations: implementation

issues

- Difficult to demonstrate predictability

- Difficult to reason about safety

 Non-preemptive scheduling can be infeasible at arbitrarily small

utilization

• Long task problem: at least one task has execution time greater

than the shortest deadline

 Solution: Limit preemptions

Combines best of preemptive and non-preemptive scheduling

• Control preemption related overheads

- Context switch costs, cache related preemption delays, pipeline

delays and bus contention costs

• Improve processor utilization

- Reduce preemption related costs while eliminating infeasibility due

to blocking

Anecdotal evidence: “limiting preemptions improves safety and makes it

easier to certify software for safety-critical applications”

Advantages of limiting preemptions

high priority

low priority

Bounded non-preemptive region

Uniprocessor
Limited preemptive

FPS
(Yao et al., RTSJ’11)

Limited preemptive

EDF
(Baruah, ECRTS’05)

Multiprocessor
Global limited

preemptive FPS
(Marinho et al., RTSS’13)

?

Limited preemptive scheduling

landscape

G-LP-EDF scheduling model

Processor 2

Processor 1

t

L

t’

Low priority job executions High priority job executions

high priority job release

job with latest deadline

t t’

L

1. Schedulability analysis for Global Limited Preemptive

Earliest Deadline First (G-LP-EDF) scheduling of

sporadic real-time tasks

2. Analysis of the effects of increasing the processor

speed on G-LP-EDF feasibility

Main contributions

Methodology overview

Lower-bound on the work executed

under any work conserving algorithm

Upper-bound on the work

generated under G-LP-EDF

A necessary unschedulability condition:

> ≤

A sufficient schedulability condition:

≤

Methodology overview

Lower-bound on the work executed

under any work conserving algorithm

Upper-bound on the work

generated under G-LP-EDF

A sufficient schedulability condition:

Lower bound on the work done

ti ti-1

Processor 2

Processor 1

xi

Low priority job executions (blocking) High priority job executions Ji’s execution

release time of job Ji release time of job Ji+1

work done(ti, ti-1) ≥ m ti-1 - ti - xi()+ xi

tk t2 t1

Processor 2

Processor 1

deadline miss

t0 tq

L

Job J1

x1

x2

Job J2

…….. ……..

Job Jq Job Jk

xk

Low priority job executions (blocking) High priority job executions

m- (m-1)s() t0 - tk - L()+mLwork done(tk, t0) >

work done(ti, ti-1) ≥ m ti-1 - ti - xi()+ xi

Lower bound on the work done
Unschedulability scenario:

x1 < (t0 - t1 - L)s
"t i

max
Ci

Di -L

é

ë
ê

ù

û
ú £ s£1xi < (ti-1 - ti)s

≤

Methodology overview

Lower-bound on the work executed

under any work conserving algorithm

Upper-bound on the work

generated under G-LP-EDF

A sufficient schedulability condition:

Upper bound on the work generated

In [tk,t0), we consider the duration for which:

a. Low priority tasks block high priority tasks

b. Higher priority tasks execute

….. under G-LP-EDF

Maximum duration of blocking

Low priority job executions (blocking) High priority job executions

blocking(tk, t0) : mL

tk t2 t1

Processor 2

Processor 1

deadline miss

t0

L

Job J1

x1

x2

Job J2

……..

Job Jk

xk

L

Interference from higher priority tasks

tk t0

(Forced-Forward Demand Bound Function)

Executes on a

speed ‘s’ processor

headi

R

R³ Di D -
Ci

s
£ R< Di

Ci Ci - (Di - R)s 0

otherwise

tailiFF - DBFi (t,s) = +

Work done(tk,t0) ≤ FF - DBFi (t0 - tk,s)
"t i

å + mL

Upper bound on the work generated

t

Ti

ê

ë
ê

ú

û
úCi

Task i

Methodology overview

Lower-bound on the work executed

under any work conserving algorithm

Upper-bound on the work

generated under G-LP-EDF ≤

A sufficient schedulability condition:

m- (m-1)s() t0 - tk - L()+mLFF - DBFi (t0 - tk,s)
"t i

å + mL ≤

m- (m-1)s() t0 - tk - L()Þ FF - DBFi (t0 - tk,s)
"t i

å ≤

1. Schedulability analysis for Global Limited Preemptive

Earliest Deadline First (G-LP-EDF) scheduling of

sporadic real-time tasks

2. Analysis of the effects of increasing the processor

speed on G-LP-EDF feasibility

Agenda

1. Schedulability analysis for Global Limited Preemptive

Earliest Deadline First (G-LP-EDF) scheduling of

sporadic real-time tasks

2. Analysis of the effects of increasing the processor

speed on G-LP-EDF feasibility

Agenda

Feasibility bucket

Speed (slower)

Speed (faster)

Task sets feasible

at speed s=x

Task sets feasible

at speed s=1

x

Task sets feasible

at speed s=1
1

Processor speed vs. LP-EDF feasibility

Bounds on Multiprocessors Bounds on Uniprocessors

uniprocessor LP-EDF

feasibility
4 f (L)

uniprocessor NP-EDF

feasibility 4 f (Cmax)

g-P-EDF

feasibility
2 -

1

m

æ

è
ç

ö

ø
÷

g-LP-EDF

feasibility
4 2 -

1

m

æ

è
ç

ö

ø
÷ f (L)

g-NP-EDF

feasibility
4 2 -

1

m

æ

è
ç

ö

ø
÷ f (Cmax)

1 m (and uni) processor

feasibility

Speed (slower)

Speed (faster)

f (x) =

2
Dmin

x
³ 2

1 1£
Dmin

x
< 2

x

Dmin

0 <
Dmin

x
<1

ì

í

ï
ï
ï

î

ï
ï
ï

Non-preemptive infeasibility arising from at least one task

having WCET greater than shortest deadline

Long task problem

Task B

(lower priority)

Task A

(higher priority)

A solution: code-refactoring at task level

(Short, 2010, “The case for non-preemptive, deadline-driven scheduling in real-time embedded systems”)

Our speed-up factor quantifies the extent to which code-refactoring

must be done to enable non-preemptive feasibility

1. Schedulability analysis for Global Limited Preemptive

Earliest Deadline First (G-LP-EDF) scheduling of

sporadic real-time tasks

2. Analyze the effects of increasing the processor speed

on G-LP-EDF feasibility

Agenda

Conclusions

• Global limited preemptive EDF feasibility analysis

– To control preemption related overheads

– Enables better reasoning about predictability of multi (-core)

processor real-time systems

• Processor speed vs. preemptive behavior

– Quantifies the extent to which code-refactoring must be

performed to address the long task problem

– Sub-optimality of G-NP-EDF

Future work

• Compare G-LP-EDF and G-P-EDF in presence of overheads

• Perform trade-offs: number of extra processors vs. speed-up

• Partition tasks comprising of non-preemptive chunks

• Accounting for suspensions

Questions ?

Thank you !

