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Response-Time Analysis

Response time

• Useful for
• Schedulability analysis
• Jitters in larger systems
• . . .

• Standard RTA for static priorities + periodic/sporadic tasks
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Not everything is periodic!
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The Digraph Real-Time (DRT) Task Model
(S. et al., RTAS 2011)

• Generalizes periodic, sporadic, GMF, RRT, . . .

• Directed graph for each task
• Vertices v : jobs to be released (with WCET and deadline)
• Edges (u, v): minimum inter-release delays p(u, v)
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DRT: Semantics
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Response-Time Analysis for DRT
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Problem: Path Combinations

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

v1

v2

v3

v4

v5

u1

u2

u3

↓

Response time

Combinatorial Explosion!
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Step 1: From Paths to Functions
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Step 1: From Paths to Functions
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Request Functions

Useful for deriving response time:

RSP(v , r̄f ) = min

{
t > 0 | e(v) +

∑
T ′>T

rf (T ′)(t) 6 t

}
RSP(v) = max

r̄f ∈RF (τ)
RSP(v , r̄f )

Combinatorial Explosion?!
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Step 2: Abstraction Trees
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Abstract Request Functions
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Abstraction Tree

rf 1 rf 2

rf 3 rf 4

rf 5

Define an abstraction tree per task:

• Leaves are concrete rf

• Each node: maximum function of child nodes

• Root is maximum of all rf

Allows stepwise refinement!
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Step 3: Refinement Algorithm
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Step 3: Refinement Algorithm

r̄f = (rf (T1), rf (T2), rf (T3))Tuple:

↓

RSP(v , r̄f ) = 23Response time:

r̄f 1 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 2 = (rf ′(T1), rf (T2), rf (T3))

r̄f 3 = (rf ′′(T1), rf (T2), rf (T3))

Step:

→ 18

→ 21

r̄f 2 = (rf (T1), rf (T2), rf (T3))

↓

r̄f 4 = (rf (T1), rf ′(T2), rf (T3))

r̄f 5 = (rf (T1), rf ′′(T2), rf (T3))

→ 20

→ 17

Initialization:
• Most abstract functions

Each iteration:

• Replace functions along abstraction trees

Termination:

• All functions are concrete

In T1:

rf ′ rf ′′

rf
In T2:

rf ′ rf ′′

rf

Store

(23, r̄f 1)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(18, r̄f 3)

(21, r̄f 2)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

(20, r̄f 4)

(18, r̄f 3)

(17, r̄f 5)

...

Using: RSP(v , r̄f ) = min
{
t > 0 | e(v) +

∑
T ′>T rf (T ′)(t) 6 t

}
Pluggable Path Abstractions!
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rf ′ rf ′′
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Pluggable Path Abstractions!
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Path Abstractions: SP + EDF
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Path Abstractions: Static Priorities

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

rf (t)

t
0 5 10 15 20 25 30 35 40

0
2
4
6
8

10 rf (v4,v2,v3)

rf π(t) := max
{
e(π′) | π′ is prefix of π and p(π′) < t

}
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Path Abstractions: EDF

T2

v

t ′

T1

v

t

wf π(t, t ′) := max{e(π′) | π′ is prefix of π,

p(π′) < t and d(π′) 6 t ′}.
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Path Abstractions: EDF

T2

v

t ′

T1

v

t

wf π(t, t ′) := max{e(π′) | π′ is prefix of π,

p(π′) < t and d(π′) 6 t ′}.
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Evaluation
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Evaluation: Run-time Scaling
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10-20 tasks with 5-10 vertices each, branching degree 1-3

(Busy window extension for EDF.)
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Evaluation: Precision Improvement
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Summary

• Exact solution for NP-hard problem
• Efficient method
• Iterative refinement

• Pluggable path abstractions
• Static Priorities
• EDF
• Flexible

• Ongoing work:
• Apply to other problems

rf 1 rf 2 rf 5

rf 3 rf 4
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Q & A

Thanks!
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