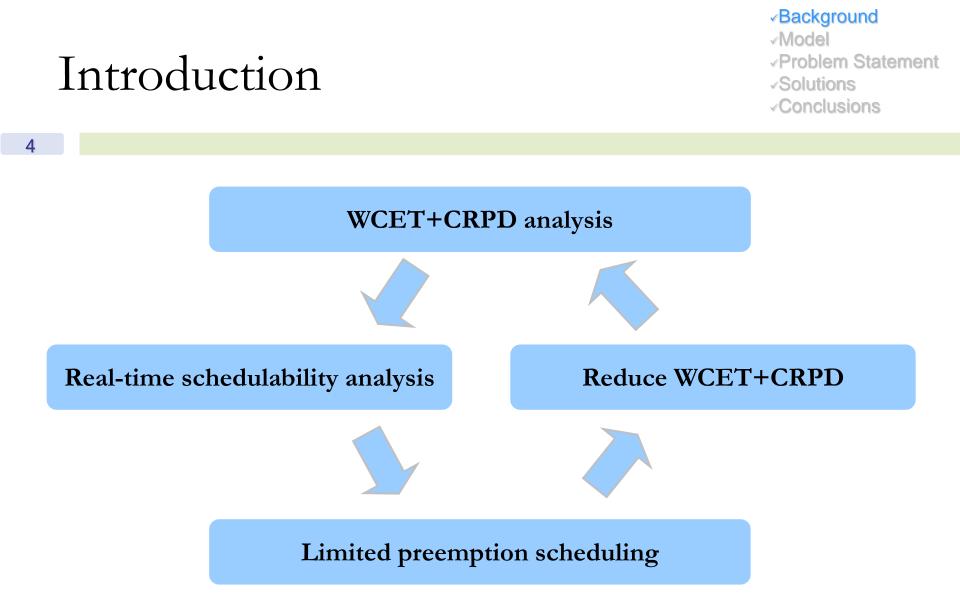
Session "RTE Mechanisms"

Chair: Marco Di Natale, Scuola Superiore Sant'Anna, Pisa, Italy

Explicit Preemption Placement for Real-Time Conditional Code *Bo Peng, Nathan Fisher and Marko Bertogna*

Multi Sloth: An Efficient Multi-Core RTOS using Hardware-Based Scheduling Rainer Müller, Daniel Danner, Wolfgang Schröder-Preikschat and Daniel Lohmann

Explicit Preemption Placement for Real-Time Conditional Code via Graph Grammars and Dynamic Programming

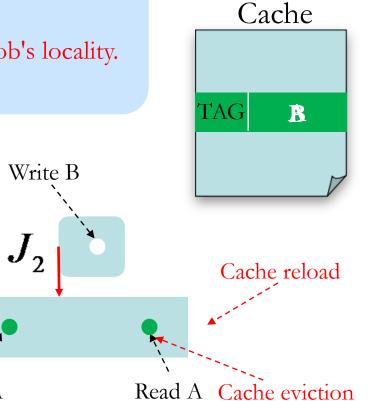

Bo Peng¹, Nathan Fisher¹, and Marko Bertogna²

¹Department of Computer Science, Wayne State University, USA ²Algorithmic Research Group, University of Modena, Italy

This research has been supported by US National Science Foundation and the European Commission.

Outline

3		
	Background	Limited-preemption scheduling model in real -time code.
	Model	Series-parallel flowgraphs.
	Problem Statement	Optimize the WCET+CRPD of the flowgraphs.
	Solution	Graph grammars; Dynamic programming.


Limited Preemption Scheduling

Background Model Problem Statement Solutions Conclusions

Reduce WCET+CRPD

Precise upper bounds on the cache-related preemption delays (CRPD).
Delay the preemption to maintain a job's locality.

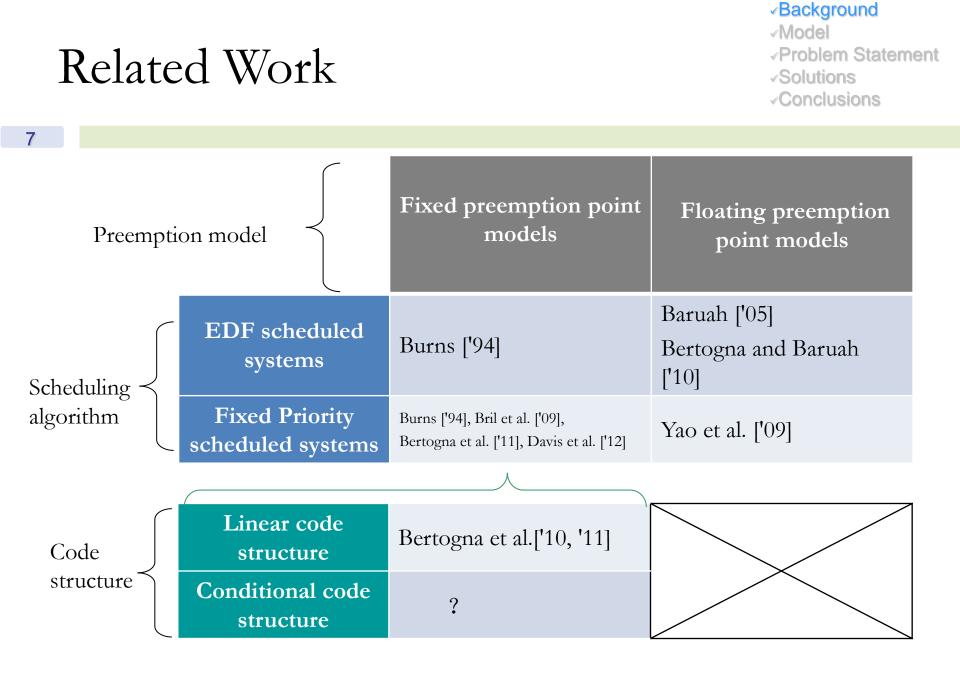
Write A

CRPD

• Cache evictions by preempting higher-priority tasks.

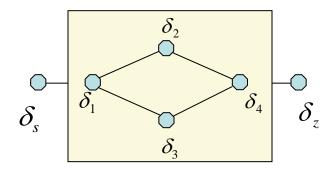
Limited Preemption Scheduling

Background Model Problem Statement Solutions Conclusions

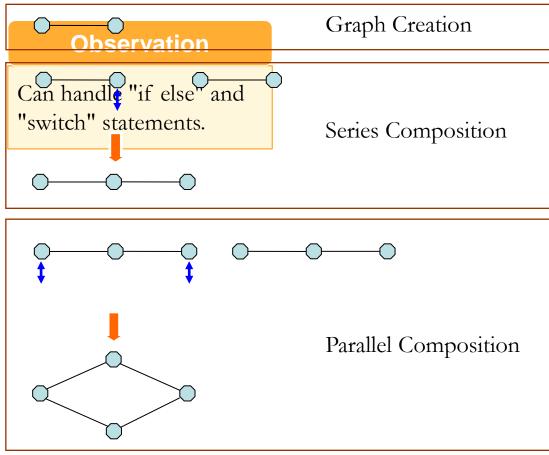

6

Reduce WCET+CRPD when arbitrarily preempt

- Precise upper bounds on the cache-related preemption delays (CRPD).
- Delay the preemption to maintain a job's locality.


Our goal

Reduce CRPD via limited preemption while preserving system schedulability.


Model

- Control flowgraph: $G_P = (V, E, \delta_s, \delta_z)$
- $V = \{\delta_1, \delta_2, ..., \delta_n\}$: set of basic blocks (BBs)
- $(\delta_1, \delta_2) \in E \subseteq V \times V$: set of edges
- $C: V \mapsto \Re \ge 0$: WCET function of BBs
- $\xi: E \mapsto \Re \ge 0$: CRPD function of edges
- PPP : Potential Preemption Point
- *EPP* : Effective Preemption Point

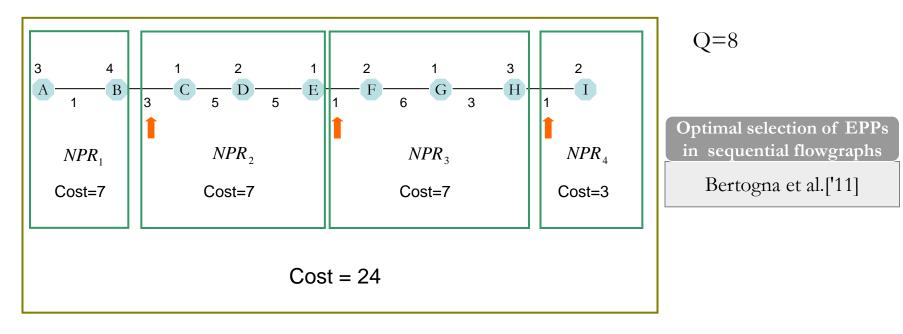
Model

Series-parallel graphs:

Background
 Model
 Problem Statement
 Solutions
 Conclusions

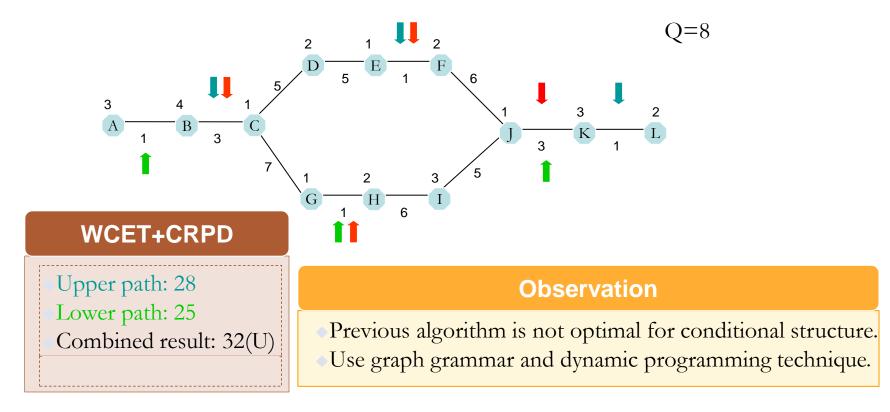
Problem Statement

10


Problem statement: Given $G_{\mathcal{P}} \in \mathcal{G}$ and associated functions ξ and C, find $S \subseteq E$ that minimizes Series-parallel graphs $\Phi(G_{\mathcal{P}}, S) \stackrel{def}{=} \max_{p \in \mathsf{paths}(G_{\mathcal{P}}, \delta_s, \delta_z)} \left\{ \begin{array}{l} \mathsf{Sum of BBs'WCET} & \mathsf{Sum of selected} \\ \mathsf{sum of BBs'WCET} & \mathsf{sum of selected} \\ \sum_{\delta_u \in p} C(\delta_u) + \sum_{\substack{\delta_u, \delta_v \in p \\ (\delta_u, \delta_v) \in S}} \xi(\delta_u, \delta_v) \end{array} \right\}$ (1) subject to the constraint that $\forall p \in \mathsf{paths}(G_{\mathcal{P}}, \delta_s, \delta_z), \delta_i \in p$: $\exists e_1 = (\delta_u, \delta_v), e_2 = (\delta_x, \delta_y) \in S ::$ Upper bound of NPR from $\left(\delta_{u} \preceq_{p} \delta_{i} \preceq_{p} \delta_{y}\right) \wedge \left(\underbrace{\left(e_{1}\right) + \sum_{\substack{\delta_{j} \in p \\ \delta_{v} \preceq_{p} \delta_{j} \prec_{n} \delta_{x}}} C(\delta_{j}) \leq Q \right). (2)$ schedulability analysis

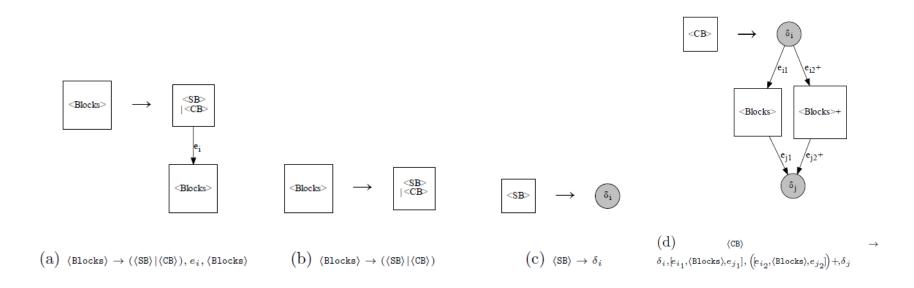
Problem Statement

11


- Find a selection of EPPs that minimizes the WCET+CRPD of a flowgraph.
- The cost of any non-preemptive region should less than Q.

Problem Statement

12

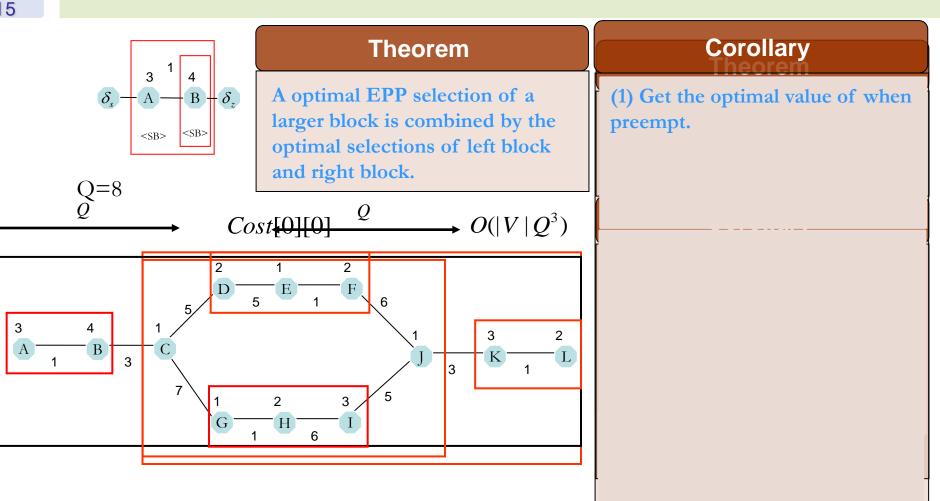

How about the previous algorithm for conditional structure?

Graph Grammar

Background
 Model
 Problem Statement
 Solutions
 Conclusions

- Decompose control flowgraphs (Linear time parsing)
- Extended Backus-Naur Form (EBNF)

Dynamic Programming: Sequential Block

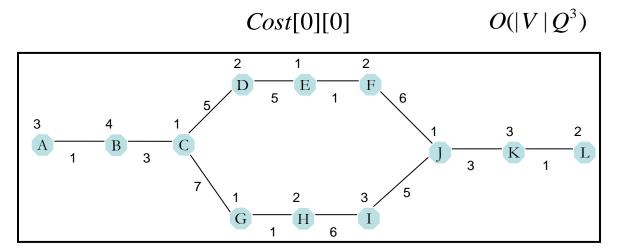


Q=	=8	δ _s -	3 - A - <sb></sb>	1 4 						t matrices reflect optimal substructures									
Blocks contains δ_A and δ_B : $Cost[\delta_s][\delta_z]$ Blocks only contains δ_B : $Cost[\delta_s][\delta_z]$																			
	\setminus	0	1	2	3	4	5	6	7		\searrow	0	1	2	3	4	5	6	7
	0	7	7	8	8	INF	INF	INF	INF		-0-	4	4	4	4	4	INF	INF	INF
	1	7	- 8	8	- 8	INE.	<u>INF</u>	INF	INF		1	(4)	4	(4)	4	INF	INF	INF	INF
	2	8	8	8	8	INF	INF	INF	INF		2	4	4	4	INF	INF	INF	JNF	INF
	3	8	8	8	8	INF	INF	INF	INF		3	4	4	INF	INF	INF	łŃF	INF	INF
	4	8	8	8	8	INF	INF	INF	INF		4	(4))INF	JNF	ÍŃF	INF	INF	INF	INF
	5	8	8	8,`	.8	INF	INF	INF	INF		5	INF	ÍNF	INF	INF	INF	INF	INF	INF
	6	INF	INF	INÈ	INF	ÌNF-	INF	INF	INF		-6-	INF	INF	INF	INF	INF	INF	INF	INF
	7	INF	INF	INF	INF	INF	INF	INF	INF	******	7	INF	INF	INF	INF	INF	INF	INF	INF
	$ost[\delta_{s}][\delta_{z}] = C(\delta_{A}) + \xi(\delta_{A}, \delta_{B}) + Cost_{prev} = 3 + 1 + 4 = 8 1; \text{ Gost}[\xi(\delta_{A}, \delta_{B}), -\delta_{B}][\delta_{z}] = Cost[1][0]$ $Cost[\delta_{s}][\delta_{z}] = C(\delta_{A}) + Cost_{prev} = 3 + 4 = 7 2; Cost[\delta_{\overline{s}} + \delta_{\overline{A}}][\delta_{\overline{z}}] = Cost[4][0] = 4 - 1$																		

Dynamic Programming: Conditional Block and Block Union

✓Background ✓Model Problem Statement ✓Solutions ✓Conclusions

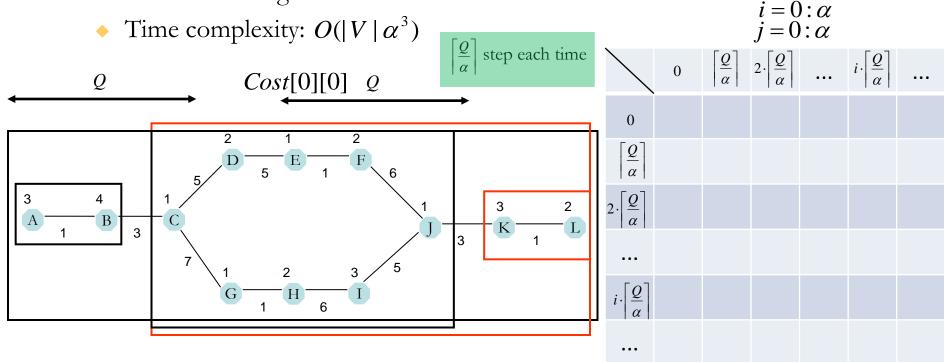
Dynamic Programming: Conditional Block and Block Union


16

Contribution

In conditional structure:

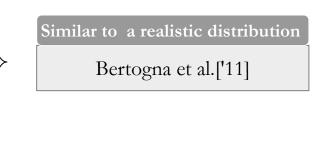
Optimal EPPs selection in pseudo-polynomial time.


Q=8

An Alternative Heuristic

- Approximate flexible $\alpha \times \alpha$ matrix
 - The WCET+CRPD will be larger than the optimal one.
 - Reduce running time.

Computational Complexity


Background
Model
Problem Statement
Solutions
Conclusions

- Consider parse tree and cost matrix:
 - Optimal solution: $O(|V|Q^3)$
 - Heuristic solution: $O(|V|\alpha^3)$

Simulations

Background
 Model
 Problem Statement
 Solutions
 Conclusions

- Randomly generate control flowgraphs:
 - number of BBs.
 - number of CBs.
- WCET of BBs:
 - Gaussian distribution.
- CRPD:
 - Correlates adjacent EPPs.
 - Randomly generated with a gaussian factor.

Simulations: WCET+CRPD

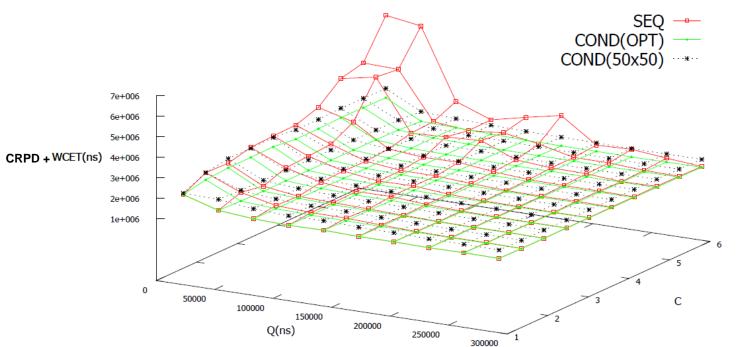


Fig. 4. Comparison of WCET over Different Values of Q and Number of Conditional Blocks (C) for SEQ, COND(OPT), and COND(50×50).

WCET trend OPT (green mesh)<Alternative heuristic (black mesh)<SEQ (red mesh)

Simulations: Running time

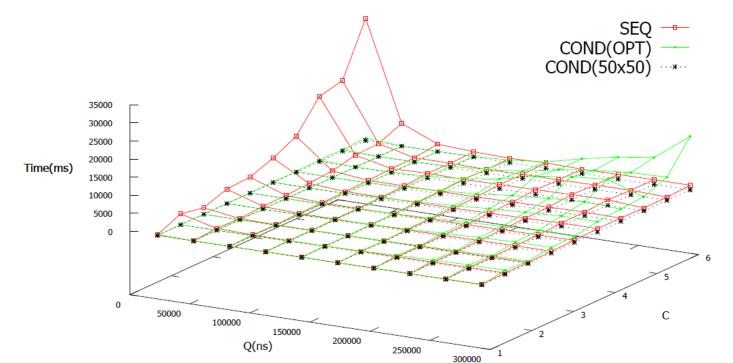


Fig. 5. Comparison of Algorithm Running Times over Different Values of Q and Number of Conditional Blocks (C) for SEQ, COND(OPT), and COND(50 \times 50)

Time trend

Alternative heuristic (black mesh) dominates over OPT and SEQ

Simulations: WCET+CRPD

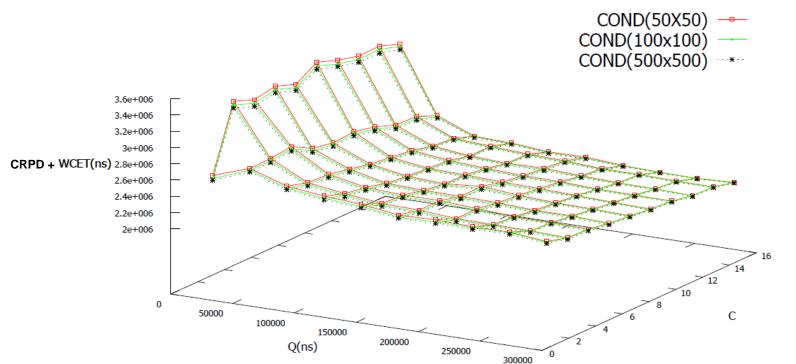


Fig. 6. Comparison of WCET over Different Values of Q and Number of Conditional Blocks (C) for heuristics.

Comparison of different setting for heuristics

Smaller size of matrices does not significantly increase WCET+CRPD

Simulations: Running time

Background
Model
Problem Statement
Solutions
Conclusions

23

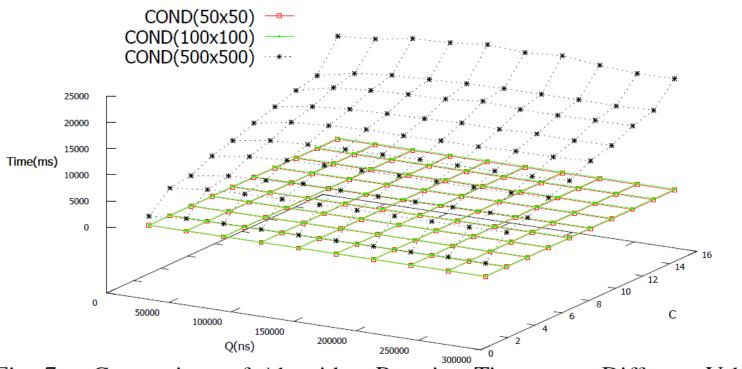
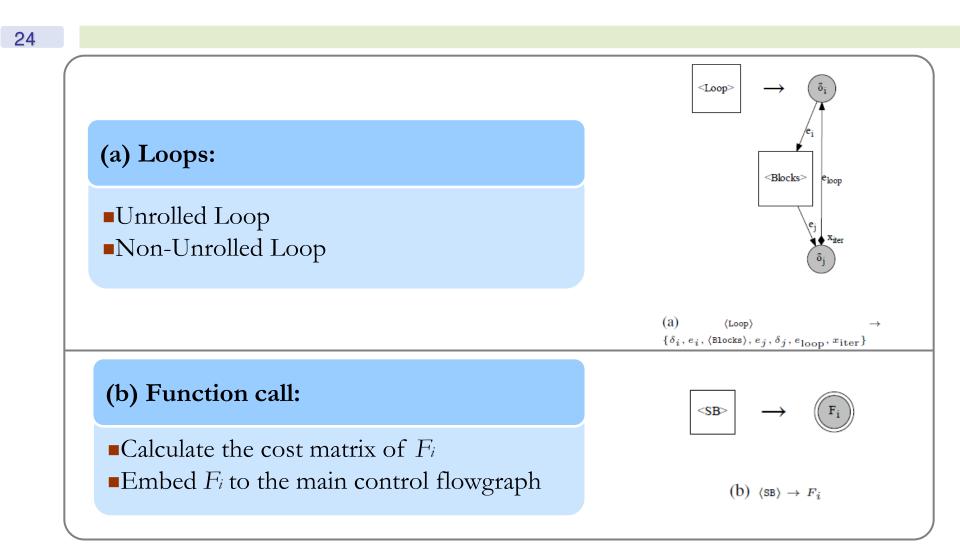



Fig. 7. Comparison of Algorithm Running Times over Different Values of Q and Number of Conditional Blocks ((C) for heuristics.

Comparison of different setting for heuristics

Smaller size of matrices significantly decreases running time

Additional Structure

Conlusions and Future Work

Background
Model
Problem Statement
Solutions
Future Work

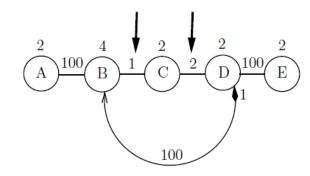
Conlusions:

- Extend the structure to conditional blocks (also loops and function call)
- Optimal algorithm for selection of EPPs
- An alternative heuristic to reduce running time
- Exhaustive simulation

Future work:

- Planar separator theory ⁻
- Parameterized theory
- NP-Completeness

- Do optimal algorithms using polynomial time exist?
- Or, is the problem NP-Complete?
- Implement this technique in automatic code generation


26

Thanks!

Related Work

EDF scheduled systems Fixed preemption point models	Burns ['94] : [11] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach
EDF scheduled systems Floating preemption point models	Baruah ['05] :[4] S. Baruah. The limited-preemption uniprocessor scheduling of sporadic task systems.Bertogna and S. Baruah ['10] :[5] M. Bertogna and S. Baruah. Limited preemption EDF scheduling of sporadic task systems.
Fixed Priority scheduled system Fixed preemption point models	 Burns ['94]: [11] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach Bril et al.['12]: [10]Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption. Bertogna et al. ['11]: [7] M. Bertogna et al. Improving feasibility of fixed priority tasks using non-preemptive regions. Davis et al. ['12]: [13] R. Davis and M. Bertogna. Optimal fixed priority scheduling with deferred preemption.
Fixed Priority scheduled systemFloating preemption point models	Yao et al. ['09]: [19] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the maximum length of non-preemptive regions under fixed priority scheduling.
linear code structure Fixed preemption point models	Bertogna et al. ['10]: [6] M. Bertogna et al. Preemption points placement for sporadic task sets. Bertogna et al. ['11]: [8] M. Bertogna et al. Optimal selection of preemption points to minimize preemption overhead.

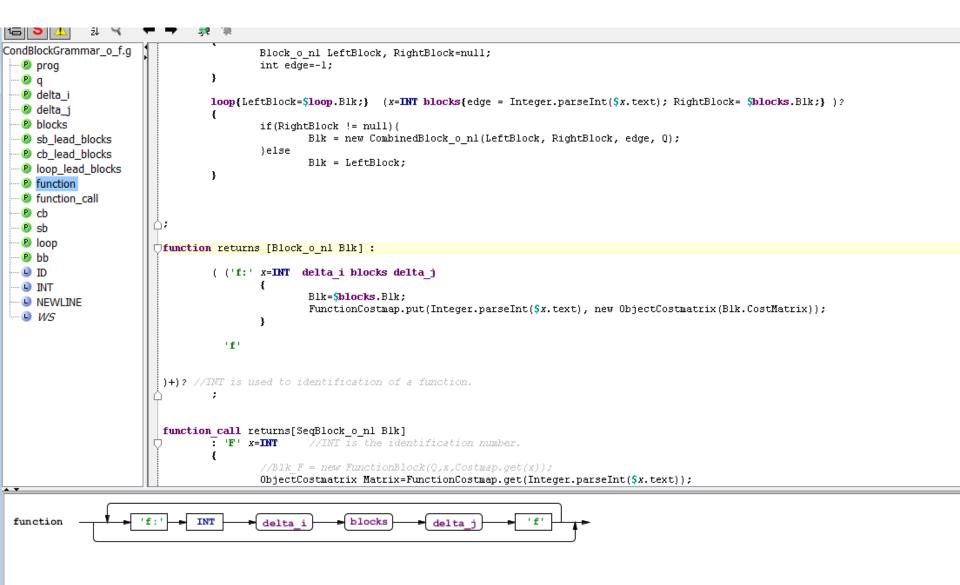
Additional Structure: Loops

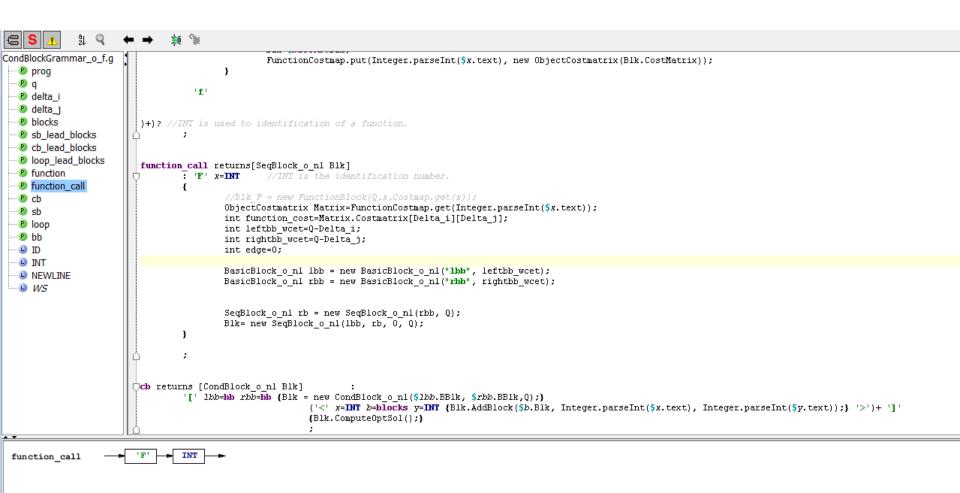
(a) Non-Unrolled Loop Example

$100 \xrightarrow{4} 1 \xrightarrow{2} 2 \xrightarrow{2} 100 \xrightarrow{4} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{100} 100 \xrightarrow{1} 100 \xrightarrow{1} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{2} 2 \xrightarrow{100} \xrightarrow{1} 2 \xrightarrow{$

100

(b) Unrolled Loop Example


(a) Non-Unrolled Loop:


Whether preempt at e_i, e_j, e_{loop}: eight possible situations
Choose the smallest one as the value of the cost matrix

(b) Unrolled Loop:

- Preemption places inside the loop is not fixed
- Integrate this structure to conditional structure

CondBlockGrammar_o_f.g	grammar CondBlockGrammar_o_f;								
Prog									
<pre>P q P delta_i P delta_j P delta_j P blocks P sb_lead_blocks P cb_lead_blocks P loop_lead_blocks P function P function_call P cb P sb P loop P bb I ID I IT I NEWLINE</pre>	<pre>@header { import java.lang.Math; import java.util.*; } @members { int 0; int func_number; int Delta_i, Delta_j; public int[][] CostMatrix; int id; HashMap<integer,objectcostmatrix> FunctionCostmap=new HashMap<integer,objectcostmatrix>(); CombinedBlock_o_nl ProgBlock; CombinedBlock_o_nl FuncBlock; public int WCETCRPD; } prog : q fb=function</integer,objectcostmatrix></integer,objectcostmatrix></pre>								
WS	b=blocks NEWLINE								
	<pre>{ //if(\$func.Blk==null) //LOOP THE FUNCTION OUTSIDE IN JAVA FILES //{ ProgBlock = new CombinedBlock_o_nl(b, 0); FuncBlock = new CombinedBlock_o_nl(fb, 0); WCETCRPD = ProgBlock.CostMatrix[0][0]+FuncBlock.CostMatrix[Delta_i][Delta_j]; System.out.println("The optimal WCET is " + WCETCRPD); System.out.print("The selected EPPs are: "); ProgBlock.PrintOptSolution(0,0); FuncBlock.PrintOptSolution(0,0); /// // //</pre>								
prog - q	function blocks NEWLINE								

