ECRTS 2014 in Madrid, Spain
9-11 July 2014

Refinement-based Exact Response-Time Analysis

Martin Stigge

Uppsala University, Sweden

Joint work with Nan Guan and Wang Yi

Response-Time Analysis

([N [

Response time

e Useful for

o Schedulability analysis

e Jitters in larger systems
o ...

e Standard RTA for static priorities + periodic/sporadic tasks

Martin Stigge Refinement-based Response-Time Analysis

Not everything is periodic!

Martin Stigge Refinement-based Response-Time Analysis

The Digraph Real-Time (DRT) Task Model

(S. et al., RTAS 2011)

e Generalizes periodic, sporadic, GMF, RRT, ...
e Directed graph for each task

o Vertices v: jobs to be released (with WCET and deadline)
e Edges (u,v): minimum inter-release delays p(u, v)

(1,5)

Martin Stigge Refinement-based Response-Time Analysis

DRT: Semantics

Martin Stigge Refinement-based Response-Time Analysis

DRT: Semantics

Martin Stigge Refinement-based Response-Time Analysis

DRT: Semantics

Martin Stigge Refinement-based Response-Time Analysis

DRT: Semantics

Martin Stigge Refinement-based Response-Time Analysis

Response-Time Analysis for DRT

Martin Stigge Refinement-based Response-Time Analysis

Problem: Path Combinations

Response time Response time

Martin Stigge Refinement-based Response-Time Analysis

Problem: Path Combinations

Response time Response time

[Combinatorial Explosion!]

Martin Stigge Refinement-based Response-Time Analysis

Fahrplan
© Title

© Introduction
@ Response-Time Analysis
@ Task Model

© Problem Description

@ Solution Approach
@ Step 1: From Paths to Functions
@ Step 2: Abstraction Trees
@ Step 3: Refinement Algorithm

© Evaluation
@ Run-time Scaling
@ Precision Improvement

Martin Stigge Refinement-based Response-Time Analysis

Fahrplan

@ Solution Approach
@ Step 1: From Paths to Functions
@ Step 2: Abstraction Trees
@ Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis

Step 1: From Paths to Functions

Martin Stigge Refinement-based Response-Time Analysis

Step 1: From Paths to Functions

rf(t)

I rf(v47V2,V3)

Illllllll)t
0 5 10 15 20 25 30 35 40

Martin Stigge Refinement-based Response-Time Analysis

ONPDOWO

10

Request Functions

Useful for deriving response time:

Rsp(v, rf) = min {t >0]e(v)+ > M) <t
T'>T

Rsp(v) = i)RSP(Va rf)

Martin Stigge Refinement-based Response-Time Analysis

}

11

Request Functions

Useful for deriving response time:

Rsp(v, rf) = min {t >0]e(v)+ > M) <t
T'>T

Rsp(v) = nax)RSP(Va rf)

[Combinatorial Explosion?!]

Martin Stigge Refinement-based Response-Time Analysis

}

11

Step 2: Abstraction Trees

Martin Stigge Refinement-based Response-Time Analysis

Abstract Request Functions

I rf(v47V2,V3)

> t

ON PO

0 5 10 15 20 25 30 35 40

Martin Stigge Refinement-based Response-Time Analysis

13

Abstract Request Functions

Martin Stigge

12 rf(v47v2,V3)
6 . SR S
4 ' rf(v57v47v2)
2
0 T T t

0 5 10 15 20 25 30 35 40

Refinement-based Response-Time Analysis

13

Abstract Request Functions

Martin Stigge

10
3 arf rf(V47V2,V3)
6 . PP, S
4 d rf(V57V4,V2)
2
0 T T t

0 5 10 15 20 25 30 35 40

Refinement-based Response-Time Analysis

13

Abstraction Tree

o O O
rf1 I’fg O Orf5
rf3 rfy

Define an abstraction tree per task:

e Leaves are concrete rf

Martin Stigge Refinement-based Response-Time Analysis

Abstraction Tree

o O O

rf1 rfo rfg
rf3 rfy

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes

Martin Stigge Refinement-based Response-Time Analysis

14

Abstraction Tree

o g o

rf1 rfo rfg
rf3 rfy

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes

Martin Stigge Refinement-based Response-Time Analysis

14

Abstraction Tree

%

rf1 rfo rfg
rf3 rfy

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes

Martin Stigge Refinement-based Response-Time Analysis

14

Abstraction Tree

rf1 rfo rfg
rf3 rfy

Define an abstraction tree per task:
e Leaves are concrete rf
e Each node: maximum function of child nodes

e Root is maximum of all rf

Martin Stigge Refinement-based Response-Time Analysis

14

Abstraction Tree

rf1 rfo rfg
rf3 rfy

Define an abstraction tree per task:
e Leaves are concrete rf
e Each node: maximum function of child nodes

e Root is maximum of all rf

[Allows stepwise refinement!]

Martin Stigge Refinement-based Response-Time Analysis

14

Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis

Step 3: Refinement Algorithm

Tuple: rf = (rf(Tl), rf(T2) rf(Ta))

Martin Stigge Refinement-based Response-Time Analysis

Store

16

Step 3: Refinement Algorithm

Tuple: rf = (rf(Tl), rf(T2) rf(Ta))
{

Response time: Rsp(v, rf) = 23

Store

(&

(23, rf1)

Using: Rsp(v, /) = min {t >0 e(v)+ Xy rfT(1) < t}

Martin Stigge Refinement-based Response-Time Analysis

16

Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis

Store

(23, rf1)

16

Step 3: Refinement Algorithm

Store

Step:
rfy = (rf(T) pf(T2) p(T3))
1
rfa = (rf" (T, rf(T2) (£(T3))

rfs = (rf"(T), rf(T2) (£ (T2))

(23, rf1)

rf
In Ty: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

16

Step 3: Refinement Algorithm

Store

Step:
rfy = (rf(T) pf(T2) p(T3))
1
o= (rf/(Tl), rf(Tz)’ rf(T3)) — 18

rF3 = (") ,£(72) (f(T3)) — 21

(23, rf1)

rf
In Ty: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

16

Step 3: Refinement Algorithm

Step:
rfy = (rf(T) pf(T2) p(T3))
1
o= (rf/(Tl), rf(Tz)’ rf(T3)) — 18

rF3 = (") ,£(72) (f(T3)) — 21

rf
In Ty: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

16

Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis

Store
(21, rf3)
(18, rf3)
16

Step 3: Refinement Algorithm

Step:

rfy = (rf (T pf(T2) £ (T3))

Martin Stigge Refinement-based Response-Time Analysis

Store

(21, rf3)

(18, rf3)

16

Step 3: Refinement Algorithm

Store
Step: (21, F)
rfo = (rf(T1) rf(T2) f(T3)) _
(18, rf3)

!
rfq = (rf(TD) | pf1(T2) £ (T3))

rfs = (rf TV, (T2 £ (T2))

rf
In To: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

Step 3: Refinement Algorithm

Store
Step: (21, F)
rfo = (rf(T1) rf(T2) f(T3)) _
(18, rf3)

1
fa = (,,76(7'1)7 rf/(Tz)’ rf(T3)) — 20

rfs = (rf(T), rf"(T2) (1)) — 17

rf
In To: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

Step 3: Refinement Algorithm

Step:
rfy = (rF(T)_pf(T2) p(T3))
1
fa = (,,76(7'1)7 rf/(Tz)’ rf(T3)) — 20

rfs = (rf(T), rf"(T2) (1)) — 17

rf
In To: /' \

rf" rf”

Martin Stigge Refinement-based Response-Time Analysis

16

Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis

Store

(20, rf4)
(18, rf3)

(17, rfs5)

16

Step 3: Refinement Algorithm

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete

Martin Stigge Refinement-based Response-Time Analysis

Store

(20, rf4)
(18, rf3)

(17, rfs5)

16

Step 3: Refinement Algorithm

Initialization:
e Most abstract functions

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete

Martin Stigge Refinement-based Response-Time Analysis

Store

(20, rf4)
(18, rf3)

(17, rfs5)

16

Step 3: Refinement Algorithm

Store

Initialization:
e Most abstract functions

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete

(20, rf4)
(18, rf3)

(17, rfs5)

[Plugga ble Path Abstractions!)

Martin Stigge Refinement-based Response-Time Analysis

16

Path Abstractions: SP + EDF

Martin Stigge Refinement-based Response-Time Analysis

Path Abstractions: Static Priorities

I_ rf (vava,vs)

AN I R R E N N B | t
0 5 10 15 20 25 30 35 4

ON PO

[rf,r(t) :=max {e(n) | n" is prefix of w and p(7') < t}]

18

Path Abstractions: EDF

Refinement-based Response-Time Analysis

19

Path Abstractions: EDF

wf(t,t') ;= max{e(n’) | =’ is prefix of T,
p(n') < t and d(7’) < t'}.

Refinement-based Response-Time Analysis

19

Evaluation

Martin Stigge Refinement-based Response-Time Analysis

Evaluation: Run-time Scaling

<
o

e
3

=}
[=2}
T

o
T

Analysis Run-Time (seconds)
2%
T T

Analysis Run-Time (seconds)

02t
0.1}
: e :
0.9, : : : ‘ a0 | i i
0 01 02 03 04 0001 02 03 02 05
Task Set Utilization Task Set Utilization

10-20 tasks with 5-10 vertices each, branching degree 1-3

(Busy window extension for EDF.)

Martin Stigge Refinement-based Response-Time Analysis

21

Evaluation: P

recision Improvement

20% T ! T !
o |[re mwen) .
g 15% | e ¢e TypeB|: i S e e
g ° s.. %
2 | | T
. . LJ
g 0% o :'o-\{x};‘:;" """]
. L] . . L]
& : 2 ‘o3 28°% %
%D ol ‘e . ‘o % (g “’ *
g 5% 1% KX0K0! 0y "s 230, OGS e e a
< ' R N
: ¥ i i i
0% 20% 40% 60% 80% 100%

Fraction of improved RT estimates

Type A: lower parameter variance
Type B: higher parameter variance

Martin Stigge Refinement-based Response-Time Analysis

22

Summary

e Exact solution for NP-hard problem
o Efficient method
o |terative refinement

e Pluggable path abstractions

e Static Priorities
e EDF
e [lexible

e Ongoing work: rf1
e Apply to other problems

Martin Stigge Refinement-based Response-Time Analysis

rfa

rf3

I‘f4

rf5

23

Q& A

Thanks!

Martin Stigge Refinement-based Response-Time Analysis

	Title
	Introduction
	Response-Time Analysis
	Task Model

	Problem Description
	Solution Approach
	Step 1: From Paths to Functions
	Step 2: Abstraction Trees
	Step 3: Refinement Algorithm

	Evaluation
	Run-time Scaling
	Precision Improvement

