
ECRTS 2014 in Madrid, Spain
9-11 July 2014

Refinement-based Exact Response-Time Analysis

Martin Stigge

Uppsala University, Sweden

Joint work with Nan Guan and Wang Yi



Response-Time Analysis

Response time

• Useful for
• Schedulability analysis
• Jitters in larger systems
• . . .

• Standard RTA for static priorities + periodic/sporadic tasks

Rj = Cj +
∑

i∈hp(j)

⌈
Rj

Ti

⌉
Ci

Martin Stigge Refinement-based Response-Time Analysis 2



Not everything is periodic!

Martin Stigge Refinement-based Response-Time Analysis 3



The Digraph Real-Time (DRT) Task Model
(S. et al., RTAS 2011)

• Generalizes periodic, sporadic, GMF, RRT, . . .

• Directed graph for each task
• Vertices v : jobs to be released (with WCET and deadline)
• Edges (u, v): minimum inter-release delays p(u, v)

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Martin Stigge Refinement-based Response-Time Analysis 4



DRT: Semantics

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Path π = (v4)Path π = (v4, v2)Path π = (v4, v2, v3)

0 10 20 28

20

37 45

> 15

5

10

1

8

3

8
...

t

Martin Stigge Refinement-based Response-Time Analysis 5



DRT: Semantics

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Path π = (v4)

Path π = (v4, v2)Path π = (v4, v2, v3)

0 10

20 28

20

37 45

> 15

5

10

1

8

3

8
...

t

Martin Stigge Refinement-based Response-Time Analysis 5



DRT: Semantics

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Path π = (v4)

Path π = (v4, v2)

Path π = (v4, v2, v3)

0 10 20 28

20

37 45

> 15

5

10

1

8

3

8
...

t

Martin Stigge Refinement-based Response-Time Analysis 5



DRT: Semantics

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Path π = (v4)Path π = (v4, v2)

Path π = (v4, v2, v3)

0 10 20 28

20

37 45

> 15

5

10

1

8

3

8
...

t

Martin Stigge Refinement-based Response-Time Analysis 5



Response-Time Analysis for DRT

Martin Stigge Refinement-based Response-Time Analysis 6



Problem: Path Combinations

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

Combinatorial Explosion!

Martin Stigge Refinement-based Response-Time Analysis 7



Problem: Path Combinations

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

Combinatorial Explosion!

Martin Stigge Refinement-based Response-Time Analysis 7



Fahrplan

1 Title

2 Introduction
Response-Time Analysis
Task Model

3 Problem Description

4 Solution Approach
Step 1: From Paths to Functions
Step 2: Abstraction Trees
Step 3: Refinement Algorithm

5 Evaluation
Run-time Scaling
Precision Improvement

Martin Stigge Refinement-based Response-Time Analysis 8



Fahrplan

1 Title

2 Introduction
Response-Time Analysis
Task Model

3 Problem Description

4 Solution Approach
Step 1: From Paths to Functions
Step 2: Abstraction Trees
Step 3: Refinement Algorithm

5 Evaluation
Run-time Scaling
Precision Improvement

Martin Stigge Refinement-based Response-Time Analysis 8



Step 1: From Paths to Functions

Martin Stigge Refinement-based Response-Time Analysis 9



Step 1: From Paths to Functions

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

Martin Stigge Refinement-based Response-Time Analysis 10



Request Functions

Useful for deriving response time:

RSP(v , r̄f ) = min

{
t > 0 | e(v) +

∑
T ′>T

rf (T ′)(t) 6 t

}
RSP(v) = max

r̄f ∈RF (τ)
RSP(v , r̄f )

Combinatorial Explosion?!

Martin Stigge Refinement-based Response-Time Analysis 11



Request Functions

Useful for deriving response time:

RSP(v , r̄f ) = min

{
t > 0 | e(v) +

∑
T ′>T

rf (T ′)(t) 6 t

}
RSP(v) = max

r̄f ∈RF (τ)
RSP(v , r̄f )

Combinatorial Explosion?!

Martin Stigge Refinement-based Response-Time Analysis 11



Step 2: Abstraction Trees

Martin Stigge Refinement-based Response-Time Analysis 12



Abstract Request Functions

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

rf (v5,v4,v2)

arf

Martin Stigge Refinement-based Response-Time Analysis 13



Abstract Request Functions

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

rf (v5,v4,v2)

arf

Martin Stigge Refinement-based Response-Time Analysis 13



Abstract Request Functions

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

rf (v5,v4,v2)

arf

Martin Stigge Refinement-based Response-Time Analysis 13



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!

Martin Stigge Refinement-based Response-Time Analysis 14



Step 3: Refinement Algorithm

Martin Stigge Refinement-based Response-Time Analysis 15



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}

Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf

In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}

Pluggable Path Abstractions!

Martin Stigge Refinement-based Response-Time Analysis 16



Path Abstractions: SP + EDF

Martin Stigge Refinement-based Response-Time Analysis 17



Path Abstractions: Static Priorities

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

rf π(t) := max
{
e(π′) | π′ is prefix of π and p(π′) < t

}
Martin Stigge Refinement-based Response-Time Analysis 18



Path Abstractions: EDF

T2

v

t ′

T1

v

t

wf π(t, t ′) := max{e(π′) | π′ is prefix of π,

p(π′) < t and d(π′) 6 t ′}.

Martin Stigge Refinement-based Response-Time Analysis 19



Path Abstractions: EDF

T2

v

t ′

T1

v

t

wf π(t, t ′) := max{e(π′) | π′ is prefix of π,

p(π′) < t and d(π′) 6 t ′}.

Martin Stigge Refinement-based Response-Time Analysis 19



Evaluation

Martin Stigge Refinement-based Response-Time Analysis 20



Evaluation: Run-time Scaling

0.0 0.1 0.2 0.3 0.4
Task Set Utilization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
na

ly
si

s
R

un
-T

im
e

(s
ec

on
ds

) SP

0.0 0.1 0.2 0.3 0.4 0.5
Task Set Utilization

0

20

40

60

80

100

A
na

ly
si

s
R

un
-T

im
e

(s
ec

on
ds

) EDF

10-20 tasks with 5-10 vertices each, branching degree 1-3

(Busy window extension for EDF.)

Martin Stigge Refinement-based Response-Time Analysis 21



Evaluation: Precision Improvement

0% 20% 40% 60% 80% 100%
Fraction of improved RT estimates

5%

10%

15%

20%
A

ve
ra

ge
im

pr
ov

em
en

t Type A
Type B

Type A: lower parameter variance
Type B: higher parameter variance

Martin Stigge Refinement-based Response-Time Analysis 22



Summary

• Exact solution for NP-hard problem
• Efficient method
• Iterative refinement

• Pluggable path abstractions
• Static Priorities
• EDF
• Flexible

• Ongoing work:
• Apply to other problems

rf 1 rf 2 rf 5

rf 3 rf 4

Martin Stigge Refinement-based Response-Time Analysis 23



Q & A

Thanks!

Martin Stigge Refinement-based Response-Time Analysis 24


	Title
	Introduction
	Response-Time Analysis
	Task Model

	Problem Description
	Solution Approach
	Step 1: From Paths to Functions
	Step 2: Abstraction Trees
	Step 3: Refinement Algorithm

	Evaluation
	Run-time Scaling
	Precision Improvement


