



# A Framework to Construct Customized Harmonic Periods for Real-Time Systems

Mitra Nasri Gerhard Fohler Mehdi Kargahi



#### **Motivations**

Periodic behavior appears in many real-time systems

• It guarantees certain levels of safety and QoS





Choice of periods and parameters

#### System Utilization



## **Approach: Finding Harmonic Periods**



# The problem

•

•



## Contributions

- A model to describe harmonic relations between ranges
- 2. **Graph** representation of the model



- 3. Constructing **customized** harmonic relations by pruning the graph
- 4. Sufficient conditions for existence of a **linear-time solution**
- 5. Utilization bound of the resulting solutions

A Framework to Construct Customized Harmonic Periods 6 of 36

## Agenda

- Introduction and Motivations
- Related Work
- Finding Harmonic Relations
- Period Assignment
- Experimental Results
- Conclusion







#### **Schedulability Analysis using Harmonic Periods**

Sr algorithm [Han 1997]





#### **Assuming Period Range in Period Assignment**

- Elastic task model
  - Goal: handling overloads
- Parameter assignment in control applications
  - Goal: improving quality of control

#### Difference:

- No utilization bound for the solution
- None for harmonic periods





# **Minimizing Hyperperiod**

- Ripoll 2013
  - Given Period Ranges, they find the shortest intersection between integer multipliers of the period ranges among all tasks in the system



## Agenda

- Introduction and Motivations
- Related Work
- Finding Harmonic Relations
- Period Assignment
- Experimental Results
- Conclusion





#### **System Model**

- Periodic task set
  - A period range for each task
  - Implicit deadline
  - $\,\circ\,$  Tasks are indexed according to the  $T_i{}^{min}$
  - **The goal** is to assign period  $T_i$  to each task  $\tau_i$

An interval is denoted by

$$I_1^e$$
 •  $I_1^s$  •

$$\tau = \{\tau_1, \tau_2, ..., \tau_n\}$$

 $\tau_i:(c_i, T_i^{min}, T_i^{max})$ 





### **Projected Harmonic Zone**



A Framework to Construct Customized Harmonic Periods for RTS



#### Necessary Condition for Projected Harmonic Zones





A Framework to Construct Customized Harmonic Periods for RTS



#### **Harmonic Multipliers**

$$a_1 = \lfloor \frac{I_2^s}{I_1^e} \rfloor + 1 \quad \text{If } \lfloor \frac{I_2^s}{I_1^e} \rfloor \in \mathbb{N}, a_1 = \lfloor \frac{I_2^s}{I_1^e} \rfloor$$
$$a_2 = a_1 + 1$$

...

$$a_z = \left\lfloor \frac{I_2^e}{I_1^s} \right\rfloor$$

These are the only possible multipliers which can exist



 $I_1^e$ 

 $I_1^s$ 

 $I_2^e$ 

 $I_2^s$ 

 $a_z$ 

 $a_1$ 



#### **Harmonic Relations of More Tasks**





Finding Harmonic Relations

#### **Transitive Closure Property**







Finding Harmonic Relations

## **Existence of Harmonic Relations**



But it does not imply that you have a harmonic relation between all of tasks!





#### **Harmonic Relations of More Tasks**





## **Continuous Harmonic Zones**



 $a_z I_1^e$ 

 $I_2^e$ 

 $I_2^s$ 

 $a_1I_1^s$ 

 $a_z$ 

 $a_1$ 



## Necessary Conditions for Tight Harmonic Relations





#### **Transitive Closure Property in Tight Harmonic Relations**





# **Graph Representation**

- GCA algorithm
  - A BFS algorithm to construct the graph of the harmonic relations
- Customized Harmonic Relations by Pruning the Graph





 $v_{1,}$ 



### **Each Path is a Solution**



## Agenda

- Introduction and Motivations
- Related Work
- Finding Harmonic Relations
- Period Assignment
- Experimental Results
- Conclusion







#### **Utilization Bound of a Solution**





# **Period Assignment**

#### Heuristic Algorithms

- Period assignment with high and low utilization (HU and LU)
- They might not provide the highest or the lowest utilization.



## Agenda

- Introduction and Motivations
- Related Work
- Finding Harmonic Relations
- Period Assignment
- Experimental Results
- Conclusion







## **Experiments**

#### Algorithms

- Sr [Han 1997]
- Optimal period assignment: searches all possible solutions to find maximum feasible utilization (Optimal)
- Period assignment with High Utilization (HU)
- Period assignment with Low Utilization (LU)
- Lower Bound of the utilization
- Upper Bound of the utilization





# Experiments

- Workload Model
  - Based on random period ranges (not necessarily harmonic)
    [Ripoll 2013]

 $T_i^{max} = rand[100, 5000]$  $T_i^{min} = T_i^{max}(1 - \sigma)$  $\sigma \in [0.3, 0.8]$ 

- More experiments in the paper
- Target measure
  - Acceptance Ratio: Ratio of accepted fully harmonic task sets to all generated task sets
  - Utilization



A Framework to Construct Customized Harmonic Periods for RTS



#### Random Tasks with Workload Model [Ripoll13]





#### **Future Works**

- The error bound of period rounding
- Period assignment algorithm with user defined utilization
- Slack-aware graph pruning algorithm
  - Provides sufficient conditions for optimal scheduling of nonpreemptive harmonic tasks



