
Predictive Thermal Control for Real-Time Video
Decoding

Mehmet H. Suzer and Kyoung Don Kang

Department of Computer Science
State University of New York at Binghamton

kang@binghamton.edu

1 / 24

Research Problem

Important soft real-time/cyber physical applications, e.g., visual
surveillance or transportation management, need to handle
demanding multimedia workloads, e.g., HD video frames

Processor is subject to high power consumption and overheating

Accumulated heat cannot be dissipated immediately

Dynamic & demanding workloads

Thermal fault may cause playtime deadline misses due to, for example,
clock throttling (Assume no deadline miss if no thermal fault)

2 / 24

Contributions

A new empirical model

Predict CPU temperature by directly considering CPU thermal
characteristics and multimedia application semantics

Feedforward and Feedback Control (adaptive nonlinear control)

Periodically update the predictive model at each control point to capture
time-varying relation between provided video quality and predicted CPU
power consumption and temperature via feedback

Minimal QoS Adaptation

Adapt video quality by a minimal degree within a specified range to avoid
overheating in the next control period

3 / 24

Overview of H.264/SVC Standard

Substantially enhance the coding efficiency and increase video
scalability

One video can be coded with a combination of different temporal
rates, spatial resolutions, and quantization parameters (QPs) at the
coding time for clients with diverse network connections and devices (
wired, wireless, large screen, mobile display, etc.)

Provides spatial, temporal, and quality scaling to adapt resolution,
frame rate, and PSNR (Peak Signal to Noise Ratio), respectively

4 / 24

Video Quality Adaptation to Avoid CPU Overheating

Quality Scaling

Applied to adapt video
quality to prevent thermal
faults in this paper

Known to provide less QoS
fluctuations compared to
resolution/frame rate
adaptation

However, our approach is
not limited to quality scaling

Quality scaling example: Frames
decoded using QP=16, 28, 36, and
40 are shown from top-left to
bottom-right

5 / 24

Overall System Archtecture

T max
Temp.

Controller
T
A

T(k)

Encoded

Bitstream

QP
Decoder Player

Slice data

Cycle

Estimator

u(k+1)

u(k)

(k)

System Architecture

CPU chip temperature: Controlled
variable

QP: Manipulated variable

Tmax : CPU temperature threshold

T (k) and TA(k): Chip and ambient
temperature at the kth control point
(time kPc where Pc is control period)

u(k): CPU cycles consumed for video
decoding in kth control period, i.e.,
time interval [k(Pc − 1), kP)

û(k + 1): estimated CPU cycles needed
to decode video in (k + 1)th control
period

6 / 24

Procedure for Predictive CPU Temperature Control

1 At the kth control point, update the model parameters.

2 At the kth control point, estimate the maximal allowable power
consumption, pmax(k + 1), in the (k + 1)th control period without
exceeding Tmax .

3 At the kth control point, based on pmax(k + 1), compute the smallest
possible QP(k + 1) expected to support the highest possible quality
and avoid violating Tmax in the (k + 1)th control period.

4 Use QP(k + 1) for video decoding in the (k + 1)th control period.

5 Repeat the steps above at each control point until all frames are
decoded.

7 / 24

Predictive Model Design

RC temperature model (Skadron et. al. [4]):

dT (t)

dt
= − 1

RC
[T (t) − TA(t)] +

1

C
p(t) (1)

R: thermal resistance

C : thermal capacitance

T (t): current chip temperature at time t

TA(t): current ambient temperature

p(t): CPU power consumption

8 / 24

Discretize the continuous time domain model in Eq. 1 to predict the CPU
temperature in the (k + 1)th control period, x(k + 1), at the kth control
point:

x(k + 1) = Ax(k) + Bp̂(k + 1) (2)

A = e−Pc/RC , B = (1 − A)R, and x(k) = T (k) − TA(k)

p̂(k + 1) represents the predicted power consumption for video
decoding in the (k + 1)th control period

Assume ambient temperature does not significantly change between
two consecutive control points

9 / 24

At the kth control point, estimate p̂(k + 1):

p̂(k + 1) = PIdle + Pf (k)û(k + 1) (3)

PIdle : idle power consumption

PIdle is measured offline when the CPU is idle

Pf (k): power factor is the gain capturing the relation between the
number of the CPU cycles and power consumption for video decoding
at the kth control point

Our predictive model is not tied to the linear assumption between the CPU
cycle and power consumption, because the power factor is continuously
updated at every control point based on the RC thermal model.

10 / 24

For k ≥ 1, we derive Pf (k):

Pf (k) =
T (k) − T (k − 1) + A [T (k − 2) − T (k − 1)]

B [u(k) − u(k − 1)]
(4)

Measure the number of the CPU cycles used for video decoding in the kth

control period, u(k), by reading the time stamp counter (TSC), which is a
hardware counter readable through the IPMI (Intelligent Platform
Management Interface)

11 / 24

4e+10

6e+10

8e+10

1e+11

1.2e+11

1.4e+11

1.6e+11

1.8e+11

2e+11

16 20 24 28 32 36 40

Quantization Parameter

C
P

U
 C

y
cl

es

QP vs. CPU Cycles
(test movie Harbor [5] with

704 × 576 resolution and 60 fps)

Linear relationship between the
quality increment and bit rate of
coded videos (Chen et. al. [1])

We empirically verified the
linearity for several videos
heavily used in multimedia
research [3, 5]

CPU cycle consumption
increases almost linearly as QP
decreases, and video quality
enhances accordingly

12 / 24

Compute the utilization factor based on linear relation between QP and
CPU cycle consumption for video decoding:

Uf (k) =
u(k)

QP(k)
(5)

Uf (0) is calculated offline by decoding a few frames

Utilization factor is also updated at every control point to closely
keep track the relation between the QP and CPU cycle consumption
that may vary in time

13 / 24

Based on Uf (k), predict the estimated number of CPU cycles needed for
video decoding in the (k + 1)th control period at the kth control point:

û(k + 1) = Uf (k) · QP(k + 1) (6)

manipulated variable, QP(k + 1), is the smallest possible QP
expected to support highest video quality without overheating the
CPU in the (k + 1)thcontrol period

14 / 24

After some substitutions and algebraic manipulations, the estimated
utilization needed to support QP(k + 1) is:

umax(k + 1) =
pmax(k + 1) − PIdle

Pf (k)
(7)

From it, QP(k + 1) is:

QP(k + 1) =

⌈
umax(k + 1)

Uf (k)

⌉
(8)

15 / 24

Finally, ensure QPmin ≤ QP(k + 1) ≤ QPmax :

QP(k + 1) =


QPmin if QP(k + 1) < QPmin

QPmax if QP(k + 1) > QPmax

QP(k + 1) otherwise
(9)

For more mathematical details, please refer to our paper available at:
http://www.cs.binghamton.edu/~kang/ecrts14.pdf

16 / 24

http://www.cs.binghamton.edu/~kang/ecrts14.pdf

Performance Evaluation

Micro-testbed built upon a Linux laptop with the 1.6 GHz Intel
Pentium M processor and 512 MB of RAM using sample videos [3, 5]

Thermal Control Parameters

Tmax 75 ◦C (55 ◦C for experiments)

TAmb 27 ◦C

PIdle 10.28 W

Pc 1/r (1/frame rate)

Baselines:

Static Approach: Use a fixed QP derived offline
Reactive feedback controller, PI controller similar to Fu et. al. [2]:
Adapt the QP in reaction to a thermal error

17 / 24

Expeirmental Results

Static Approach

Suffers from either a large temperature overshoots or poor video quality.
Thus, results are not presented.

Reactive PI Controller

Shows much better performance than static approach does. However, it
experiences temperature overshoots due to the reactive nature undesirable
for thermal control

Proposed Feedforward + Feedback Approach

Temperature exceeds the threshold (55◦C) by no more than 0.4◦C for
similar or lower QP (higher video quality)

18 / 24

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500 600

T
e
m

p
e
ra

tu
re

 (
C

)

time (sec.)

CPU Die Temperature

12

16

20

24

28

32

36

40

44

0 100 200 300 400 500 600

time (sec.)

Q
P

CPU temperature and QP of
the PI controller for Elephant

Dream [3]

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500 600

T
e
m

p
e
ra

tu
re

 (
C

)

time (sec.)

CPU Die Temperature

12

16

20

24

28

32

36

40

44

0 100 200 300 400 500 600

time (sec.)
Q
P

CPU temperature and QP of
the predictive controller for

Elephant Dream [3]

19 / 24

Performance Results for Other Videos

Tested Control Temperature Settling
Video Method Overshoot Time

B.B. Bunny
PIC 61.3 ◦C 286s
PRE 55.4 ◦C 8s

Bridge (Close)
PIC 60.7 ◦C 278s
PRE 55.2 ◦C 6s

Bridge (Far)
PIC 60.9 ◦C 274s
PRE 55.3 ◦C 6s

E. Dream
PIC 60.0 ◦C 270s
PRE 55.2 ◦C 5s

Highway
PIC 63.2 ◦C 297s
PRE 55.3 ◦C 11s

Paris
PIC 61.0 ◦C 281s
PRE 55.1 ◦C 3s

Table: Performance of PIC (PI Controller) and PRE (Predictive Approach)

20 / 24

Conclusions and Future Work

A new empirical model to predict CPU temperature by directly
considering CPU thermal characteristics and multimedia application
semantics

Feedforward and feedback control (adaptive nonlinear control) to
periodically update the predictive model at each control point

Adapt video quality by a minimal degree within a specified range to
avoid overheating in the next control period

Closely support the CPU temperature threshold, while supporting
similar or better video quality compared to the tested baselines

In the future, multicore thermal control issues will be explored: Assign
frames or slices of the same frame to the cores? Thermal/workload
balancing between cores?

21 / 24

Thanks! Questions?

22 / 24

Xu Chen, Ji hong Zhang, Wei Liu, Yong sheng Liang, and Ji qiang
Feng.
H.264/SVC parameter optimization based on quantization parameter,
MGS fragmentation, and user bandwidth distribution.
EURASIP Journal on Advances in Signal Processing, 2013(10), 2013.

Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X.D. Koutsoukos, and
H. Wang.
Feedback Thermal Control for Real-time Systems.
In IEEE Real-Time and Embedded Technology and Applications
Symposium, 2010.

P. Seeling and M. Reisslein.
Sample Video Sequences.
http://trace.eas.asu.edu/yuv/index.html.

K. Skadron, M. R. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan.
Temperature-Aware Computer Systems: Opportunities and
Challenges.

23 / 24

http://trace.eas.asu.edu/yuv/index.html

IEEE Micro, 23(6):52–61, 2003.

Sample Video Sequences.
ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/.

24 / 24

ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/

