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Response-Time Analysis

([ N [

Response time

e Useful for

o Schedulability analysis

e Jitters in larger systems
o ...

e Standard RTA for static priorities + periodic/sporadic tasks
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Not everything is periodic!

Martin Stigge Refinement-based Response-Time Analysis



The Digraph Real-Time (DRT) Task Model

(S. et al., RTAS 2011)

e Generalizes periodic, sporadic, GMF, RRT, ...
e Directed graph for each task

o Vertices v: jobs to be released (with WCET and deadline)
e Edges (u,v): minimum inter-release delays p(u, v)

(1,5)
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DRT: Semantics
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DRT: Semantics
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DRT: Semantics
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DRT: Semantics
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Response-Time Analysis for DRT

Martin Stigge Refinement-based Response-Time Analysis



Problem: Path Combinations

Response time Response time
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Problem: Path Combinations

Response time Response time

[Combinatorial Explosion!]
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Fahrplan
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@ Step 1: From Paths to Functions
@ Step 2: Abstraction Trees
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Step 1: From Paths to Functions
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Step 1: From Paths to Functions

rf(t)
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Request Functions

Useful for deriving response time:

Rsp(v, rf) = min {t >0]e(v)+ > M) <t
T'>T

Rsp(v) = i )RSP(Va rf)
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Request Functions

Useful for deriving response time:

Rsp(v, rf) = min {t >0]e(v)+ > M) <t
T'>T

Rsp(v) = nax )RSP(Va rf)

[Combinatorial Explosion?!]
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Step 2: Abstraction Trees
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Abstract Request Functions

I rf(v47V2,V3)
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Abstract Request Functions
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Abstract Request Functions
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Abstraction Tree

o O O
rf1 I’fg O Orf5
rf3  rfy

Define an abstraction tree per task:

e Leaves are concrete rf
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Abstraction Tree

o O O

rf1 rfo rfg
rf3  rfy

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes
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Abstraction Tree
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Abstraction Tree
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rf3  rfy

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes
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Abstraction Tree

rf1 rfo rfg
rf3  rfy

Define an abstraction tree per task:
e Leaves are concrete rf
e Each node: maximum function of child nodes

e Root is maximum of all rf
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Abstraction Tree

rf1 rfo rfg
rf3  rfy

Define an abstraction tree per task:
e Leaves are concrete rf
e Each node: maximum function of child nodes

e Root is maximum of all rf

[Allows stepwise refinement!]
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm

Tuple:  rf = (rf(Tl), rf(T2) rf(Ta))
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Step 3: Refinement Algorithm

Tuple:  rf = (rf(Tl), rf(T2) rf(Ta))
{

Response time:  Rsp(v, rf) = 23

Store

(&

(23, rf1)

Using: Rsp(v, /) = min {t >0 e(v)+ Xy rfT(1) < t}
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm

Store

Step:
rfy = (rf(T) pf(T2) p(T3))
1
rfa = (rf" (T, rf(T2) (£(T3))

rfs = (rf"(T), rf(T2) (£ (T2))

(23, rf1)

rf
In Ty: /' \

rf" rf”
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Step 3: Refinement Algorithm

Store

Step:
rfy = (rf(T) pf(T2) p(T3))
1
o= (rf/(Tl), rf(Tz)’ rf(T3)) — 18

rF3 = (") ,£(72) (f(T3)) — 21

(23, rf1)

rf
In Ty: /' \

rf" rf”
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm

Step:

rfy = (rf (T pf(T2) £ (T3))
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Step 3: Refinement Algorithm

Store
Step: (21, F)
rfo = (rf(T1) rf(T2) f(T3)) _
(18, rf3)

!
rfq = (rf(TD) | pf1(T2) £ (T3))

rfs = (rf TV, (T2 £ (T2))

rf
In To: /' \

rf" rf”
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Step 3: Refinement Algorithm

Store
Step: (21, F)
rfo = (rf(T1) rf(T2) f(T3)) _
(18, rf3)

1
fa = (,,76(7'1)7 rf/(Tz)’ rf(T3)) — 20

rfs = (rf(T), rf"(T2) (1)) — 17

rf
In To: /' \

rf" rf”
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Step 3: Refinement Algorithm

Step:
rfy = (rF(T)_pf(T2) p(T3))
1
fa = (,,76(7'1)7 rf/(Tz)’ rf(T3)) — 20

rfs = (rf(T), rf"(T2) (1)) — 17

rf
In To: /' \
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete
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Step 3: Refinement Algorithm

Initialization:
e Most abstract functions

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete
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Step 3: Refinement Algorithm

Store

Initialization:
e Most abstract functions

Each iteration:

e Replace functions along abstraction trees

Termination:

e All functions are concrete

(20, rf4)
(18, rf3)

(17, rfs5)

[Plugga ble Path Abstractions!)
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Path Abstractions: SP + EDF
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Path Abstractions: Static Priorities

I_ rf (vava,vs)
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[rf,r(t) :=max {e(n) | n" is prefix of w and p(7') < t}]
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Path Abstractions: EDF
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Path Abstractions: EDF

wf(t,t') ;= max{e(n’) | =’ is prefix of T,
p(n') < t and d(7’) < t'}.
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Evaluation
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Evaluation: Run-time Scaling
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10-20 tasks with 5-10 vertices each, branching degree 1-3

(Busy window extension for EDF.)
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Evaluation: P

recision Improvement
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Summary

e Exact solution for NP-hard problem
o Efficient method
o |terative refinement

e Pluggable path abstractions

e Static Priorities
e EDF
e [lexible

e Ongoing work: rf1
e Apply to other problems
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Q& A

Thanks!
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