ECRTS 2014 in Madrid, Spain 9-11 July 2014

Refinement-based Exact Response-Time Analysis

Martin Stigge

Uppsala University, Sweden

Joint work with Nan Guan and Wang Yi

Response-Time Analysis

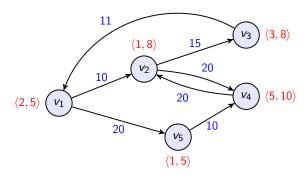
- Useful for
 - Schedulability analysis
 - Jitters in larger systems
 - •
- Standard RTA for static priorities + periodic/sporadic tasks

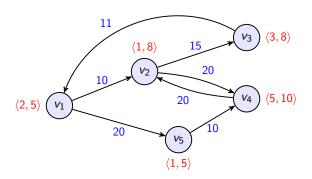
$$R_j = C_j + \sum_{i \in hp(j)} \left\lceil \frac{R_j}{T_i} \right\rceil C_i$$

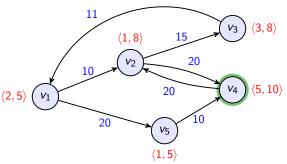
Not everything is periodic!

The Digraph Real-Time (DRT) Task Model (S. et al., RTAS 2011)

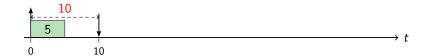
- Generalizes periodic, sporadic, GMF, RRT, . . .
- Directed graph for each task
 - Vertices v: jobs to be released (with WCET and deadline)
 - Edges (u, v): minimum inter-release delays p(u, v)

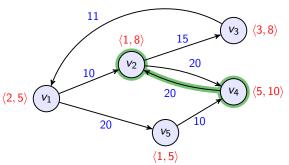




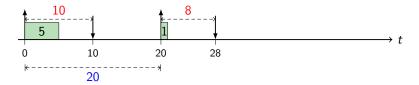


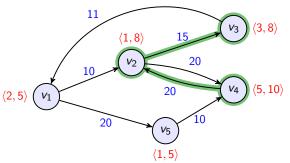
Path $\pi = (v_4)$



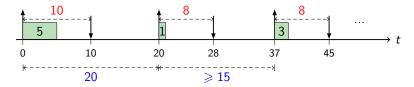


Path $\pi = (v_4, v_2)$



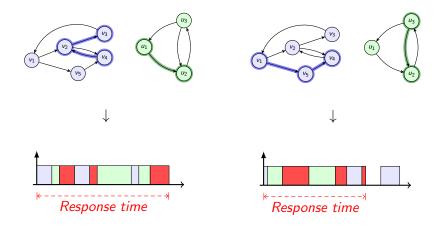


Path $\pi = (v_4, v_2, v_3)$

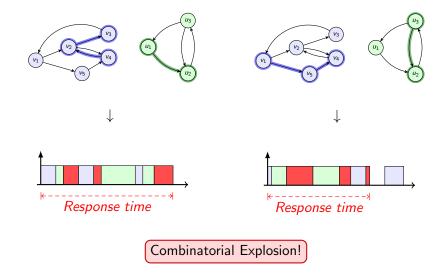


Response-Time Analysis for DRT

Problem: Path Combinations



Problem: Path Combinations



Fahrplan

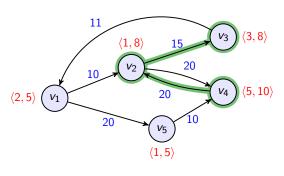
- Title
- 2 Introduction
 - Response-Time Analysis
 - Task Model
- Problem Description
- Solution Approach
 - Step 1: From Paths to Functions
 - Step 2: Abstraction Trees
 - Step 3: Refinement Algorithm
- Evaluation
 - Run-time Scaling
 - Precision Improvement

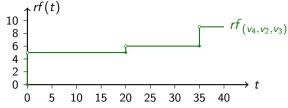
Fahrplan

- 1 Title
- 2 Introduction
 - Response-Time Analysis
 - Task Model
- Problem Description
- Solution Approach
 - Step 1: From Paths to Functions
 - Step 2: Abstraction Trees
 - Step 3: Refinement Algorithm
- Evaluation
 - Run-time Scaling
 - Precision Improvement

Step 1: From Paths to Functions

Step 1: From Paths to Functions





Request Functions

Useful for deriving response time:

$$R_{SP}(v, \bar{r}f) = \min \left\{ t \geqslant 0 \mid e(v) + \sum_{T' > T} rf^{(T')}(t) \leqslant t \right\}$$

$$R_{SP}(v) = \max_{\bar{r}f \in RF(\tau)} R_{SP}(v, \bar{r}f)$$

Request Functions

Useful for deriving response time:

$$R_{SP}(v, \bar{rf}) = \min \left\{ t \geqslant 0 \mid e(v) + \sum_{T' > T} rf^{(T')}(t) \leqslant t \right\}$$

$$R_{SP}(v) = \max_{\bar{rf} \in RF(\tau)} R_{SP}(v, \bar{rf})$$

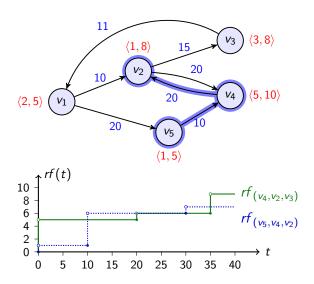
Combinatorial Explosion?!

Step 2: Abstraction Trees

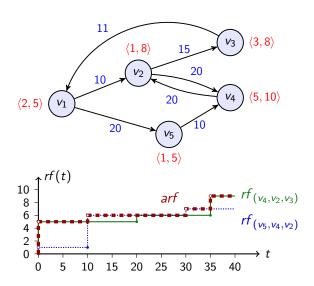
Abstract Request Functions

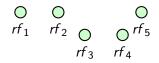


Abstract Request Functions

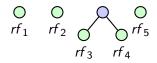


Abstract Request Functions

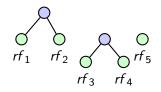




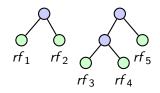
- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf



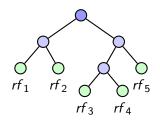
- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf



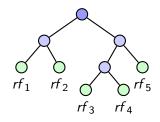
- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf



- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf



- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf

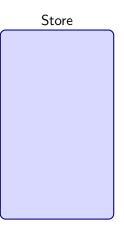


Define an abstraction tree per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf

Allows stepwise refinement!

Tuple:
$$rf = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

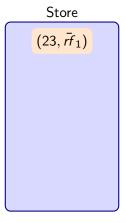


Tuple:
$$rf = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

Store $(23, \bar{rf}_1)$

Response time: $R_{SP}(v, \vec{rf}) = 23$

Using:
$$R_{SP}(v, \bar{r}f) = \min \left\{ t \geqslant 0 \mid e(v) + \sum_{T' > T} rf^{(T')}(t) \leqslant t \right\}$$

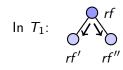


Step:

$$\bar{rf}_1 = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

$$r\bar{f}_2 = (rf'^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

$$r\bar{f}_3 = (rf''^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$



Store

$$(23, \bar{rf}_1)$$

Step:

$$\bar{rf}_{1} = (rf^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})})$$

$$\downarrow$$

$$\bar{rf}_{2} = (rf'^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})}) \rightarrow 18$$

$$\bar{rf}_{3} = (rf''^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})}) \rightarrow 21$$

In T_1 : rf' rf''

Store

 $(23, \bar{rf}_1)$

Step:

$$\vec{r}f_{1} = (rf^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})})$$

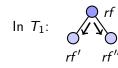
$$\downarrow$$

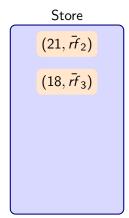
$$\vec{r}f_{2} = (rf'^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})}) \rightarrow 18$$

$$\vec{r}f_{3} = (rf''^{(T_{1})}, rf^{(T_{2})}, rf^{(T_{3})}) \rightarrow 21$$

Store

- $(18, \bar{rf}_3)$





Step:

$$\bar{rf}_2 = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

Store

$$(21, \bar{rf}_2)$$

$$(18, \bar{rf}_3)$$

Step:

$$r\bar{f}_2 = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

$$r\bar{f}_4 = (rf^{(T_1)}, rf'^{(T_2)}, rf^{(T_3)})$$

$$r\bar{f}_5 = (rf^{(T_1)}, rf''^{(T_2)}, rf^{(T_3)})$$

In T_2 : rf' rf'

Store

$$(21, \bar{rf}_2)$$

$$(18, \bar{rf}_3)$$

Step:

$$\bar{rf}_2 = (rf^{(T_1)}, rf^{(T_2)}, rf^{(T_3)})$$

$$\downarrow$$

$$\bar{rf}_4 = (rf^{(T_1)}, rf'^{(T_2)}, rf^{(T_3)}) \rightarrow 20$$

$$\bar{rf}_5 = (rf^{(T_1)}, rf''^{(T_2)}, rf^{(T_3)}) \rightarrow 17$$

$$\bigcirc rf$$

Store

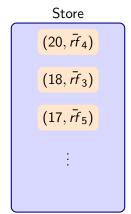
$$(21, \bar{rf}_2)$$

$$(18, \bar{rf}_3)$$

Step:

Store

- $(20, \bar{rf}_4)$
- $(18, \bar{rf}_3)$
- $(17, \bar{rf}_5)$



Initialization:

Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

Store

 $(20, \bar{rf}_4)$

 $(18, \bar{rf}_3)$

 $(17, \bar{rf}_5)$

:

Initialization:

Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

All functions are concrete

Store

$$(20, \bar{rf}_4)$$

$$(18, \bar{rf}_3)$$

$$(17, \bar{rf}_5)$$

:

Initialization:

Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

Store

 $(20, \bar{rf}_4)$

 $(18, \bar{rf}_3)$

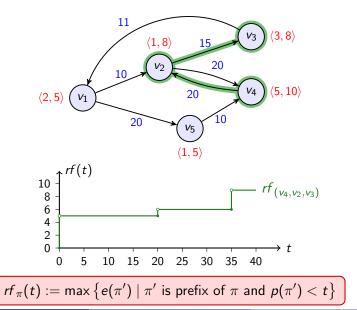
 $(17, \bar{rf}_5)$

:

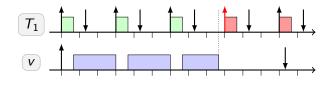
Pluggable Path Abstractions!

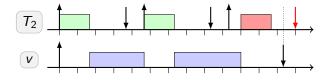
Path Abstractions: SP + EDF

Path Abstractions: Static Priorities

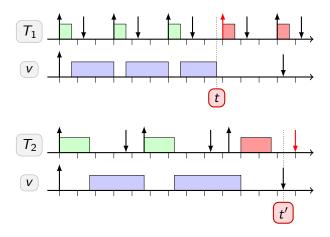


Path Abstractions: EDF





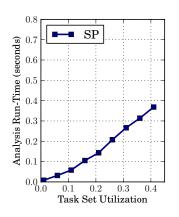
Path Abstractions: EDF

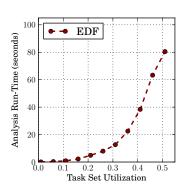


$$wf_\pi(t,t') := \max\{e(\pi') \mid \pi' ext{ is prefix of } \pi, \ p(\pi') < t ext{ and } d(\pi') \leqslant t'\}.$$

Evaluation

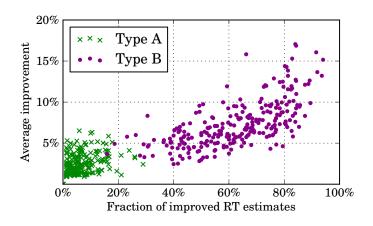
Evaluation: Run-time Scaling





10-20 tasks with 5-10 vertices each, branching degree 1-3 (Busy window extension for EDF.)

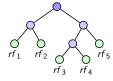
Evaluation: Precision Improvement



Type A: lower parameter variance Type B: higher parameter variance

Summary

- Exact solution for NP-hard problem
 - Efficient method
 - Iterative refinement
- Pluggable path abstractions
 - Static Priorities
 - EDF
 - Flexible
- Ongoing work:
 - Apply to other problems



Q & A

Thanks!